
PHYSICAL REVIEW A VOLUME 39, NUMBER 11 JUNE 1, 1989

Continuous-time random-walk model for superionic conductors
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We formulate a continuous-time random-walk model for the motion of conducting ions in /3-

alumina which accounts for correlation effects as well as free and jump diffusion mechanisms in a
unified way. The calculated frequency-dependent conductivity and incoherent intermediate scatter-
ing function agree with experimental results, suggesting that the model provides a good description
of the underlying processes, including sublattice disorder effects.

I. INTRODUCTION

In recent years the properties of superionic conductors
have been intensively studied both from the theoretical
and experimental points of view. These materials show a
solid-phase ionic conductivity close to that of a molten
salt. ' A striking feature of P-alumina —type conductors is
the behavior of its ac conductivity, which first increases
with frequency, peaking at the microwave or far-infrared
range, to vanish finally as 1/m . Also of interest is the
incoherent intermediate scattering function (or dynamic
structure factor), which for many superionic conductors
present a complicated, non-Lorentzian line shape. '

Diverse models had been proposed to explain this be-
havior. Those based on a Fokker-Planck equation
description of a particle diffusing in a periodic potential
proved to be particularly successful, although its solu-
tion in terms of continued fractions is somewhat cumber-
some and must be worked generally in numerical form.

On the other hand jump-diffusion models present a
simpler, though less realistic, description of the process.
In these models the ions are pictured as remaining for a
mean residence time ~o at some interstitial site, jumping
to another one with a flight time ~& (&~0. Different ex-
periments ' have shown that this last assumption is not
fulfilled by many real materials. Moreover, several stud-
ies have suggested that ion-ion correlations are of
relevance to ionic transport in superionic conductors
(e.g. , in /3-alumina ), as the ions are forced to distribute
themselves over a large number of (nonequivalent) sites
then forming clusters (sublattice or liquid disorder). Ion-
ion and ion-lattice interactions may then introduce corre-
lations between successive hops, making the single-
particle hopping picture too crude. ' ' ' '

Recently it has been shown' that a more careful for-
mulation of the random-walk (RW) model could over-
come some of its drawbacks. The introduction of an ap-
propriate waiting time density in the continuous-time
random-walk (CTRW) theory of Montroll and Weiss' al-
lows for considering residence and flight times of arbi-

trary relative size. In the limit 7
&

(+'To the jump-diffusive
behavior is recovered, while taking ~, ))~0 leads to the
free-diffusion Einstein mechanism. A simplified model of
the correlations between jumps can be introduced by for-
mulating a Lorentz-gas model, ' ' in which the probabil-
ity of a given jump depends on the previous one. Selec-
tion of this correlation allows us to span the full range of
behaviors, from the "bounce-back" to the "caterpillar"
mechanisms. '

One of such models is that of Caceres, ' which, in spite
of being one-dimensional, agrees fairly well with experi-
mental results for bounce-back-dominated supe rionic
conductors.

In this work we shall construct a similar model for ion-
ic transport in P-alumina, but taking into account the
true dimensionality of the material and the structure of
the interstitial sites lattice. In Sec. II we use the
resolvent-matrix method to find an expression for the
generating function of a correlated RW on this lattice,
and introduce the residence and flight times through an
appropriate waiting time density. In Sec. III we calculate
the velocity autocorrelation function using linear
response theory and impose the sum rule and Einstein's
relation for the static limit to obtain the ac ionic conduc-
tivity of the material. In Sec. IV we calculate analytically
the incoherent intermediate scattering function from the
ionic density-density correlation function. Finally, in
Sec. V we discuss briefly the results obtained.

II. THE MODEL

Na P-alumina is composed of parallel oxygen planes
with a triangular lattice structure, separated by interven-
ing spinel structure blocks. ' Na ions move in these
planes avoiding the oxygen ions by hopping between in-
terstitial sites which form an hexagonal, two-dimensional
lattice. As only half of these sites (the so-called
Beevers-Ross sites) are minima of the ionic potential, the
effective lattice for the ionic motion is triangular and has
the same structure factor as the oxygen one [see Fig.

