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Adsorption isotherms on fractal substrata
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By means of Monte Carlo simulations, diffusion-limited recombination reactions, followed by
desorption and the desorption of single particles from fractal and multifractal substrata, are studied.
From all these results, we conjecture that for both processes (a) the dissociative adsorption and asso-
ciative desorption of diatomic molecules and (b) the nondissociative adsorption and desorption of
single particles, the relationship between the particle coverage 0 and the applied pressure p at the
steady state (i.e. , the adsorption isotherm) may be written, in the limit 6~0 as
6' '+' 'f(1 —6) ' ~p' ' for (a) and 6( —1n6)' '~f11 —6) '~p' ' for (h), where f is the site visita-
tion random-walk exponent of the substratum. Classical isotherms are recovered for homogeneous
surfaces with f = 1.

I. INTRODUCTION

It has been established that the surface of most solids
on the molecular scale may be regarded as a microscopic
fractal structure. ' ' Furthermore, chemical reactions on
fractal media are known to be "anomalous" in the sense
that the reaction order depends on the fractal nature of
the substrate. "

The aim of this work is to study the influence of the
fractal and multifractal chemical kinetic upon the ad-
sorption isotherms obtained by working with heterogene-
ous substrata. The study of adsorption isotherms has at-
tracted increasing interest since the beginning of this cen-
tury. A large number of reviews on this subject can be
found in the literature; see, for example, Refs. 21 —24.
More recently, interest has further increased, due to the
study of two-dimensional phase transitions by means of
adsorption isotherm measurements.

In this work we propose adsorption equilibrium iso-
therms that are expected to hold, on heterogeneous ad-
sorbents, within the low-coverage regime, and in the ab-
sence of lateral interactions. Surface heterogeneity is a
consequence of the multiplicity of exposed crystallo-
graphic faces, structural defects (such as steps, grain
boundaries, vacancies, etc.), the presence of chemisorbed
impurities, etc. In order to approach different kinds of
heterogeneities, three types of substrata are considered:
(a) percolation clusters in two dimensions (geometrical
fractal heterogeneities), (b) two-dimensional substrata
with multifractal jumping probability distribution (for the
definition, see below), and (c) multifractals obtained inter-
secting, in two dimensions, the substrata of (a) and (b)
(combination of geometric and energetic heterogeneities).
The structure of the work is the following. The main
properties of the employed substrata are briefly reviewed
in Sec. II. The theory of desorption reactions from frac-

tais and multifractals is discussed in Sec. III. The Monte
Carlo procedure used to simulate the reactions is briefly
explained in Sec. IV and the corresponding results are
discussed in Sec. V. The adsorption isotherms are de-
rived in Sec. VI. Finally, Sec. VII comprises the discus-
sion of the results and conclusions.

II. SUBSTRATA

The theory of desorption reactions (Sec. III) holds for a
great variety of fractal and multifractal substrata. The
description of the construction rules and main properties
of well-known fractal structures, where the above-
mentioned theory works, such as incipient percolation
clusters (IPC), diffusion-limited aggregates (DLA), Sier-
pinski gaskets (SG), etc. , are beyond the scope of the
present study. The reader is, therefore, referred to review
articles; for example, Refs. 27 and 28.

Fractal structures such as IPC, DLA, SG, etc. are
characterized by geometrical heterogeneities (holes,
branches, loops, etc. ) on all scales. For particle diffusion
on these media it is assumed that all the sites of the struc-
ture have the same time residence probability (p), i.e.,

p —exp( E /k T), —

where E is the activation energy of diffusion, k is the
Boltzmann constant, and T the temperature. Therefore,
in this sense, the structures are geometrically heterogene-
ous but energetically homogeneous.

On the other hand, since the study of multifractals has
begun very recently, let us briefly review the relevant
properties. In this work we simulate desorption reactions
on multifractals, such as those proposed by Meakin.
On square lattices of size L XL, with L =2", these mul-
tifractals are constructed as follows. Four normalized
probabilities P, (i =1, . . . , 4) are selected. In the first
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generation, these probabilities are randomly assigned to
the four quadrants, each of them of linear size I, =L/2,
of the lattice. In the second generation, each quadrant is
divided into four smaller quadrants of linear size
l2=L/2 [in the mth (m &n) generation, l =I./2 ], and
the probabilities associated to each quadrant prior to the
division are multiplied by P, , P2, P3, and P4 in random
order. After n generations, each A lattice site is associat-
ed to a probability (or measure) p„of the form
P

& P2 P3 P4', with S, +S2+S3+S4 =n. One can as-
sume that

terized by an infinite set of D' dimensions given by
D~=DF+D~ —d [d =2 and DF=4", Ref. (28) for the
present example]. More details will be discussed else-
where. ' Note that the IPC plus MFD combines both en-
ergetic and geometric heterogeneities.

