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Renormalization-group study of the dynamical viscosity of dilute solutions
of self-avoiding polymer chains

S. Stepanow and G. Helmis

(Received 17 June 1988; revised manuscript received 26 October 1988)

The first-order excluded-volume correction to the dynamical viscosity of dilute polymer solutions
is studied within the path-integral formulation of the Kirkwood diffusion equation. The renormal-
ization of the dynamical viscosity [i)(Q)] is explicitly performed in two limits: (a) zero frequency
Q=0, and (b) QWO, large contour length L (or finite L and Q —+ ~ ). The effect of screening the hy-

drodynamic interaction by increasing the excluded-volume strength is predicted. The renormaliza-
tion at the Q-dependent renormalization point enabled us to derive the scaling law for the dynami-
cal viscosity [7)(Q)]=0 ' ' "~""within the renormalization group.

I. INTRODUCTION

The transport properties of dilute polymer solutions
have mainly been studied by using the Kirk wood
diffusion equation. ' Until recently, no efficient theoret-
ical methods were available to treat this equation. Ob-
taining quantitative results from the Kirkwood diffusion
equation required a number of approximations.

Because of the formal analogy between the Kirkwood
diffusion equation and the Schrodinger equation, the
powerful path-integral methods were applied to treat the
former. In this way, the perturbation expansions of the
transport quantities of dilute polymer solutions in powers
of the excluded-volume strength and the hydrodynamic
interaction are derived.

The contribution of the excluded volume to the
steady-state viscosity to the first order in a=4 d(d is-
the space dimension} has previously been studied in Refs.
8 —11 within the Kirkwood-Riseman formalism. The in-
trinsic dynamical viscosity has been considered by using
the Langevin formalism in Refs. 12 and 13.

The excluded-volume effects on the dynamical viscosity
are studied in' ' by carrying out the renormalization at
zero frequency (the Q=O renormalization point). This
method is not efficient for studying the large-frequency
limit of the dynamical viscosity.

In this article we study the dynamical intrinsic viscosi-
ty by using the path-integral formulation of the Kirk-
wood diffusion equation. The large-frequency behavior of
the intrinsic viscosity is studied by carrying out the re-
normalization at the frequency-dependent renormaliza-
tion point.

II. RENORMALIZATION-GROUP ANALYSIS
OF THE DYNAMICAL VISCOSITY

- The calculations of the dynamical viscosity to first or-
der in the hydrodynamic interaction are given in Refs. 7,
14, and 15. The bare calculations are the basis for per-
forming the renormalization-group (RG) analysis, which
is different in Refs. 14, 15, and 7. In the present paper we
consider the first-order excluded-volume correction to the

[1+(2/s)voL 2 —'3v L~~ + ~ ~ ~ ] (2.1)

where vo=(d/2n. l) vol is introduced. Equation (2.1)
coincides with the result obtained in the Kirkwood-
Riseman formalism. ' '

Now we consider the renormalization of the intrinsic
viscosity. The analysis of the divergences of the pertur-
bation expansion of the intrinsic viscosity could give the
prescription for the renormalization. It is expected that
the excluded-volume singularities of the dynamical quan-
tities belong to the universality class of the equilibrium
excluded-volume problem. In this case, the dynamical
exponent does not appear. The analysis of this problem
is very difficult, and so far it has not been carried out.
Under these circumstances we assume that the renormal-
ization of L and Uo in the dynamical perturbation expan-
sion coincides with that in the equilibrium case.

The renormalization of I. and vo to the first order in
the excluded-volume strength is given by'

L'=L [1+(2/e)voL' + . ),
v'=vv[1 —(8/e)voL'i + ] .

(2.2)

(2.3)

From Eqs. (2.1)—(2.3) it follows that to the first order of
the excluded-volume strength the monomer friction
coefficient go has to be renormalized as

g'=go[1 —(2/e)voL'i +. . . ] . (2.4)

Taking into account the first-order correction of the hy-
drodynamic interaction, we obtain

g' =go[1 —(2/e }VoL
' —( 3/2e)goL ' + ], (2.5)

dynamical viscosity. The same problem was considered
in Refs. 12 and 13 on the basis of the Langevin formalism
of polymer dynamics. The RG analysis is there the same
as in Ref. 14.

The steady-state intrinsic viscosity [i)(0)] to the first-
order of the excluded volume strength is obtained from
Eqs. (A2) and (A4) of the Appendix as follows:

[i)]= (Nq go/12dMrl, )
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where $0=(d/2m. l) go/(dil, ) is introduced.
Following our studies ' we introduce the cutoff A, by

demanding that Eqs. (2.2) —(2.5) remain finite in four di-
mensions. For this it is sufhcient to modify the term
(2/e)L' as follows: (2/e)(L' —A.

' ). In our opinion,
this procedure can be performed in all orders of the per-
turbation expansion.