39 6010 1989 The American Physical Society



CONTINUOUS-TIME RANDOM-WALK MODEL FOR SUPERIONIC. . . 6011

1(a)]. We take as basis vectors e, =
—,'6(&3x —y) and

ez= —,'b, (&3x+y), where b. =5.595 A is the lattice pa-
rameter. '

For a Na ion hopping on this triangular lattice, corre-

(b)

lation effects make the probability of going to a given
neighboring site to depend on the site from which the
particle comes. We assign it probabilities p for the parti-
cle to go right through, q for turning back, r(s) for mak-
ing a turn of 60' (120 ) to the left, and r'(s') for a turn of
60' (120') to the right [see Fig. 1(b)]. Probability conser-
vation requires p +q +r +r'+s +s'=1. Different as-
signments for these parameters allows for modeling
correlations from the caterpillar (p =1) to the bounce-
back (q= 1) mechanisms. For the totally symmetrical
case p =q = r = r' =s = s' we recover the uncorrelated
(Markovian) RW model, as will be shown in Sec. III.

This model is equivalent to a two-dimensional lattice
Lorentz gas. ' The probability P„'(s) (i =1, . . . , 6) for
the ion to be at site s=s, e, +soyez (s„s2 integers) in the
nth step having come from direction i is

6
P„'(s)=g g P;, (s —s')P„', (s'), i=1, . . . , 6

s' j=1
where g; (s) are the elements of the 6X6 matrix %(s)
characterizing the transitions, and we have assumed
translational invariance. The flight directions are num-
bered as shown in Fig. 1(c). Fourier transforming Eq. (1),
we get

p
q,

6
P„'(k)= g g; (k)P~, (k),

where

(2)

P„'(k ) =g e'"'P~ (s)

and similarly for P; (k), k are the vectors of the recipro-
cal lattice (we keep track of transformations by explicitly
writing the arguments of all functions). Defining
e, =exp(ik e, ), f2=exp(ik. ez), and e3=exp[ik (ez—e, )], the matrix 4(k) takes the form

P E'1

S E3
0(k) =

qE*,

SE2

7" E3

rE, SE1 qE1 S E1

pE2 P E2 SE2 qE2

7" E3 PE3 TE'3 S'E3

S E1 r'E] PE] rE'1

qE2 S E2 T E2 pE2

SE3 qE3 S E3 7 E'3

T E'1

S E2

qE3

SE1

PE3

(3)

where the asterisk denotes complex conjugation. Equa-
tions (1) or (2) must be solved with the appropriate initial
conditions Po(s) or Po(k), respectively.

We now define the (marginal) probability to be at s in-
dependently of the arrival direction as

FIG. l. (a) Interstitial sites lattice structure of Na P-alumina.
Large open circles represent oxygen atoms, small circles the in-

0
terstitial sites (solid circles are Beevers-Ross sites). 6=5.595 A.
Basis vectors ei and e& are shown. (b) Definition of parameters
p, q, r, r', s, s'. Solid arrows represent the arrival direction, open
ones the outgoing direction. (c) Numbering of the six possible
flight directions for a Na ion on an interstitial site.

6

P„(s)= g P„'(s) .

Then the discrete-time-generating function

G(k, z)= g z"P„(k)
n=0

is given by'

(4)
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m —1

Po(k)+ g z'" P (k) —g P„(k)a „(k)

G(k, z)= m =1 n=0
6

1 —g z a (k)
m =-]

where marginal initial conditions P (k)
(m =0, . . . , 5) are obtained from Po(k) through Eqs. (2)
and (4), and the elements a (k) of the resolvent matrix
are (minus) the coefficients of X ~ in the characteristic
polynomial p(A, ) =det(k)L —4) of the matrix +(k).

