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Energy levels are investigated within a square well containing §-function barriers on a Cantor set.
Particular attention is drawn to the dependence on the strength A of the § functions. It turns out
that multiple avoided level crossings occur for A >0 connecting the limiting cases at A=0 and
A= o0, which are amenable analytically. The intermediate range is investigated numerically by two
different methods: matrix diagonalization and implementation of a boundary condition for the

wave function.

The connection of quantum fluctuations, quantum
chaos, avoided level crossing, and exceptional points' of
the underlying Hamiltonian has been the subject of in-
creasing interest recently in the literature.?”’ It appears
that features which are attributed to quantum chaotic be-
havior prevail, in particular in translational regions from
one ordered situation to another.®° Fluctuations in tran-
sitional regions are usually associated with quantum-
mechanical many-body systems,!® but they also occur in
single-particle problems.!! In this paper we present re-
sults of a model study of a single-particle problem which
is born out from mathematically similar situations in
quantum-mechanical many-body systems.?

We consider a one-dimensional bound-state problem in
a square well, which contains 8 functions within the
square well on a Cantor set. Specifically, let C be the ter-
nary Cantor set which is constructed as follows. Define
the open interval

{1 3t—2 3t—1
T = 7—3—]
and put
3/1'1 ©
G":¢L=J1 L, G="L=JlG,, .

The set C =[0,1]\G is called the ternary Cantor set. It
has cardinal ¢, is perfect, nowhere dense, and has Lebes-
gue measure zero. The Hausdorff dimension and capaci-
ty of C assume the same value In2 /In3. The potential for
which the bound states are investigated is then defined by

Ad(x) if xeC
0 if xe(0,1)\C (1)
o otherwise .

Vix)=

It appears that a Cantor set is an obvious mathematical
device which allows infinitely many & functions within a
finite interval while preserving finite lengths of intervals
between the d functions. As we see below these two con-
ditions are crucial to obtain physically interesting pat-
terns. We mention that the Cantor set yields a fractal
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structure in the partitioning of the unit interval.

The field of “quantum chaos” consists of investigation
of quantal systems that are chaotic in the classical limit.
The classical limit of our system is completely regular.
Indeed, the particle is classically bound between two 8-
function barriers (depending on the initial conditions),
and the motion is fully periodic, independent of the A
value (except A=0). Although the system looks one di-
mensional, it has properties of multidimensional systems,
such as the avoided-crossing phenomena of energy levels,
which is well-known in multidimensional-nonintegrable
systems. Although there is no classical analog of our
model which behaves chaotically we find for the quan-
tized version a behavior which is typically for quantum
systems which have a classical analog with chaotic be-
havior.

Of interest is the spectrum of the Schrddinger equation
as a function of the strength A of the 8 functions. Since
our interest is concerned with avoided level crossings we
have to reduce the problem to existing internal sym-
metries to obtain eventually an irreducible spectrum.
The only symmetry in question here is parity, and we
focus our attention on even-parity solutions, where the
wave function is symmetric with respect to the point at
x =0.5.

The positive-parity spectrum is known at the two limit-
ing points A=0 and A= . For A=0 we find

k,/m=(2n +1), n=0,1,... (2)

(we prefer to use k, =1/ E,, where E, denotes the energy
spectrum). For the latter limit (A=) we have an
infinite superposition of harmonic sequences originating
from the eigenvalues relating to the finite intervals be-
tween the & functions. We find

k" /m=3(2n +1) from the interval [4,2],

kY /mr=9(n +1) from [{,2] and [Z,%],

929 909
k¥ /m=27(n +1) from [+, ...,[£,%]1,
sequence is twofold degenerate ,

(3)
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sequence is 2 ~?-fold degenerate ,

k) /m=3(n+1) from |—, ,

where n =0,1, ... . Obviously, both limiting cases give
rise to order as expressed by the harmonic spectra. As
the two regimes are of a very different nature, the transi-
tion from the one to the other is of particular interest.
Two methods are at our disposal to explore the inter-
mediate regime. The one is to solve the Schrodinger
equation directly, the other is based on a matrix represen-
tation of H and its diagonalization. The second method

|
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seems to be more interesting for theoretical reasons,
while the first method serves as an independent numerical
test. For convenience we shift in the following the whole
interval [0,1] to the left by 1. Denoting the general solu-
tion in the ith interval by A;coskx + B;sinkx, we have,
up to a common factor, which is of no interest, for
x€[—1,4] the values 4,=1 and B,=0. The coef-
ficients 4; and B; in the adjacent intervals are found
from the requirement that the wave function be continu-
ous and its derivative have a jump A¢(x;). This estab-
lishes a linear relationship between the coefficients in ad-
jacent intervals. In this way we obtain for the interval
nextto[—4,1],

