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A stationary distribution for Langevin equations driven by colored noise is obtained, 'in the
weak-noise limit, from the configuration-space Lagrangian-like function. The derivation makes no
explicit use of Markovian, Fokker-Planck, or small-correlation-time approximations. Markovian
approximations based on the Lagrangian, which do not involve truncated expansions, are also dis-

cussed.

This paper aims to introduce and ellaborate the useful
alternative point of view regarding path integrals in the
problem of stochastic differential equations (SDE) driven
by colored noise. We consider a SDE for a variable g ()
of the form

g =f(g)+g(g)e@), 1)

where £(¢) is an Ornstein-Uhlenbeck process that is
Gaussian, of zero mean, and with correlation

Ch,t) =W =(D/t)exp(— |t —1t'|/7).

The problem is the calculation of the statistical properties
associated with the non-Markovian process q(¢). Results
concerning the stationary distribution, steady-state dy-
namics, and transient dynamics for the process q(¢) are
reviewed in Ref. 1. A large number of papers on this sub-
ject have been recently published and a sample of recent
contributions is given in Refs. 2-5. Statements about con-
fusion and controversy are often made.”® A fair con-
clusion seems to be*® that useful insights are shared
among many contributors, but a clear and useful theoreti-
cal understanding is still lacking. Many available devel-
opments [Refs. 1, 2(a), 2(b), 2(d), and 2(e)] aim to
derive Fokker-Planck-type equations for the probability
density P(q,t) of the process g(¢z) by systematic trunca-
tions or resummations of expansions in the parameters D
and 7. These type of expansions have proved themselves
to be useful in many specific applications,' but their valid-
ity has often been challenged.! An interesting different
approximation, which does not invoke an expansion in
powers of 7, is given in Ref. 6 where g (¢) is replaced by a
Markovian, r-dependent process. However, the extension
and thorough justification of this result remains unclear.
Early analogical’’” and numerical simulations'® made
clear the existence of qualitative facts predicted by the
theory, but simulations aimed at discriminating different
theoretical results have often added to the confusion, as
discussed in Ref. 3(b), because of lack of accuracy or
inadequate domain of parameters explored. More careful
numerical studies have been recently reported.® In view
of this general situation it is clear that there is a need for
exact results and new methods which do not use 7 as a
small parameter. In this regard an important result®
which has not been exploited is the form of the La-
grangian-like function'® in g space featuring in the path-
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integral formulation of (1). For additive noise (g=1) the
action integral is

== ! _T_ Py — 2
§=J L+ 551G f@imy, (2a)
where

L={tg+1— 11 (g)lg—f(g)}?*/(4D) . (2b)

The last term in (2a) involves non-Markovian initial-
condition effects. Steady-state distributions and the ap-
proximations considered in this paper are independent of
this term, which is neglected in our present discussion.
Equation (2) is an exact result, which contains all re-
quired information on the process g (¢), and which only in-
volves terms linear and quadratic in 7. Although func-
tional methods have been widely used in the problem of
colored noise' it appears that the methodology of a
genuine path-integral approach in terms of a Lagrangian
has not been considered at length. An exception is recent
works aimed to calculate passage times* which, however,
use the path integral in an extended phase space instead of
the g-configuration space. Our purpose in this paper is to
clarify the contents of the simple result (2) and to show
the possibilities which the Lagrangian (2) opens for carry-
ing out practical calculations. We are concerned here
with a matter of principles and not of detailed compar-
isons with specific models and simulations. We show how
a consistent Markovian Fokker-Planck approximation can
be obtained from (2), which turns out to coincide with
that of Ref. 6. The most relevant result in this paper is
the calculation of the steady-state probability distribution
in the limit of small noise intensity D. It is a direct calcu-
lation starting from the Lagrangian (2) so that no under-
lying Fokker-Planck approximation is invoked.

