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Energy levels for a square well containing 5-function barriers on a Cantor set
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Energy levels are investigated within a square well containing 5-function barriers on a Cantor set.
Particular attention is drawn to the dependence on the strength A, of the 6 functions. It turns out
that multiple avoided level crossings occur for X)0 connecting the limiting cases at X=O and
k= ~, which are amenable analytically. The intermediate range is investigated numerically by two
different methods: matrix diagonalization and implementation of a boundary condition for the
wave function.

and put
3n —I

G„=UI„„t=l
G=g G„.

n =1

The set C = [0, 1]&G is called the ternary Cantor set. It
has cardinal c, is perfect, nowhere dense, and has Lebes-
gue measure zero. The Hausdorff dimension and capaci-
ty of C assume the same value ln2/ln3. The potential for
which the bound states are investigated is then defined by

A5(x) if x E C
V(x}= 0 if x E(0, 1}&C

otherwise ~

It appears that a Cantor set is an obvious mathematical
device which allows infinitely many 6 functions within a
finite interval while preserving finite lengths of intervals
between the 5 functions. As we see below these two con-
ditions are crucial to obtain physically interesting pat-
terns. We mention that the Cantor set yields a fractal

The connection of quantum fluctuations, quantum
chaos, avoided level crossing, and exceptional points' of
the underlying Hamiltonian has been the subject of in-
creasing interest recently in the literature. It appears
that features which are attributed to quantum chaotic be-
havior prevail, in particular in translational regions from
one ordered situation to another. ' Fluctuations in tran-
sitional regions are usually associated with quantum-
mechanical many-body systems, ' but they also occur in
single-particle problems. " In this paper we present re-
sults of a model study of a single-particle problem which
is born out from mathematically similar situations in
quantum-mechanical many-body systems.

We consider a one-dimensional bound-state problem in
a square we11, which contains 5 functions within the
square well on a Cantor set. Specifically, let C be the ter-
nary Cantor set which is constructed as follows. Define
the open interval

3t —2 3t —1I„,= 3' 3)2

structure in the partitioning of the unit interval.
The field of "quantum chaos" consists of investigation

of quantal systems that are chaotic in the classical limit.
The classical limit of our system is completely regular.
Indeed, the particle is classically bound between two 5-
function barriers (depending on the initial conditions),
and the motion is fully periodic, independent of the A,

value (except A, =O). Although the system looks one di-
mensional, it has properties of multidimensional systems,
such as the avoided-crossing phenomena of energy levels,
which is well-known in multidimensional-nonintegrable
systems. Although there is no classical analog of our
model which behaves chaotically we find for the quan-
tized version a behavior which is typically for quantum
systems which have a classical analog with chaotic be-
havior.

Of interest is the spectrum of the Schrodinger equation
as a function of the strength k of the 5 functions. Since
our interest is concerned with avoided level crossings we
have to reduce the problem to existing internal sym-
metries to obtain eventually an irreducible spectrum.
The only symmetry in question here is parity, and we
focus our attention on even-parity solutions, where the
wave function is symmetric with respect to the point at
x =0.5.

The positive-parity spectrum is known at the two limit-
ing points X=O and k= ~. For A, =O we find

k„/n=(2n +1), n =0, 1, . . . (2)

(we prefer to use k„=QE„, where E„denotes the energy
spectrum). For the latter limit (A, = ~ ) we have an
infinite superposition of harmonic sequences originating
from the eigenvalues relating to the finite intervals be-
tween the 5 functions. We find

k„'''/sr=3(2n +1) from the interval [—,', —', ],
k„' I/m=9(n +1) from [—,', —', ] and [—', , —', ],
k„' ~/m=27(n +1) from [ —,', , —,', ], . . . , [ —,", , —,",],

sequence is twofold degenerate,

(3)
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k„"/ir =3'(n + 1) from
1 2

3 3

3'—2 3'—1

3$ 3$

sequence is 2" '-fold degenerate,

where n =0, 1, . . . . Obviously, both limiting cases give
rise to order as expreSsed by the harmonic spectra. As
the two regimes are of a very different nature, the transi-
tion from the one to the other is of particular interest.

Two methods are at our disposal to explore the inter-
mediate regime. The one is to solve the Schrodinger
equation directly, the other is based on a matrix represen-
tation of H and its diagonalization. The second method

seems to be more interesting for theoretical reasons,
while the first inethod serves as an independent numerical
test. For convenience we shift in the following the whole
interval [0,1] to the left by —,'. Denoting the general solu-

tion in the ith interval by A;coskx +B,sinkx, we have,
up to a common factor, which is of no interest, for
x E [ —

—,', —,'] the values A i
=1 and Bi =0. The coef-

ficients A; and B, in the adjacent intervals are found
from the requirement that the wave function be continu-
ous and its derivative have a jump A.f(x, ). This estab-
lishes a linear relationship between the coefficients in ad-
jacent intervals. In this way we obtain for the interval
next to [ —