4, 1—(A/2k)sin2kx, —(A/2k)(1—cos2kx,) | |1

B, |7 |(A/2k)(14cos2kx,)  1+(A/2k)sin2kx, | |0|° “)
and for all further intervals

4] o [ 1=(/2ksin2kx;,  —(A/2k)(1—cos2kx;) | [1

B |7 IL |0/2k01 +cosakx,) 14+ (A/2k0sin2kx; | (o] 3

where the matrix product runs over the strictly ordered
Cantor set in one direction, since the individual matrices
do not commute. Recall that, for symmetry reasons, we
may choose x; >0, i.e., the product runs from x,=¢ to-
wards x , =1. The spectrum is obtained from the bound-
ary condition

k
— =0 S
2
ensuring that the wave function vanishes at the boundary
of the square well, i.e., x 2%. We address the question
of the convergence of the product in Eq. (5) as well as its

numerical implementation below.

Amcos§+Bwsin (6)

s

Il

r=2

> exp(iﬂ'qxj)=expi—gi

{j}j>o

1+exp2—l3—7:;q-

s—2
+2
v=0

where the sum is extended only over the positive points
of the Cantor set. To obtain this result the ternary repre-
sentation of the Cantor set is helpful. The advantage of
the right-hand side is twofold: (i) a sum of 2° terms has
been reduced to products of s terms and (ii) the rather
amazing n and m dependence of {n|H,,|m ) can be un-
derstood.

As they stand, the products in Egs. (5) and (8) diverge
when s — . This is related to the fact that the strength
A must tend to zero accordingly. From Egq. (8) it is obvi-
ous that A=G27° is required, where G is an effective
strength. Denoting the right-hand side of Eq. (8) by
Z(q) we therefore obtain

(n|Hy|m)=1lim G2 *Re[Z,(n +m)+Z,(n —m)] .
)

To obtain a matrix representation of the underlying
Hamiltonian we choose as a basis in L?[ —1,1], the com-
plete set of the symmetric wave functions of the unper-
turbed (A=0) problem, i.e., V"2 cos(mmx), with m odd.
The interacting part, viz.,

(n|Hy Im ) =213 cos(nmx;)cos( M

{J}

mmx;) ,

where the sum runs over all points of the Cantor set, can
be rewritten into terms of the form ¥ ; exp(*imgx;) with
g=n+m and ¢=n—m. While these sums contain
2°—2 terms in the sth generation of the partitioning of

the interval [ — 1,1 ], it can be shown that

sl 2im im
1'_[2 1+exp—3—rq- epﬁ , (8)

[

The full Hamiltonian matrix to be diagonalized is there-
fore

H, ,,=n?n?, , +{(nlHylm), n=135,.... (10)

The numerical calculation of the matrix elements is
efficiently achieved using Eq. (8), as for any fixed » and m
the products in Eq. (8) converge fast. The actual values
of the matrix elements seem to be rather erratic. In Fig.
1 we illustrate the diagonal elements of {n|H,,|m ) with
n running from 1 to 2400. We stress, however, that the
diagram would look qualitatively similar had we chosen
any other side-diagonal or row or column. The pattern
can in principle be understood from Eq. (8): for large
values of m and n, Z _(n=*m) is generically small, since
the argument of the exponential, i.e., 2i(ntm)m/3"
closely approaches an odd integer times i7 for some of r,
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FIG. 1. The first 2400 diagonal elements of {n|H;, |m ) —1.
The first row shows the elements up to 600, the second row up
to 1200, etc. The center line of each row indicates the zero line,
the maximal values above (minimal values below) correspond to
value unity (minus unity). Note that the matrix elements are
never strictly zero, they only appear so by the scale chosen.
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FIG. 2. The first 80 levels vs the effective coupling constant
G ranging from O to 4000. Actually, we have plotted k, /m in-
stead of the energies E,. Further explanations in main text.
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thus making this particular rth factor almost zero. Only
when 2(n®m) is close to 2X 3" or 4 X 3" has the product a
chance to yield an appreciable value. In other words, the
matrix H, , is essentially sparse, yet the off-diagonal ma-
trix elements never tend to zero. This feature justifies
truncation for numerical treatment as long as (i) the cou-
pling G is not too large and (ii) one restricts oneself to the
lower part of the spectrum.

