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Strong potential wave functions with elastic channel distortion
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The strong-potential Born (SPB) approximation is analyzed in a channel-distorted-wave ap-

proach. Channel-distorted SPB wave functions are reduced to a conventional form in which the
standard oA'-energy-shell factor g has been replaced by a modified factor y, which represents a
suitable average of g over the momentum distribution of the distorted-channel function. The
modified factor is evaluated in a physically realistic model for the distortion potential, and it is

found that y is well represented by a slowly varying phase factor. The channel-distorted SPB ap-

proximation is accordingly identical to the impulse approximation if the phase variation of y can
be ignored. This is generally the case in applications to radiative electron capture and to a good
approximation for ordinary capture at not too small velocities.

The strong-potential Born (SPB) approximation was

originally introduced' to provide a consistent first-order
theory of electron capture in asymmetric ion-atom col-
lisions. It is obtained when the exact Green's operator, as
it appears in T-matrix elements or in scattering states, is
approximated by the corresponding strong potential
Green's operator. Considering the motion of one electron
in the field of two nuclear charges Zp and Z~ with
Zp)) Zy, and assuming that the electron initially is bound
to the target nucleus, the SPB approximation for the ini-
tial scattering state is given by

~

++(sPB)) ~(1+G+V ) ~
@ )

where Gp+ is the projectile Green's operator

Gp+ = (E —Hp —Vp+it))

and

(2)

+;(rr, Rr) =tv (rr)&K,. (R7.) . (3)

Here, y; represents the initial bound-state wave function
of the electron, while ptt, is a plane wave with vector K; to
represent the relative motion of the projectile with respect
to the center-of-mass of the electron-target system. We
use the definition of Macek and Shakeshaft for the
Jacobi coordinates (r&, R&) and the complementary pair
(rp, Rp). The interaction potential of the electron with
the projectile is denoted by Vp.

It is to be emphasized that SPB wave functions repre-
sent the development of a bound-electron state as it propa-
gates in the field of the other collision partner. ' The fac-
tor GpVp I&;), which describes this propagation, is well
defined since I @;) is not an eigenstate of Gp. In contrast,
other approximate wave functions for which I &;) is an
eigenstate of the Green's operator require careful limiting
procedures for their proper definition. These pro-
cedures are now well understood and of no further con-
cern here since we employ only the well-defined Eq. (1) in
this work.

For later convenience, we note that Eq. (1) may be ex-

pressed in the alternative form

~

~+(sPB)) G+V ~@ ) (4)

where e; is the binding energy of the initial state. Equa-
tion (5) is also obtained when the peaking approximation
is made in the alternative form of the SPB given by Eq.
(4).

The asymptotic conditions in ion-atom collisions are

where V~ represents the potential of the electron with
respect to the target nucleus. A formal demonstration of
this equivalence rests on the fact that i riGp I N;) is identi-
cally zero, as demonstrated by Faddeev.

The SPB scattering states given by Eq. (1), and corre-
sponding states developed from final states on the projec-
tile have provided the basis for a more general distorted-
wave theory for rearrangement collisions. In practical
applications, the SPB functions have been used primarily
in physical situations where they can be evaluated in a
peaking approximation, leading to a near-shell approxi-
mation for the electron motion in the projectile field.
Equation (1) may then be expressed as

e;+(sPB'(rp, Rp) = d'k (p(k)g+(q, s)y q(r p) (qt(R p) .

(5)
Here the two complimentary sets of wave vectors (q, Q)
and (k, K;) are related as

q k —v, Q aK;+k,
where v K;/p; is the incident velocity vector and
a=Mr/(Mr+I). (Atomic units are used throughout
this paper. ) The function yq+(rp) is an ordinary Coulomb
wave in the projectile field, and it is multiplied in Eq. (5)
by the off-energy-shell factor g+ (q, e) given by

g+ (q, e) = I (1+iv)exp(tr v/2) [(—,
'

q
—s)/2q ]

where v=2'p/q is the Sommerfeld parameter. Finally,
the energy parameter ~ is given by

6 2q 8]' 2K
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U;(RT) „d rT~&;(rT) ~
Vp(rp), (9)

where rp —RT+arT may be used.
Corresponding to the elastically distorted initial state

N;+(rT, RT) ip;(rT)p», . (RT) -ip;(rT)p», . (RT)D»,. (RT),
(io)

