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Establishment of correlated pure states through decay in a squeezed reservoir
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Our normal understanding of the dissipative relaxation of a quantum system interacting with a
reservoir or heat bath leads us to expect that the final state of the quantum system is a mixed state
characteristic of one subsystem in equilibrium with the larger reservoir. We show that the broad-
band squeezed vacuum has such strong correlations in its quantum noise that, although it represents
a true reservoir, the decay of subsystems, such as pairs of atoms or oscillators interacting with a
squeezed reservoir, relaxes to a pure state that reflects these strong correlations.

An excited quantum subsystem, upon interaction with
a much larger reservoir or heatbath not only acquires
fluctuations from the reservoir interaction but also dissi-
pates its energy. The reduced subsystem describing the
initially excited state will, in general, decay to an equilib-
rium characterized, not by a pure-state wave function,
but by a statistical mixture. A rather trivial exception is
provided by the case of a decay in a vacuum with the sub-
system relaxing to its ground state. In this paper we ad-
dress ourselves to the nature of the equilibrium state gen-
erated by decay of quantum systems in a multimode
squeezed vacuum."? The multimode squeezed vacuum is
a most unusual reservoir which exhibits thermal fluctua-
tions when quantities sensitive to single modes are stud-
ied, but exhibits extremely strong quantum correlation
when quantities dependent on pairs of modes are stud-
jed.> We shall demonstrate that, for certain observables,
decay in squeezed broadband light can behave precisely
like the approach to conventional thermodynamic equi-
librium with the squeezed light appearing to be Planckian
with an effective temperature. Nevertheless we can also
construct phase-sensitive  observables which are
sufficiently influenced by the reservoir correlations that
they relax to correlated and nonthermal forms in which
the correlations in the reservoir transfer to the quantum
system. In particular, a pair of quantum systems may re-
lax to a highly correlated pure state.

A broadband squeezed vacuum forms a reservoir
characterized by a phases-sensitive white noise."? It is
composed of many modes of the electromagnetic field
that are strongly correlated in pairs around some central
frequency. The interaction of quantized systems, such as
oscillators or atoms with such a reservoir, has already
been the subject of several papers but attention was con-
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centrated mainly on the modification of the Lamb shift
or the spontaneous decay constant in particular systems
such as a two-level atom or a harmonic oscillator*> and
on developing new techniques for description of that in-
teraction.’ !0 In the present paper we consider a transfer
of correlations from the broadband squeezed vacuum to
two subsystems which are initially uncorrelated. We will
show that the two subsystems become highly correlated
in a steady-state limit. Moreover, the correlated steady
state of the subsystems is not a mixed state but a pure
state which reflects these correlations.

We consider the following Hamiltonian for the total
system:

H:hw,s‘,\sl +ﬁwzs§s2 +3 ﬁ“’ub;bu
m
+ 3 g, l(s]+shb, +H.c.]. )
n

The summation here goes over continuous sets of modes.
The operators s, (sD and s, (s I) are annihilation
(creation) operators for subsystems 1 and 2, respectively.
They could be, for example, annihilation and creation
operators for a harmonic oscillator or alternatively, the
Pauli operators for a two-level atom. These are the two
examples of quantum subsystems that we shall consider
in interaction with the multimode squeezed vacuum. Let
us introduce now new ‘‘normal mode” operators s and 5
defined by

s=—\/1—§(s,+s2) , ()

(S2~Sl )7
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and also the new frequencies
(0, +w,) (w,—wy)
Q= A= .
> , ) (3)

Using those new “modes” we can rewrite the Hamiltoni-
an (1) in the following form:

H=#05 "5 +#0s"s +#ia(sT5+3 1)
+ 3 fiw,blb,+ 3 #V2g,(s'b,+H.c), (@
7 u

or when we go to the frame rotating with frequency Q
H,=#A(S'§+51s)

0o L He 5)

+ zm/zg#(s*B e
where S, st ) B”, and B;: are interaction picture opera-
tors.

So far we have not made any assumptions about our
model of the reservoir except that it is composed of the
set of harmonic oscillators. In a squeezed vacuum case
these harmonic oscillators are correlated in pairs around
some central frequency that we set equal to 2. When the
squeeze parameter r (see, for example, Ref. 11 and refer-
ences therein) is independent of the frequency of the os-
cillators, the squeezed vacuum can be generated from the
normal vacuum by application of the following unitary
transformation:
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0,)=K|0), (6)

here K is the usual multimode squeezing transforma-
tion,'® which correlates modes in pairs symmetrically dis-
placed from the central frequency

gt
—r(B.B__—B B_ )
K=]JJe < =, ™
K

where k denotes the mode with frequency &, =Q—w, so
that mode frequencies are redefined with respect to the
carrier frequency. Note that for later convenience we set
the squeeze parameter equal to —r instead of r through a
choice of overall phase of the squeezing.