—,', —,'],

1 —(A, /2k)sin2kxz —(A, /2k)(1 —cos2kxz )

Bz (A /2k )( 1+cos2kxz ) 1+(A /2k )sin2kx & 0 (4)

and for all further intervals

A;

B;

I —( A. /2k)sin2kxj

(A, /2k)(1+cos2kx. )

—
( A, /2k)( 1 —cos2kx~ )

1+(A, /2k)sin2kxj. 0 (5)

where the matrix product runs over the strictly ordered
Cantor set in one direction, since the individual matrices
do not commute. Recall that, for symmetry reasons, we
may choose xj & 0, i.e., the product runs from xz =

—,
' to-

wards x „=—,'. The spectrum is obtained from the bound-

ary condition

k . k
A cos—+B„sin—=0,

2 " 2

ensuring that the wave function vanishes at the boundary
of the square well, i.e., x „=—,'. We address the question
of the convergence of the product in Eq. (5) as well as its
numerical implementation below.

To obtain a matrix representation of the underlying
Hamiltonian we choose as a basis in L [ —

—,', —,
' ], the com-

plete set of the symmetric wave functions of the unper-
turbed (A, =O) problem, i.e., ~2 cos(max), with m odd.
The interacting part, viz. ,

( n ~H;„, ~
m ) =2k, g cos(n ex)cos(.max ),

where the sum runs over all points of the Cantor set, can
be rewritten into terms of the form g~ exp(+inqx~ ) with.

q =n +m and q = n —m. While these sums contain
2 —2 terms in the sth generation of the partitioning of
the interval [——,', —,

' ], it can be shown that

2l Vg
$ —2$ —v —1

exp(imqx )=exp g 1+exp + g
1' =2 v =0 r=2

2I ~q & mq1+exp exp
3P' 3$ v

where the sum is extended only over the positive points
of the Cantor set. To obtain this result the ternary repre-
sentation of the Cantor set is helpful. The advantage of
the right-hand side is twofold: (i) a sum of 2' terms has
been reduced to products of s terms and (ii) the rather
amazing n and m dependence of (n~H;„, ~m ) can be un-
derstood.

As they stand, the products in Eqs. (5) and (8) diverge
when s ~ ~. This is related to the fact that the strength
A, must tend to zero accordingly. From Eq. (8) it is obvi-
ous that X=G2 ' is required, where G is an effective
strength. Denoting the right-hand side of Eq. (8) by
Z, (q) we therefore obtain

(n ~H;„, ~m ) = lim G2 'Re[Z, (n +m)+Z, (n —m)] .

I

The full Hamiltonian matrix to be diagonalized is there-
fore

H„=n m. 6„+(n~H;„,~m), n =1,3, 5, . . . . (10)

The numerical calculation of the matrix elements is
efficiently achieved using Eq. (8), as for any fixed n and m
the products in Eq. (8) converge fast. The actual values
of the matrix elements seem to be rather erratic. In Fig.
1 we illustrate the diagonal elements of (n ~H;„, ~m ) with
n running from 1 to 2400. We stress, however, that the
diagram would look qualitatively similar had we chosen
any other side-diagonal or row or column. The pattern
can in principle be understood from Eq. (8): for large
values of m and n, Z„(n+m) is generically small, since
the argument of the exponential, i.e., 2i (n+m )n/3"
closely approaches an odd integer times i m for some of r,
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level crossings occur on a larger and larger scale.
It is known that for finite-dimensional matrices

genuine level crossings cannot occur if the matrix is irre-
ducible with respect to internal symmetries. ' We make
the conjecture that in the model considered genuine level
crossings are likewise excluded. The lines which appear
to cross in Fig. 2 are in fact poorly resolved events of lev-
el repulsion. For demonstration we show in Fig. 3 a
blown-up version of the section boxed in Fig. 2. It is fur-
ther known that level repulsions are associated with the
exceptional points of the Hamiltonian operator. The
type of accumulated level repulsion encountered in our
model strongly suggests that the distribution of spacings
between pairs of neighboring eigenvalues is a Wigner dis-
tribution. Quantitative confirmation of this conjecture is
in progress.

A possible extension of the model could be an investi-
gation of the dependence on the Hausdorff dimension a,
which means a more general choice of the Cantor set.
Let r& and r2 be positive numbers with r, +r2(1. A
Cantor set C(r, , rz ) is then constructed as follows:

Io=[O 1]

I, =[O,r, ]U[1—r2, 1],
Iz = [0,r & ]U [r&(1 r—2), r& ] U [1—r2, 1 —r2(1 —rz)]

U [1—r~rz, 1],

The set Ik is the union of 2 disjoint compact intervals.
A nonempty compact set of Lebesgue measure zero is
then given by

The set C(r&, r2) has Hausdorff dimension a, with a be-
ing the unique root between 0 and 1 of the equation
r, +r2 =1. For r, =r2=r it is a=1 2n/1 (nllr) In th. is
paper r =

—,', i.e., a =0.63. . . , was considered.
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