%'e now introduce the characteristic times 7p and ~].
To this end we use the CTRW formalism, ' defining a
"telegraphic" waiting time density P(t) for the jumps
which is independent of the flight direction. Its Laplace
transform P( u ) reads'

P(u) =
vi+(vp+u )u

BG(k, g(u)) BG(k, g(u))
akOk, okak

2b, AP(u)+1 P(u )

3 Ap(u) —1 [1—y(u)]'
(10)

where i,j =1,2, i&j, and we have defined the "correla-
tion parameter" A =p —q+ ,'(r —s+—r'—s'). The pa-
rameter 3 can be interpreted as the difference between
the outgoing "probability currents" in the forward and
backward directions at a given site.

P(k, u ) = —[1—P(u)]G(k, g(u)),=1 (7)

which is precisely the ionic density-density correlation
function. The incoherent intermediate scattering func-
tion S(k, co) for this system can be easily obtained from
Eq. (7).

III. CALCULATION OF THE ac
CONDUCTIVITY o ( co )

The velocity autocorrelation function D ( t)
= ( U ( t) U (0) ) can be calculated from Eq. (7). Using the
Kubo-Lax linear response theory' we write

If we define the probability that the particle remains fixed
at s from time 0 to t as [1 Jo—g(t')dt'], it can be shown
that the residence time is ~p vp/v]. On the other hand,
by using the associated generalized master equation, ' the
flight time can be written as ~, = v&

'

The Fourier-Laplace-transformed probability density
P(k, u) for this CTRW is then'
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D(co) = (s'(u) )
2

(8)
1.00—

where the average runs over the whole lattice. Equation
(8) involves also an average over initial conditions in ther-
modynamic equilibrium, so we must take P o ( s ) = —,

'

(i =1, . . . , 6).
We can obtain the relevant averages from the probabil-

ity density, Eq. (7), as

(., ( );( ))=— —[1—y( )]
1 BG(k, (h(u))

ak, ak,

where k, =k e,-, i =1,2. Taking r+s=r'+s' to ensure
that there are no preferred left or right rotations and us-
ing s -=s, +s z +s, s 2, some lengthy but straightforward2= 2 2

(computer) algebra leads from Eqs. (5) and (6) to

0.00
]011

l I I I & ~ ~~l I 1 I I I I 'l li I I I I I I I li

)012 ~013 ~01L @15

~(Hz)

FIG. 2. Calculated ionic conductivity cr(co) of Na P-alumina.
U =0.10 eV. (a) No preferred rotations. A = —0.88; T=300
K (solid line), T=500 K (dashed line), T = 800 K (dotted line).
(b) Preferred rotations allowed. T =500 K; A = —0.88, 8 =0
(solid line), A = —0.36, 8 =0.45 (dashed line), A =0, 8 =0.83
(dotted line).



39 CONTINUOUS-TIME RANDOM-WALK MODEL FOR SUPERIONIC. . . 6013

Substituting Eqs. (9) and (10) in Eq. (8) leads to

v]b, v, (1+A)+(vo+u )u
D(u)=

2(vo+u ) v](1 —A)+(vo+u )u

From Eq. (11) the frequency-dependent correlation func-
tion D(to) can be obtained by the replacement u ~iso
We note that in the totally symmetrical case the correla-
tion parameter vanishes, giving the known result

D(u) =
—,
] v]A

1

+ (12)

for a Brownian motion with a velocity correlation time
~c ~o

We now relate the parameters vo and |
&

to physical
quantities. Assuming that the model satisfies the sum
rule and Einstein s relation for the static limit, we find

ReD(co)
I

0=Doe

kT

(13a)

(13b)

where Do =2 X 10 cm s ' is the high-temperature
diffusion coefficient, U=0. 10 eV the height of the poten-
tial barrier between Beevers-Ross sites, and M the
mass of the moving ions. ' Noticing that lim + D(t)
=lim„uD(u), a comparison of Eqs. (11) and (13b)
gives

2kT
MA

(14a)