The renormalization group can be introduced by
demanding that the physical quantities are invariant un-
der the transformation of the cutoff,

f (L v g v Le/2 (~e/2 g)

=f(L', v', (', v'(L') /, j'(L')~/, A. ') . (2.6)

The renormalization group describes the changes of the
parameters L', v', and g' caused by the change of the
cutoff.

For the dimensionless interaction constants w
=g'(A, ')' and g =v'(A, ')' we obtain the following
differential equations of the RCx:

vo changed as follows: w~wa', . . . . The special
value a=1 corresponds to the renormalization with the
minimal subtractions.

With increasing L and vo&0, the effective interaction
constant iv decreases, tending to the fixed point e/2. The
consequence of this behavior of w is that the effective dy-
namic exponent vdr defined by

[q]=L ' (d =3)

is smaller than the effective static exponent v,z. But the
quantitative calculations for the parameter z=4. 5 and
wo =200 yield v, ir

—v,&=0.003, whereas the experimental
finding is' v,s.—v,&=0.02. Taking into account the reg-
ular terms does not change this difference significantly,
we note that the explanation of the inequality v,z( v,s
given above differs from that of Weill and des Cloizeaux,
based on the blob model.

Taking into account the hydrodynamic interaction we
obtain the renormalized steady-state intrinsic viscosity as

A, 'dw/dA, '=(e/2)iv —w (g + —,'w)+ (2.7) [il]=g(N„ /12dMrj, )(L') (1——'„'g +—', w), (2.14)

A, 'dg /d 1,' =e/2 —4g +. . . (2.8) where the effective monomer friction coefficient g is
defined by

Equation (2.8) has the nontrivial fixed point g*. Eq.
(2.7) has two nontrivial fixed points iv *, =

—,
' e and

wz =e/2. The solution of Eq. (2.7) is The effective interaction constant g is defined by

(2.15)

w =4zwoQ" /[4z +wo(Q —1)], (2.9) g =v(L')' (2.16)

where Q = I+(8/e)vol, '/, vo=vol (d/2irl) /, z
=voL' is the excluded-volume parameter, and A, is
the final value of the parameter of the renormalization
group.

The equations of the renormalization group (2.7) and
(2.8) do not depend on the contour length L governing
the infrared behavior of the perturbation expansion. Us-
ing the matching condition

=L', (2.10)

with

(2.11)

enables one to include the information about the infrared
behavior of the perturbation expansions into the RG
equations. For the large L from Eq. (2.11) follows the
scaling law for the effective parameter L',

L g(2v —1)/2v
m (2.12)

%e note that the choice of the matching condition is
not unique. In order to absorb the infrared singularities
of the perturbation expansion into the parameters g, v,
and L ' of the ultraviolet renormalized theory it is
sufhcient to demand that A, =aL' with a being an arbi-
trary numerical factor. However, it is easy to see that us-
ing a&1 leads also to (2.9) with the quantities iv, ivo, and

with v= —,'+ e/16 being the critical exponent computed to
order e. Equations (2.10)—(2.12) give the power law

(2.13)

with 6 =v0/Q. By using g and w to the second order in e,
Eq. (2.14) gives [il] to order e . Eqs. (2.7)—(2.16) make it
possible to study not only the scaling limit of [il] but also
the crossover behavior when g and w are not near to their
fixed point values.

From Eq. (2.9) we predict the following effect. With
increasing vo the effective interaction constant w tends to
zero. This means that in the limit vo —+ ~ thp hydro-
dynamic interaction will be screened. As a result, the
diffusion coeScient shows the Rouse behavior

D =kT/g()N .

This effect can be understood intuitively as follows. With
increasing vo the polymer coil swells and the average
monomer density within the coil decreases. For the sol-
vent within the coil it becomes more difticult to move to-
gether with the coil, and consequently the draining in-
creases. In accordance with the remark made above on
the matching condition the use of a%1 does not infiuence
the screening effect.

The observation of this effect depends on the relation
between wo and z. %'hereas in good solvents z can reach
the value 4—5, the typical values of wo are not known.
Since the draining effects have not been observed as far,
wo is expected to be large. vo can be made greater by
choosing the appropriate solvent and increasing the tem-
perature.

The renormalization procedure described above can be
designated as renormalization at the renormalization
point A =0. An analogous technique has been used to re-
normalize the dynamical viscosity in Refs. 14 and 15.
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g'=go[1 —(2/e)Vob ' + ] . (2.18)

By taking the hydrodynamic interaction into account Eq.
(2.18) is changed as follows:7

1 —(2/e)vob ' — gob
'/ +—e/2 3 —e/2 (2.19)

However, it is not efficient for studying the behavior of
the dynamical viscosity at high frequencies. In Ref. 7, in
connection with the investigation of the dynamical
viscosity, the high-frequency behavior has been studied
by using the frequency-dependent renorrnalization point.
Here we extend this method in order to include the
excluded-volume effects.