The Lagrangian (2) was obtained in Ref. 9 using the
Jacobian of the transformation that connects the noise
variable & with the coordinate ¢.!' The explicit form of
(2) assumes an initial preparation in which ¢ and & are
uncorrelated, and stationary initial conditions for £&. Oth-
er alternative paths to (2) help in clarifying its meaning.
We mention two of these paths which start by writing the
two-variable Markovian Fokker-Planck equation associat-
ed with (1) in the enlarged (q,£) space. A Lagrangian in
the (q,&) configuration space does not follow in the usual
way'! because the diffusion matrix is singular. However,
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the path-integral formulation for the Markovian process
in the phase space spanned by (g,£) and their conjugate
momenta is standard. A first path to obtain the Lagrang-
ian (2) is to make a Legendre transformation'? of the
Hamiltonian in that phase space and to use Eq. (1) to
eliminate the dependence on £ '> A second path to (2)
uses Phythian’s'* approach: Integrating in the extended
phase space over £ and over its conjugate moment we ob-
tain a weighting function 4(q,§) for the paths in the re-
stricted phase space spanned by g and its conjugate
momentum §

AGq.) =i [ds4() ()~ flg()}
—+ fas fas'46)CG,056) . @)

The remaining integration over g is possible if one is able
to invert the correlation function of the noise in the fol-
lowing sense:

j::C(s,s')R(s',s")ds'-5(s—s"). )

This formal inversion, in the case of the Ornstein-
Uhlenbeck noise, leads to (apart from surface terms)

R(s,s")=[6(s—s") —28"(s—s")]1/2, )

a remarkable result which directly leads to (2). While the
formal expansion of C in the sense of distributions has all
the powers of 7 and all contributions § ™ (s —s') [(n) indi-
cating the nth derivative with respect to the time s'], its in-
verse has only contributions up to the second order in 7, a
result which is apparent in the form of the Lagrangian (2)
which involves no power series in 7. The result (2) can be
easily generalized for the multiplicative case [g(g)=1].
In such a case, for example, by means of the inversion ap-
proach (5), we find

L=l —f(q@)g—g'(@qlg—f(g))/g(g)}
+4—f(g))?*/4Dg(g)?]. 6)

From the structure of the Lagrangian-like functions (2)
or (6) we see that the non-Markovian character of the
process g (z) reflects itself in the presence of terms involv-
ing 4. Then, in order to have a consistent Markovian ap-
proximation to the process, it is clear that we need to re-
move such dependence from the Lagrangian, as well as
the last terms in (2a), instead of making “expansions” in
7. The most drastic of all possible Markovian approxima-
tions is to take § =0. In the additive case it leads us im-
mediately to a true Fokker-Planck Lagrangian corre-
sponding to an effective multiplicative white noise SDE,
which, by comparison with the general structure'! for the
Lagrangian of Fokker-Planck operators, coincides with
the adiabatic approximation of Ref. 6. This justifies the
dynamical contents of the Fokker-Planck equation pro-
posed by Jung and Hinggi.® For the multiplicative case
(6) and in the Markov approximation § =0, we are still
left with a Lagrangian that has ¢* contributions. These
contributions are not allowed in a Lagrangian associated
with a Markovian Fokker-Planck equation.!' The easiest
way to recover a desired Fokker-Planck approximation is

to eliminate all powers of ¢ larger than quadratic [that
means to neglect the term g'(g)g* in the Lagrangian (6)].
The Fokker-Planck equation (FPE) that results in such a
caseis'’

U—zg'flg)f
(—zf'+g'flg)

+d2D(q)P,
D(q) =Dg(q)¥/1 — 1" (q) + 7g'(q) f(q)/g ()] . @)