I

often governed by long-range Coulomb forces. A suitable
relation between cross sections and T-matrix elements,
therefore, mainly relies on the distorted-wave formulation
of scattering theory. This implies that the SPB wave
function must be regarded as the limit. of a function em-
ploying an elastically distorted-wave function rather than
a plane wave to describe the relative motion in the initial
channel. The corresponding distortion potential is for-
mally arbitrary except for an asymptotic Coulomb condi-
tion. Physically, however, it is important to choose the
distortion in such a way that it describes the elastic
scattering in the considered channel with good accuracy
since elastic scattering by long-range forces is poorly rep-
resented by perturbation methods. It is, in principle, pos-
sible to model virtual transitions and polarization effects
in the determination of the distortion potential. For prac-
tical convenience, however, U; is assumed to be given as
the following static single-channel potential or as simpler
approximations thereof:

modified SPB functions may be defined according to stan-
dard distorted-wave theory as

~

~"""')-[I+Gp+(&p —U;) & I e;+&,

or similar to Eq. (4), as

~

@+(DsPB))~G + y
~

@+) (i2)

~ (rT) VT(rT)v i(rT),

the elastically distorted SPB wave defined by Eq. (11)
may be expressed exactly in the following form:

It is the purpose of this Rapid Communication to evalu-
ate the distorted SPB functions in a peaking approxima-
tion similar to that applied in the derivation of Eq. (5).
The result turns out to be equivalent to Eq. (5) except
that the off'-shell factor g+ is replaced by a modified fac-
tor y+. We derive an explicit expression for this factor in
terms of a one-dimensional integral involving the elasti-
cally distorted-channel function. The modified off-shell
factor is evaluated in a simple, but representative, case.

Introducing the Fourier transform of the distorted-wave
function, p», (RT) and of the function W;(rT) defined as

(rp, Rp) d k d KR;(k)p», . (K)(sg 2 q') 'y~+„(rp)Pq+g(Rp) . (i4)

Here 6 is a measure of the spread in momentum of the
distorted-channel function

a-K —K;,
and ez is given by a relation similar to Eq. (8)

e~ —
—,
'

q
' -e; ——,

' k '+ v 6

(i5)

(i6)

where

(rp, Rp) d kp;(k)y+(q, e)y~+(rp)pg(Rp),

(is)

1 2

y+(q, a) d Ky», (K), 2 g (q, s~) . (19)

In this derivation we have used the identity

where terms of order (I/p;) have been neglected. The
electron wave function y~+,,(rp) is the off-energy shell ac-
cording to Eq. (16). For regions of coordinate space such
that rp

~
(2m~) ' —

q ( && 1, the near-shell approximation

yq+„(rp) =g+(q, c,)yq+(r )p (i7)
is valid, and we obtain

I

this is valid if Rp is restricted to the same region around
the origin as required for the validity of the near-shell ap-
proximation given in Eq. (17).

The channel distorted form of the SPB wave function
(18) is equivalent to the original form of the SPB function
given in Eq. (5) except for the fact that the off-shell factor
g+ has been replaced bg a suitable average over the
momentum distribution p (K) in the elastic channel. To
evaluate this modified off'-shell factor y+, we insert Eq.
(7) into Eq. (19) to obtain

y+(q, a) (2q )"exp(harv/2)I (1+iv)( 2 q
—e)

fO

x d Ky»(K)( —,
'

q
—e —v h) ' '". (21)

Using the representation '

x' '
exp( txA )dx, ——b b

r(t) ~o (22)

with A ( —,
'

q
—a —v 6) in Eq. (21), the K integral is

expressed in terms of the distortion factor D»,(R).
p», (R)/p», (R) in coordinate space, and we find

y+(q, s) -(2q') "(-,' q' —e)

(~; - -,
' k')v-;(k) -W, (k), (2o) dx x'"exp[ —ix ( —,

'
q

—s) ]D», ( —xv) .

i.e., the momentum-space representation of the
Schrodinger equation for the initial state. Further, we
have neglected a factor exp(ih Rp). It is easy to see that

(23)
This is the main result of the present work. A detailed
evaluation of y+ for a realistic channel distortion is a cen-
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tral task for theory; however, in this Rapid Communica-
tion it suffices to discuss its qualitative features.