In Fig. 2 we present part of the spectrum as obtained
from matrix diagonalization. We are confident that the
pattern displayed is not corrupted by the necessary trun-
cation as the spectrum has been compared with the one
obtained using Eq. (6). However, when using Eq. (6),
only eight generations, i.e., 256 6 functions, have been
effectively inserted into the square well. It is evident
from Egs. (3) that s generations should yield reliable re-
sults if one’s interest is restricted to levels which obey
k, <<3*r. In turn, matrix diagonalization of Eq. (10) au-
tomatically guarantees the limit s — o, as long as errors
inherent from truncation can be ruled out.

At the lower part of the spectrum the emergence of the
limit G — « as indicated by Egs. (3) is clearly discern-
able. While the twofold degeneracy at 9 (one level from
k(" /7 and one from k{* /) is attained, the fourfold de-
generacy at 27 (above the single levels at 15, 18, and 21
on the right of Fig. 2) is only about to be attained. In
fact, two closely lying levels marked by a triangle ap-
proach their limit at a slower rate than the other two on
their top, which have virtually attained their limit for a
lower value of the coupling constant. The marked levels
undergo a typical avoided level crossing with the level
which eventually reaches 21. Higher up this pattern re-
peats itself in a more and more dramatic way. A group
of four levels marked by a circle, together with another
two, marked by an asterisk, eventually approach the level
at 81 (indicated by an arrow) to make up the eightfold de-
generacy of that level. An appreciable number of avoided
level crossings are generated from these clusters. The
general pattern still higher up in the spectrum is that a
level with its limit at 3° for G = « is approached for finite
G by bunches of 2© 72 26573 levels to make up the
205 ~V_fold degeneracy of that level. In this way, avoided

G

FIG. 3. A blown-up version of the section in the inset of
Fig. 2.
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level crossings occur on a larger and larger scale.

It is known that for finite-dimensional matrices
genuine level crossings cannot occur if the matrix is irre-
ducible with respect to internal symmetries.!> We make
the conjecture that in the model considered genuine level
crossings are likewise excluded. The lines which appear
to cross in Fig. 2 are in fact poorly resolved events of lev-
el repulsion. For demonstration we show in Fig. 3 a
blown-up version of the section boxed in Fig. 2. It is fur-
ther known that level repulsions are associated with the
exceptional points of the Hamiltonian operator. The
type of accumulated level repulsion encountered in our
model strongly suggests that the distribution of spacings
between pairs of neighboring eigenvalues is a Wigner dis-
tribution. Quantitative confirmation of this conjecture is
in progress.

A possible extension of the model could be an investi-
gation of the dependence on the Hausdorff dimension a,
which means a more general choice of the Cantor set.
Let r, and r, be positive numbers with r, +r,<1. A
Cantor set C(r,r,) is then constructed as follows:

6021

IO=[O)1] ’
I1,=[0,rJU[1—r,, 17,
L=[0,r31U[r,(1=ry),r JU[1—ry, 1—ry(1—r,)]

Ull—ryry1],

The set I, is the union of 2* disjoint compact intervals.
A nonempty compact set of Lebesgue measure zero is
then given by

C(rl,r2)=kQOIk .

The set C(r,,r,) has Hausdorff dimension a, with a be-
ing the unique root between 0 and 1 of the equation
r¢+r§=1. For ri=r,=r it is a=In2/In(1/r). In this
paper r =1, i.e,,a=0.63. .., was considered.
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