At this point it is worth noting that it is not the smallness
of 7 that leads to a Markov approximation. Even in the
case of keeping only terms up to first order in 7 in the La-
grangian the problem will still be non-Markovian due to
the presence of the g contribution. That notwithstanding,
keeping all powers in 7 but neglecting the terms with g, we
get independent of the magnitude of 7, a Markovian ap-
proximation without increasing the complexity of the cal-
culation. This fact comes directly from the inverse of the
correlation function (5), which has, at most, contributions
up to 72,

Let us next consider the stationary distribution of the
process g (¢) defined by (1). A form of such distribution
for g=1 which seems to be favored by empirical and nu-
merical considerations2®3@ for weak noise is

P

+D'(q)/2

a,P(q,t)-_aq[{

Py(q)=N|1—1f'(q) | expl—®(q)/D], (8)
o(@) =~ [ f(@)dg+1£g)*2. ©)

This form can be justified in several ways. First, in the
limit D— O the dominant contribution is given by the po-
tential ®(g) in (9) and it coincides with the result ob-
tained by an ad hoc exponentiation proposed in Ref. 8
(see also Ref. 1) to solve a Fokker-Planck equation ob-
tained to first order in 7. A more refined justification of
this procedure is to look for solutions of the first order in 7
Fokker-Planck equation of the form Py =e —®/D The
equation obtained'® for @ in this way is solved by (9). A .
second justification is that Eqs. (8) and (9) are the formal
solution of a Fokker-Planck approximation'’ which is in-
termediate' between the small 7 and small D equations of
Ref. 8. These two justifications explicitly rely on small
assumptions. However, it turns out that Egs. (8) and (9)
are also the stationary solution of the Fokker-Planck
equation proposed in Ref. 6. In addition, the distribution
of Egs. (8) and (9) is known2©6817 o become exact in
the limit 7— oo, We recall that the approximation of
Ref. 6 is not based on the smallness of z, but on a Fokker-
Planck equation describing a rather different dynamics
than those of Refs. 8 and 17. Our results above favor the
point of view of Ref. 6 in the sense that Egs. (8) and (9)
are justified as the long-time limit of the Fokker-Planck
dynamics obtained as a consistent Markovian approxima-
tion valid for all values of z. In the multiplicative case the
stationary solution of (7) has a potential

o=- [ g@) I —1f(g)
+1f(q')g'(q")/g(q)dq', (10)
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and it also coincides with that indicated in Ref. 6. How-
ever, we will now show that the wisdom of Egs. (8) and
(9) goes beyond the Markoviau Fokker-Planck approxi-
mation discussed above. We do that by a direct calcula-
tion of (9) starting from the Lagrangian (2). The func-
tion @ is defined as the action of the minimizing path in g
space and it is calculated solving a generalized Hamilton-
Jacobi-like equation associated with (2). This approach
to the problem gives a rather safe first-principle ground to
(9) without relying on underlying Fokker-Planck approxi-
mations.

It is known that the nonequilibrium potential ® can
be obtained in the weak-noise limit as

12(b)

D ~'0(g) =min [ £(g,q,4)dt . an

To minimize the action integral we need to choose an ap-
propriate trajectory solution of the associated Euler-
Lagrange equations. In order to clarify ideas we consider
the linear case, that is f(¢) = —agq, g=1. The Euler-
Lagrange equations have two solutions, one is the deter-
ministic trajectory going to the attractor ¢ =0, a second
solution, which we call antideterministic, starts in the at-
tractor and goes outwards. It is this second solution start-
ing at times ¢t = — oo, and specified by values g and ¢ at
t =0, that is of relevance here. Integrating the Lagrang-
ian along this trajectory one obtains

®=minl(1+ar)(ag?/2+14¥2)]. 12)