Taking u =iso=0 in Eq. (11) and comparing with Eqs.
(13a) and (14a), we find

1+3 kT
vo

1 AMD
e (14b)

For the general case ( 3 &0), the ac conductivity of the
material is obtained from Eq. (11) as the real part of
pQ D(u =iso)lkT, i.e. ,

where p is the (number) density of carrier ions and Q the
ionic charge. This result is very similar to that of the
one-dimensional model of Ref. 12, partly justifying its
simplifications. As in that model we are left with only
one free parameter 2 describing the hopping correla-
tions. Adjustment of this parameter then allows us to
span the full range of behaviors from bounce-back
(A (0) to caterpillar (A )0), making the model quite
general.

The conductivity given by Eq. (15) is plotted in Fig.
2(a) as a function of frequency for different values of the
temperature from 300 to 800 K. The value of 2 selected
corresponds to a bounce-back dominated situation, as
that of ]tl-alumina. The ion mass corresponds to Na and
we take U =0.10 eV.

For completeness, we present the corresponding result
for a situation in which preferred left or right rotations
are allowed. Taking for simplicity r =s and r'=s', the ac
conductivity now results

pQ2 I 1 f+(co)f (cu) v'B'—
tr(to) = Re

M (v, +iso)

(16)

where f+(co)=v](1+3 )+(vo+i co)iso and we have intro-
duced the "asymmetry parameter" 8 =&3(r —r'), which
can be interpreted as the difference between the outgoing
probability currents in the left and right directions at a
given site. Equation (15) is recovered in the case 8 =0.

We plot in Fig. 2(b) the conductivity given by Eq. (16)
for a temperature of 500 K. The values of 3 and B
selected correspond to different situations from bounce-
back- to right-turning-dominated ones. The ion mass is
that of Na and we take U =0.10 eV.

IV. CALCULATION OF THE SCATTERING
FUNCTION S(k, a))

We now proceed to calculate the incoherent intermedi-
ate scattering function for this system as

o (to) = Re
pQ2

vp+ l co
S(k, co) = —ReP(k, u ) I „

1

7T
(17)

v](1+ A )+(vo+ico)ice

v, ( 1 —3 ) + ( vo+i co )i to
(15)

From Eqs. (3)—(5) and using symmetrical initial condi-
tions Po(s) =

—,
' (i =1, . . . , 6) as before, we can explicitly

cast the generating function in the form

11]c]c2c3+y](c]c2+c3c3+c3c])+5](c] +c2 +c3 )+g]G(k, z)=
Pzc]CPC3+y2(C]C2+CQC3+C3C] )+52(C] +C2+C3 )+ g2

(18)

where c, =cos(k.e]), c2=cos(k.e2), and c3=cos[k.(e3—e])] and the parameters P, , y, , 5, , and g; (i =1,2) are
polynomials in z of at most sixth degree. Taking for sim-
plicity r =r'=s =s' (since this does not affect the results
in any fundamental way), these parameters are

]8 =12AX z

y, = —4(CA z —A —X)Xz

5, =(CA z +A +4%)(CAz +1)z,
g]= —3(CAz +1)

P, =12(A+1)% z

y3= —6I [(p +q)A + C ]Az +2(p +r) jXz',
52=3[[(1—2r)A + C]Az +2p I(CAz +1)z,
712= —3(CAz +1) (Az +1),

(19)
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where we have defined A =p —q, X=p —r, and C=
+q

—2r.
=p —r, an =p

The scattering function is obtained by sim 1 1y simp y rep acing
P(u) for z in Eq. (19) and substituting Eqs. (7) and (18) in
Eq. (17). This procedure is straightforward and gives an
analytical expression for S(k, ai) as a ratio of polynomials
in co with k-dependent coefficients, but the resulting for-
mula is lengthy and we will not give it here. Instead we
plot the final result as a function of frequency in Fig. 3(a)
forke =~ ke =2=0, and some values of the temperature
from 300 to 800 K. The values selected for p, q, and r
correspond to a bounce-back-dominated situation which
gives the same value of A as in Fig. 2(a). In Fig. 3(b) we
plot S(k, ro) for the same values of k and temperature and
a more extreme situation, corresponding to A = —0.97.
In both cases 8 =0 (no preferred rotations).