We expect that the study of adsorption and desorption
processes on substrata such as those described in the
present section would contribute to the understanding of
the complex reactions that take place on fractal catalysts.
In fact, typical catalysts are composed by fractal clusters
of metal distributed on fractal substrata. '

p„-exp( E~ /kT—), (2)

where E~ is the activation energy of dN'usion at the A
site. Under this assumption and for n ~ ~, one has that
the obtained structure conforms to a multifractal distri-
bution (MFD) of p characterized by an infinite set of in-
dependent fractal exponents D (q real) (for more details,
see, for example, Refs. 15, 29—31, 34, and 35). For the
MFD used in this work, this set of exponents can be ob-
tained according to

22m

X)k-(l «)
X=1

(3)

where the sum runs over all the quadrants X of linear sizeI, and pz is the measure of the Xth quadrant. ' '

Therefore the MFD is a geometrically homogeneous
but energetically heterogeneous substratum. Note that
setting Pi =P2 = 1/2(1+ Q) and Pi =P4, =Q/2(1+ Q),
with 0& Q & 1, after n generations, one has a binomial
distribution of heterogeneities, which in the limit n ~ ~
tends to a Gaussian distribution. Nevertheless, it should
be mentioned that in the Gaussian distribution previously
employed for the simulation of adsorption and desorption
processes on energetically heterogeneous surfaces, ' the
sites of diA'erent energy are randomly distributed on the
surface (i.e., this random distribution does not define a
multifractal measure). Let us stress that in the multifrac-
tal, it is just the spatial distribution of measures that
plays a fundamental role in the physical properties.

Very recently, we have proposed' new structures ob-
tained by the intersection, in d dimensions, between a
geometric random fractal of dimension DF and a MFD
characterized by an infinite set of D dimensions. In this
work we have studied recombination reactions on a par-
ticular case, called IPC plus MFD, namely, the intersec-
tion, in d =2 dimensions, between an IPC on the square
lattice and a planar MFD of measures p~, as defined
above. In the IPC plus MFD model the measure p'„as-
sociated with a site 2 is given by

III. THEORY OF DKSORPTION REACTIONS
FROM FRACTALS AND MULTIFRACTALS

A. Associative desorption

The theory of recombination reactions (RR's) on frac-
tal" ' and multifractal' ' surfaces has recently been
studied. Let us here briefly review the main arguments.
The number of distinct sites (Sz) visited by a random
walker after N steps is given by

S~ ~Nf, N~ ~

where f (0 f 1) is the random-walk site visitation ex-
ponent. For homogeneous two-dimensional substrata one
has f =1 (classical diffusion), while on fractals and mul-
tifractals f & 1 gives anomalous diffusion. Also for one-
dimensional homogeneous substrata f =

—,
' gives anoma-

lo'us diffusion. "' For fractal objects, f=d/2 if d &2,
and f=1 if d ~ 2, where d is the spectral dimension relat-
ed to the density of states for scalar harmonic excitations
of the fractal. ' ' On the other hand, the relation be-
tween f and the geometric and/or energetic properties of
the MFD s is an interesting open question. Preliminary
results allow us to advance that f does not depend on the
infinite set of exponents ID I of the MFD, in the sense
that quite different values of f are obtained for MFD's
characterized by the same I D I set. Table I shows exam-
ples of some random-walk exponents. Note that for frac-
tal media N is strictly proportional to time t, while for
MFD's one can assume that the proportionality is valid
on the average. ' '

The rate equation for the recombination of 3 particles,
i.e.,

3, + A, ~p*,
where p* represents products and the subscripts s and g
denote surface and gas phase, respectively, can be written
as

Cp ~ if the site A belongs to the IPC
I

0 otherwise,
8

dt

where C is the normalization constant obtained by
demanding g„p'„=I, where the sum runs over all lat-
tice sites. Note that the jumping probabilities of random
walkers, as defined by Eq. (18), do not depend on C.

The IPC plus MFD is a multifractal structure charac-

where e is the surface coverage of A particles, K the rate
constant, and q the reaction order (q =2 in the present
example).