The minimizing path is the one for which ¢ =0. In this
case (9) reproduces the exact stationary distribution of
the linear case.! The same procedure can be, in principle,
applied to a general nonlinear case, but the explicit form
of the minimizing path is not trivially obtained.'® Instead,
we look for an equation for @ in this general case. In the
case of having a Lagrangian which is a function of q and ¢
only, @ fulfills'?> a Hamilton-Jacobi equation related to
the Hamiltonian associated with the underlying Fokker-
Planck equation. In our case, properly speaking, .£ is not
a Lagrangian because it depends on §. However, using a
generalized approach due to Buchdahl,'® we obtain the
desired Hamilton-Jacobi-like equation. For g=1 we find

-2
r'z[a;(_)] -t {1 =1 (@)1g — f(g)}
9q
oD |, .| 0D
X|—|+g|—|=0. @13)
[aq] q[aq]
The solution of (13) is a function ® of ¢ and ¢, and we are

interested, as explicitly seen in the linear case, in this
function for the value of ¢ at which it has a minimum.
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The structure of (13) indicates that ¢ =0 is a minimum of
®, so that we can look for a solution of (13) in the form

(14)

From (13) and (14) and keeping terms up to second order
in ¢, we obtain the following equations for ® and ®;:

&(q,q) =0(g)+4°D(g)+ - .

i‘ggﬂ == 21 (@0 (g)/r, Di(g) =1l —f'(])/2.

(15)

This immediately reproduces (9). Similar steps for the
multiplicative-noise case reproduce the potential ® given
in (10). It is clear that the only explicit argument needed
to obtain the potential @ in this scheme is one of weak-
noise intensity (11), and not of small 7 or any adiabatic or
Markovian approximation.20 We note, however, that our
discussion based on (11) requires further elaboration
when more than a single deterministic dynamical attrac-
tor exists and that the extent of the validity of the quadra-
tic approximation in (14) might depend on the value of 7.

As a final point we consider the extension of the above
results to the case in which a Gaussian white noise n(¢) is
added to Eq. (1). For the SDE

g =f(@)+e@+n@), (16)

with {n(¢)n(¢')) =2e8(t —t') we can repeat the procedure
based on (4) to obtain the appropriate Lagrangian. It
happens that the inverse of the correlation function of the
Gaussian noise £(¢) +7(¢) contains all the powers in 7 and
5™ (s—s'). The Lagrangian contains, then, arbitrary
time derivatives of ¢q. This identifies the difficulty of the
nontrivial extension of the adiabatic approximation of
Ref. 6 to this case. A Markovian Fokker-Planck approxi-
mation can be done in the same sense, that is, neglectin%
the Lagrangian terms containing time derivatives g "

with m > 2 and powers ¢"” with n> 2. The Lagrangian
obtained in this way corresponds to the FPE (7) and g=1
and 7 and D replaced, respectively, by 7=1[D/(e+D)]"/?
and D =D +e¢. The fact that the stationary distribution of
such an equation is not exact for the linear case
f(q) = —agq gives an idea of the limitations of this approx-
imation. %!

Discussions with L. Pesquera, M. A. Rodriguez, and A.
Verga on the contents of this paper are acknowledged.
We also acknowledge financial support from Direccion
General de Investigacion Cientifica y Técnica, Project No.
PB86-0534. H.S.W. also acknowledges the kind hospital-
ity extended to him during his stay at the Departament de
Fisica of the Universitat de les Illes Balears, Spain.

*Permanent address: Centro Atdémico Bariloche, 8400-S.C.
Bariloche (R.N.), Argentina.

1J. M. Sancho and M. San Miguel in Noise in Nonlinear
Dynamical Systems, edited by P. McClintock and F. Moss
(Cambridge Univ. Press, Cambridge, 1988), Vol. 1, Chap. 3.

2(a) E. Peacock-Lépez, B. J. West, and K. Lindenberg, Phys.