First, note that when Dg, 1 everywhere, correspond-
ing to no distortion, the original oN'-shell factor g is ob-
tained. Altnernatively, if a pure Coulomb potential is
used so that the distortion factor is just a confluent hyper-
geometric function, Eq. (23) may be evaluated analytical-
ly, and we find that y+(q, e) 1 to a good approximation.
In this way, we recover the impulse approximation, "
which has previously been obtained by the ad hoc omis-
sion of g+ in Eq. (5). Note that the impulse approxima-
tion is obtained even though the Coulomb form at large
distances of all two-body potentials is retained. The
essential feature is that the diff'erence Vp —U; when
operating on ~@;+& vanishes faster than Rz for finite

I

values of rr. Then our factor y+(q, e) generally extracts
a residual influence of off-shell propagation characteristic
of intermediate states of an effective short-range potential
in the electronic coordinate rp.

It is readily seen that the channel potential given by Eq.
(9) approaches a constant at small distances. The diver-
gent Coulomb potential is accordingly not a reasonable
approximation to the distortion potential in this region of
space. To evaluate y+ for arbitrary distortion potentials,
it may be noted that very large wave numbers are involved
in the internuclear motion (K; is typically of order 10 )
and that it is the distortion in the backward direction that
enters in Eq. (23). This implies that the distortion
D~, ( —xv) to an excellent approxiination may be repre-
sented by the Eikonal form

i Y

DK,. (R) i(vR —v R) 'exp U;(R)+ dY
Zp

(24)

where Y is the coordinate of R along the incident momentum vector K; p;v. The Sommerfeld parameter vp is given by
vp -Zp/v. The overall phase of the right-hand side of Eq. (24) was chosen for later convenience. Inserting Eq. (24) in
Eq. (23) and replacing q by v in all slowly varying functions in anticipation of a peaking approximation in the integration
over the momentum distribution of the initial electron state in Eq. (18), we find

~ fO OO Zp
y+(q e) i dxe '"exp ——, 4(R)+~0 U 4 Xv j(q 2/2 —s) R

(25)

This expression is readily evaluated for a channel poten-
tial which is constant inside and Coulombic outside a cer-
tain radius Ro. The result is given by the following ex-
pression:

y+(q, )-e '"'
/( p+ 0)+xo/(xo+ p)exp(i

x /F j (ivp, 1 + ivp, i (xo+ vp))
where the positive quantity xo is given by

xo -Ro(-,' q
' —e)/v .

(26)

(27)

The limit Ro 0 in Eq. (25) recovers the impulse approxi-
mation and the limit Ro ~ recovers the original off-
shell factor. Equation (26) inter polates between these two
limits. In most applications, we expect that x && vp so Eq.
(28) simply reduces to

y+(q, e) -exp( —ixo) . (28)

For qualitative purposes, it is realistic to assume that
Ro is of order I/Zz, while 2 q

—e is of order Zz accord-
ing to Eq. (8). The condition xo((vp is, accordingly, ex-
pected to be satisfied if Zp&&Z~, as assumed from the
outset in this paper. Equation (28) is, therefore, accept-
able as a first approximation for asymmetric collisions. At
low velocities, neither vp nor xo is necessarily small com-
pared to unity. Retention of the phase factor in Eq. (28)
is, therefore, important, particularly to correctly evaluate
contributions from high-momentum components of the in-
itial electron state.

In summary, we have shown that the incorporation of
the channel distortion significantly alters the magnitude
and phase of the SPB wave function in the physically im-

I

portant region of small separations. This change is ex-
pressed in terms of a modified factor y+ to replace the
off-shell factor g+. The new factor is of nearly unit mag-
nitude and has a moderate phase variation. This should
be contrasted with the large magnitude and rapid phase
variation of the original off-shell factor.

It should be noticed that the pronounced compensation
between channel distortion and off-energy-shell motion
shows that approximations retaining one effect but not the
other are incomplete. This conclusion also applies to
first-order theories discussed recently in the literature. '

In applications to normal capture, it was shown in Ref.
1 that the large magnitude and the rapid phase of the
undistorted g+ factor tend to compensate when the aver-
age over the momentum distribution of the initial electron
state is performed. The original $PB capture cross section
is, as a matter of fact, smaller than that of the impulse ap-
proximation at lower velocities. The retention of the
phase factor of y+ in Eq. (28) will produce a similar
effect.

The situation is different in applications to radiative
electron capture (REC). Here the oF-shell factor appears
in its unaveraged form as a factor multiplying the relevant
matrix element. ' ' The inclusion of the channel distor-
tion, therefore, reduces the SPB cross section by the factor

~
y+/g+ (, i.e., typically an order of magnitude. Further,

since the phase of the off'-shell factor is immaterial for
REC, we may conclude that the channel-distorted SPB
approximation is fundamentally identical to the impulse
approximation for radiative electron capture. This is
essential because it is known that the impulse approxima-
tion is in good accord' with available experimental data.
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