The rate constant is related to S& through the site visi-
tation efficency (e), that is,
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1D
2D

Homogeneous
1

2

1

3a, b

TABLE I. Random-walk exponents and reaction orders for
recombination reactions on different substrata. IPC and SG,
1D and 2D refer to incipient percolation cluster and Sierpinski
gaskets in two dimensions, one- and two-dimensional homo-
geneous surfaces, respectively.

Substratum

of Eq. (10a) gives

1

ex —1

1
oc tex —1

0

Equation (11) holds for 6 «eo « 1 (f & 1) and
6&co&1 (f =1). The last follows integrating Eq. (7)
with q =2, i.e., f =1 in Eq. (10b). So, Eq. (11) is useful to
observe crossover effects from homogeneous to fractal re-
gimes (see Fig. 1, Sec. V). Also, note that for 6 «eo Eq.
(11)becomes

IPC
SG

Type I

—1

8

1

16

Type II
=3

4

—1

4

IPC plus MFD
Type II

—1

4

'Reference 13.
Reference 17.

'Reference 41.
Reference 16.

'Reference 33.
'Reference 45.

Fractals
2 c

0.796'

0.693'

0.587'

0.885'

0.769'

0.541'

O.61'

O.S2'

O.28'

3

0.683'

Multifractals

2.5a, d

2.45'

2.22'

2.35'

2.S6'

2.04"

2.27d

2.79

2.64'

2.92'

4.S7'

lne — f ln—(t) . (12)

Equations (11) and (12) are useful to check the validity of
the theory avoiding the numerical evaluation of the reac-
tion rate (see Sec. V).

B.Desorption of single particles

de =Ce,e,
dt

(14)

where C is the rate constant. So one has a typical first-
order reaction rate equation. Nevertheless, if the reac-
tion takes place on a MFD one can use the definition of
the site-visitation efficiency [Eq. (8)], and Eq. (14) be-
corges

Let us now assume that the A particles can diffuse on
the surface, depending on the activation energy of
diffusion, and that only particles arriving at certain active
sites (AS) on the surface are desorbed, that is,

A, +(AS), ~As .

Let e, be the concentration of active sites, which are as-
sumed to be randomly distributed on the surface (6,
remains constant through all the procedure). Then the
desorption rate can be written as

de e, tf-'e .
dt

" (15)

dSN
K ~@=

dt

Integrating Eq. (15) one has

—ln(6) ~ t (16)

de eqtf-, e o, t
dt

(9)

where the proportionality between N and t has been used.
Note that 6~0 in Eq. (9) corresponds to t ~ ~ [X~oo,
Eq. (5)]. Integration of Eq. (9) for a recombination reac-
tion (q =2) and 6« eo (eo is the initial coverage), gives

de e, e-o, e«e,
dt

(ioa)

where now

Performing the derivative of Eq. (5) according to Eq. (8)
and replacing in Eq. (7), one obtains' ' '

Replacing Eq. (16) in Eq. (15) one obtains

e, [ —in(e)]'-"fe .
dt

(17)

Note that for homogeneous media (f =1) the usual first-
order rate equation is recovered, but for f & 1 one expects
deviations from the classical behavior.

Let us point out that for homogeneous substrata, if 6,
is very small, one should expect that the decay of A par-
ticles would depend on the dimension of the Euclidean
space in which the reaction takes place. The study of
this effect on MFD's lies beyond the aim of the present
work.

x =1+1/f (lob) IV. MONTE CARLO PROCEDURE

is the reaction order. For a homogeneous medium in two
dimensions one has f =1, so that x=q=2. Integration

Simulations are performed on IPC's in two dimensions
using square lattices of size L XL (L=201). Only per-
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colating clusters in both directions of the lattice are em-
ployed. Two types of MFD's generated by
Pt =Pz =

—,'(1+Q) and P3 =P~ =Q/2(1+ Q) (type-I
MFD), and P; =Q' '(1+Q+Q +Q ) ', i =1,2, . . . , 4
(type-II MFD), respectively, are studied on square lat-
tices of size L XL (L =256, so n =8), where Q is a free
parameter. The studied IPC plus MFD substrata, are ob-
tained by intersecting IPC's, which percolate in both
directions of the lattice, with type-II MFD s in square
lattices of size L XL (L =256).