V. CONCLUSIONS AND REMARKS

We have used a non-Markovian CTRW approach to
model a system with sublattice disorder and noninstan-
taneous jumps. Our model differs both with the one em-
ployed by Huberman et al. ' (in which oscillatory motion
of the ions in the lattice potential was used to account for

3

0.00
0.00 1.00 2.00

1.00—
(b)

3

0.50—

0.00
0.00 1.00 2.00

FICx. 3. CCalculated incoherent intermediate scattering func-
tion S(k, co) of Na P-alumina for k e =, k 2=0. U=e2= . U=0. 10
eV; T=300 K (solid line), T=500 K (dashed line), T=800 K
(dotted line). (a) p = r =r'=s =s'=0.02, =0.'=s=s = . , q=0. 90. (b)

p =r =r'=s =s'=0.005, q =0.975.

the correlations) and with that of Pietronero et al. (in
which a generalized master equation with transition rates
modulated by additional dynamical variables was used
for the same purpose).

Figure 2(a) shows that the expression obtained for the
ionic conductivity [Eq. (15)] is in good qualitative agree-
ment with experimental results for 13-alumina. ' lt shows
a steadily growing behavior for small co, a strong depar-
ture from Drude-like response to show a peak at mi-
crowave frequencies, and it finally vanishes as 1/cu for
m~ oo as in free-ion-like models. The k

'
e pea is centered

roughly in the 1-THz region, which corresponds to the
inverse of the flight time ~, for the corresponding values
of the physical parameters (r, '=v' =10" s ' for Na
ions at 500 K), as would be expected.

We want to stress the similarity of this result with that
of the one-dimensional model of Ref. 12. Calculations on
a two-dimensional square lattice as the one in Ref. 14
gave also the same behavior. This suggests that the de-
tailed 1tai e attice structure is relatively immaterial for the ac
conductivity, at least as long the lattice is regular and we
do not allow for preferred rotations.

It could be argued that a strong magnetic field (exter-
nal or local) can bias right or left rotations, distorting the
resonance peak as shown in Fig. 2(b). However, a simple
calculation shows that for the carrier ions to have a mean
gyration radius of about 50 lattice spacings, which corre-
sponds to an asymmetry parameter as little as 8 =0.02,
the required fields would be roughly 10 T, making the
observation of these phenomena in Na P-alumina and like
materials very difficult.

Figure 3(a) shows that the calculated scattering func-
tion S(k, cu) presents a strong quasielectric line which has
a non-Lorentzian line shape. As can be seen from E s.
(7), (17), and ~18), and (18), expanding S(k, co) in partial fractions,

n e seen rom qs.

it is a superposition of Lorentzian lines. This corre-
sponds to the results of continuous models as that of Ref.
5 in the large friction limit. In Fig. 3(b) we see that a
more extremely bounce-back-dominated situation leads
to the appearance of an inelastic peak, as in continuous
models with low friction. As expected, S(k, cu) does de-
pend on the lattice structure.

As a final remark we want to stress the conceptual and
mathematical simplicity of the model presented here. It
allowed us to account for such features as lattice struc-
ture, correlation effects, and the existence of two different
time scales within a single framework. Introduction of
t e physical quantities is straightforward, leaving for the
conductivity a single free parameter which models the
different degrees of sublattice disorder. Calculations are
straightforward and can be done anal t' ll . Dna y ica y. espite its
simplicity, it reproduces with realism the main f t fain ea ures o

e o served ac response and scattering function.
We think this model can be used with profit for other

simi ar systems, reformulating it in terms of the corre-
sponding lattice structures and transport mechanisms.
Work on this line is in progress.
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