The initial state vector of the total system (that is two
subsystems plus reservoir) we will write as

1Y) =¥ )®104,) , (8)

where |4, ) describes the state of the two subsystems and
IO ) the broadband squeezed vaccum. After performing
the unitary transformation KT we obtain the state

KT oe) =1¥,)210) )

where |0) is the usual vacuum state and the dynamics is
now governed by a Hamiltonian where the states are
“unsqueezed” but the system operators are transformed
to their r-dependent dressed, or squeezed form,

K'H,K =#A(S'S+51s)+ S #V/2g, {S'[B,cosh(r)+B_ sinh(r)]e ' +H.c.}
=#ASTS+57s)+ zm/ing e |[STcosh(r)+ S sinh(r)]+H.c.
=#ASTS+57s) +21‘i\/2g (s"B.e"“+H.c.) (10)

with

S =S5 cosh(r)+S'sinh(r) , (11a)

§=35 cosh(»)—S Tsinh(#) . (11b)

The transformation K acts on the reservoir variables but
we have obtained a transformed Hamiltonian in which
modified operators for the subsystems are coupled to a
reservoir in its vacuum state. At this point we can exam-
ine the final state of the two subsystems interacting with
the correlated multimode squeezed vacuum field.

If we assume that A0 then the system goes to the
steady state which, if it exists as a pure state, is defined by

Sly)=0, Sly)=0. (12)

This state is a vacuum state with respect to the dressed
operator S and S. We stress that the final state given by
Eq. (12) is generated for the correlated pair of subsys-
tems. It is not satisfied in a simple case of one two-level
atom interacting with a broadband squeezed vacuum as it
is insensitive to the intermode correlations of the
squeezed vacuum.'® For this single-atom case the atom
evolves towards a mixed state, characteristic of conven-
tional thermodynamic equilibrium. We now consider
two simple cases of correlated subsystems to illustrate
this general result. Our examples are firstly two harmon-
ic oscillators, and secondly, two two-level atoms.

Our first example considers two oscillators in interac-
tion with the squeezed multimode vacuum. The system
operators denote now annihilation (A4) and creation (A4 )
operators for the two harmonic oscillators with frequen-
cies w; and w,. Weset §;= A4, and S, = 4, and we write
the transformation (11) as
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A=A cosh(r)+ATsinh(r)=UAUT, (13a)

A=4 cosh(r)— 4 'sinh(r) =040 " . (13b)
Here the unitary transformation U is the usual
single-mode SU(1,1) squeezing operator,'!

Uze(r/Z)(AZ—A*Z) O=elr/a2-a") (14)
Now it is easy to see the steady state will be given by

r - T ¥
lp)=UT0)y=e"" 1127414210y | (15)

This state is the well known two-mode squeezed vacuum
state!! which exhibits the strong correlation between the
two oscillators.

For our second example, we consider the case of two
two-level atoms, interacting with a broadband squeezed
vacuum. Both atomic ground states have energy equal to
zero and excited states have energies #iw; and #w,, respec-
tively. Now the system operators are S,=o' and
S, =02 and the transformation (11) can be put in the fol-

lowing form:

o _=o _cosh(r)+ o sinh(r)

=a[o_cos(0/2)+0,sin(6/2)]=aU'c_U', (16a)
0 _ =& _cosh(r)—a& ,sinh(r)
=a[F _cos(08/2)—a ,sin(8/2)|=ala _U , (16b)

with the unitary SU(2) squeezing operator U now given
by

U= 0PN e (17)
22

GO/ P ey 18

a=[cosh?(r)+sinh*(r)]'/2 . (19)
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We note that o _ stands for (1/V2)(c. +02 ) and & _ for
(1/V2)(@% —ol); their squares are, of course, not equal
to zero. The angle 6 is defined by

cosh(r)
172 |7 Tcosh(r) +sinh(r)]72
. sinh(r)
9 |= : 21
12 | TcoshX(r) +sinh(r)]'2 :

As before it is easy to see that this time our steady state is
given by

02 2 _ 1 2
(6/2c”_ 0~ a+a+)|0> 22)

ly)=Ul0)=e
which simply defines the two-atom squeezed state.!?> For
a particular case A=0 the final state of the two subsys-
tems depends on initial conditions this is because the sub-
system described by operators S ',S is not coupled to the
reservoir. To conclude, we have shown that during the
interaction with a broadband squeezed vacuum two ini-
tially uncorrelated systems may become strongly corre-
lated in the steady state limit. The strong correlations
are reflected in the equilibrium or final state of the two
subsystems which despite their interaction with a dissipa-
tive reservoir, relax to a strongly correlated pure, rather
than the expected mixed, state.
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