Rev. A 37, 3530 (1988); (b) G. P. Tsironis and P. Grigolini,
Phys. Rev. Lett. 61, 7 (1988); F. J. de la Rubia et al., Phys.
Rev. A 38, 3827 (1988); (c) P. Hinggi, P. Jung, and P.
Talkner, Phys. Rev. Lett. 60, 2804 (1988); C. R. Doering, R.
J. Bagley, P. S. Hagan, and C. D. Levermore, ibid. 60, 2805
(1988); (d) R. Fox, Phys. Rev. A 37, 911 (1988); (e) P. Gri-



RAPID COMMUNICATIONS

39 COLORED NOISE: A PERSPECTIVE FROM A PATH-INTEGRAL FORMALISM 6097

golini et al., ibid. 38, 1966 (1988).

3(a) T. Leiber, F. Marchesoni, and H. Risken, Phys. Rev. A 38,
983 (1988); (b) P. Jung and P. Hinggi, Phys. Rev. Lett. 61,
11 (1988).

4A. Forster and A. S. Mikhailov, Phys. Lett. A 126, 459 (1988);
J. F. Luciani and A. D. Verga, J. Stat. Phys. 50, 567 (1988).

5V. Altares and G. Nicolis, Phys. Rev. A 37, 3630 (1988).

6P. Jung and P. Hinggi, Phys. Rev. A 35, 4464 (1987).

7J. M. Sancho, M. San Miguel, H. Yamazaki, and T. Kawaku-
bo, Physica A 116, 560 (1982).

8J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton,
Phys. Rev. A 26, 1589 (1982).

9L. Pesquera, M. Rodriguez, and E. Santos, Phys. Lett. 94A,
287 (1983).

10The Lagrangian generally depends on the time discretization
used. Throughout this paper we use the prepoint discretiza-
tion (see Ref. 11).

IF. Langouche, D. Roekaerts, and E. Tirapegui, Functional In-
tegration and Semiclassical Expansions (Reichl, Dordrecht,
1982); Nuovo Cimento 53B, 135 (1979).

12(a) R. Graham and T. Tél, Phys. Rev. A 31, 1109 (1985); 33,
1322 (1986); (b) 35, 1328 (1987).

3Note that in this framework (1) is a deterministic equation so
that the relation between £ and ¢ does not include fluctuations
around a most probable path. We also note that a necessary
justification of the Legendre transformation is given by in-
tegrating over the conjugate momenta of ¢ and £ and using
the & functionals generated in this way.

4R, Phythian, J. Phys. A 10, 777 (1977); R. Phytian and W. D.

Curtis, ibid. 13, 1575 (1980); H. S. Wio, C. Budde, C. Brioz-
zo, and P. Colet (unpublished).

I15The FPE (7) and the approximation made come out directly
using the change of variables that leads from the multiplica-
tive to the additive-noise case. In multivariable problems in
which such a transformation does not exist, the approximation
to be made is as indicated in the text.

16A. Schenzle and T. T¢él, Phys. Rev. A 32, 596 (1985).

7R, F. Fox, Phys. Rev. A 34, 4525 (1986).

18The boundary conditions needed to solve the equation for the
minimizing path can be derived for the appropriate variation-
al problem with free boundary values of 4. They can also be
obtained from an equivalent phase-space formalism. It is
found that at the final point the minimizing path satisfies
¢ =0. A more detailed account of these developments will be
given elsewhere [H. S. Wio, P. Colet, L. Pesquera, M. Rodri-
guez, and M. San Miguel (unpublished)].

I19H, A. Buchdahl, J. Math. Phys. 29, 1122 (1988).

20A related Hamilton-Jacobi approach [L. Shimansky-Geier,
Phys. Lett. A 126, 455 (1988); V. Altares and G. Nicolis, J.
Stat. Phys. 46, 191 (1987)] is based on the two-variable (g,&)
Markovian problem. The solution of the corresponding
Hamilton-Jacobi-like equation is found by an expansion in
powers of 7, implying a small 7 limit as well as the small-noise
intensity one.

21'We recall that the FPE of Ref. 6 is not exact for a linear mod-
el with n=0 either, although it gives the correct stationary
distribution.