We start with Eqs. (A8) and (A9). The 1/e singularity
renormalizes the contour length L and the monomer fric-
tion coefficient as follows:

L'=L [1+(2/e)vob '/ + . ], (2.17)

[rl(&)]=(L'/L)(g/&)' ', (2.23)

where L' is given by Eq. (2.11). From Eqs. (2.11) and
(2.21)—(2.23) we obtain the scaling law of the dynamical
viscosity

(II)] ~—(dv —()/dv (2.24)

We note that the renormalization-group derivation of the
scaling law (2.24) differs from the derivation based on the
scaling arguments. The renormalized dynamical viscosi-
ty is obtained from Eqs. (A8) and (A9) by omitting the
1/e pole and replacing the bare quantities go, L, and
uob '/ by g, L', and g, respectively.

Equations (2.21) and (2.22) give the effective monomer
friction coefficient.

For large frequencies the dynamical viscosity behaves
as

= ( gQ /2dk T) (2.20)

where the effective monomer fricton coefficient scales as

To ensure that Eqs. (2.17)—(2.19) remain finite for d =4
we modify the term b ' as follows: b ' —A.

'
In complete analogy to renormalization at the zero fre-

quency, Eqs. (2.17)—(2.19) can be used to derive the
differential equations of the renormalization group. It is
remarkable that these equations coincide with that ob-
tained for the zero frequency. The equations of the re-
normalization group (2.7) and (2.8), which are the equa-
tions of the ultraviolet renormalization, do not depend on
the parameter L and 0 governing the infrared behavior
of the perturbation expansion. The only difference from
the previous case consists of the change of the matching
condition. For both theta and good solvents, the match-
ing condition for large Q has to be chosen as

III. CONCLUSION

In the present paper we presented the study of the
dynamical intrinsic viscosity of dilute polymer solutions
in good solvents on the basis of the path-integral formula-
tion of the Kirkwood diffusion equation. In carrying out
the renormalization of the dynamical viscosity we stress
the explicit calculation of the effective-interaction con-
stant of the hydrodynamic interaction w, which is given
to the first order in e. For the first time, we predict the
effect of the screening of the hydrodynamic interaction
with increasing excluded-volume strength. In order to
study the high-frequency behavior of the dynamical
viscosity we apply the renormalization procedure at the
Q-dependent renorrnalization point.

APPENDIX

g=

(udge)

(2~l /d)d/ig

From Eqs. (2.20) and (2.21) A. is obtained as

= [(2m l /d )" (vd rl, 0/2dk T]

(2.21)

(2.22)

The dynamical intrinsic viscosity up to the first order
of the excluded-volume strength is obtained within the
path-integral formulation of the Kirk wood diffusion
equation ' as follows:

[rl(Q)]'=(N„kT/Mg, )f dt f dr e ' '—vol (2n)
—nr &

x f d"q f ds, f ds2[2D(„)(t)(Q, „—Q, „)q,

—2k(„)'D(„)(r)(Q, „—Q, „)D(k)(t r)—
X (Q, , k

—
Qs, k )'q'qy'

+ A(k)'D(k) (t)(Q,
) k

—Q, 2k ) k(„)

X(Q, „—Q, „)q„q ]exp( —
q 1~sz —s, ~/2d),

where Do=kT/go, ')).(„)=(d/1)(nn/L}, Q,k =(2/L)'/ cos(mk/L) (k =1,2, . . . ), and Q,O=L
The steady-state viscosity is obtained to first order of the excluded-volume strength from (Al) as

[g]=(N~ (0/12dMrl, )L [1+2zI (e)], (A2)
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where I (e) is given by

I(e)= 1/[(2+@/2)(3+e/2)][6/e+(e/2)/(1+ a/2) —(6+3@/2)/(8+2')],

and the excluded-volume parameter z =UOJ ' is introduced.
For small e, I (e) is obtained as

I (e) =1/e —
—,", ,

which coincides with the results obtained in Ref. 10.
For high frequencies the intrinsic viscosity is computed from (Al) as

[N„Uo(oL/(dMq, )](i'~ b) ' ' I2(e),
where Iz(e) is given by

I (e)=1 (1+a/2) [3/2e —
—,
' —[ —5/e+8(2) '~ /e+ —,']/(3 —e/2) I /[(1 —e/2)(2 —e/2)]

and b =[(oQ, /(2dkT)]'~ is introduced. For small e, Iz(e) is given by

Iz(e)=[1/e —
—,', +8(ln2)/3]/4+O(e) .

For high frequencies the dynamic viscosity is obtained up to first order of the excluded-volume strength as

Re[g(Q ) ]= (N„ /4d ri, M)goLb '2 '
I 1 +uob ' [1/e+ 8(ln2)/3 —

—,', —C —tr/8) ] I

—Im[g(Q)]=(N& /4dri, M)goIb '2 '~ [1+Uob '~ [1/a+8(ln2)/3 —
—,', —C+tr/8]},

where C is the Euler number.
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