In order to study the diffusion-reaction process the
substratum sites are covered at random with A particles.
Interaction among adsorbed particles is neglected in all
cases. For RR's, particle diffusion is simulated as fo1-
lows: (i) A particle in the substratum site C is randomly
chosen. (ii) One of the four nearest-neighbor (NN) sites is
selected at random. (iii) If the selected NN has null mea-
sure [for example, it does not belong to the IPC; see also
Eq. (4)], the trial ends and does not account for comput-
ing the Monte Carlo time. (iv) If the measure of the
selected NN is difFerent from zero one has the following
possibilities: (a) for IPC s the jumping probability Pc+
from C to the NN 8 is assumed to be Pc& =exp( EIkT)—
[see Eq. (1)].' ' (b) For MFD's and ICP's plus MFD's
one assumes

Pa~I c «Sa&Vc
P

1 otherwise. (18)

Note that, as pointed out by Meakin, Pc& [Rq. (18)] in
connection with Eq. (2) is equivalent to the method of
Metropolis et al. and standard Monte Carlo tech-
niques, in the sense that jumps into sites of lower
(higher) energy are allowed with probability 1 (decided by
comparing Pc~ with a random number). Nevertheless,
during the simulation of the present kinetic process the
system can never reach any equilibrium state. (v) Finally,
when two A particles are at the same site as a conse-
quence of the movement, both particles are removed
from the substratum, i.e., this is considered as a success-
ful recombination event followed by desorption.

The desorption af single A particles is studied on
MFD's. Active sites are randomly distributed on the
substratum with a preset concentration. Then, the
remaining sites are covered at random with A particles.
After that the diffusion is simulated according to the
above-discussed rules, and particles arriving at active
(fixed) sites are removed from the substratum (i.e., suc-
cessful desorption event).

In all cases, the Monte Carlo time is defined as propor-
tional to the number of jumping attempts per particle,
i.e., the number of successful jumping events plus the
failed ones. The proportionality constant usually em-
ployed is 0.05.

V. RESULTS

A. Associative desorption

In the present work we have checked the validity of
Eq. (10) on MFD's within the whole coverage regime.

O

0—

4
ln (t)

FIG. 1. Plot of ln(e ' —eo ') vs ln(t) for recombination re-
actions on diFerent MFD's of type I. ~, Q = —', f=0.82; ~,
Q= —,', f=0.74; +, Q= —,', f=0 64; eo=. 1 in all cases. The

slopes are obtained by least-squares fits of the respectively low-

coverage regime. The dashed line, with f= 1.05, is common for
all the substrata within the high-coverage regime. Results ob-
tained by averaging 80 different reactions in each case.

Figure 1 shows plots of ln(6 ' —6o ') versus ln(t) for
MFD's of type I, with 6o= 1. At high coverages (short
time) particles are not influenced by the heterogeneity of
the substratum and the reaction becomes independent of
the nature of the surface. So from the initial slope of the
plot one always obtatns f -=1, either for homogeneous or
heterogeneous substrata, which corresponds to the classi-
ca1 second-order reaction. Nevertheless, at 1ow coverages
(long times), particles have traveled a long-enough dis-
tance on the substratum, before each successful recom-
bination event, to be actually influenced by the hetero-
geneity of the surface. Consequently, we observe a cross-
over effect between the classical and the fractal behavior
of the reaction. In fact, roughly at 6-=0. 15 the plots
corresponding to the different surfaces separate from the
common straight line exhibiting fracta1 slopes, as expect-
ed, from Eq. (12). For recombination reactions on IPC's
we have observed a similar crossover effect at 6=—0.40. '

It should be mentioned that in previous studies of the
low coverage regime of the reaction, it has been found
that Eq. (10) holds for isothermal and temperature pro-
grarnmed reactions on linear chains ' SG, ' IPC, ' '
type-II MFD's, ' ' and type-II ICP's plus MFD's. ' The
corresponding reaction orders are also listed in Table I.

B. Desorption of single particles

In order to study the modification of the reaction rate
equation for a classical first-order reaction that takes
place on a MFD, we have simulated the desorption of
particles from active sites randomly distributed on the
surface. Figure 2 shows plots of ln(6) versus t [see Eq.
(16)] obtained through Monte Carlo simulations. Figure
2(a) corresponds to a homogeneous substratum (i.e., a
trivial MFD with Q = 1) and the straight line is obtained
using f = 1, as expected. For MFD's of type II, Figs. 2(b)
(Q =0.5) and 2(c) (Q =0.25), the straight lines are ob-
tained assuming f =0.80 and f =0.57, respectively.
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0 I ] I~= 0.38 0= 1.00
in(9) ~

9 = 0.03&
0 ~

l
(0)

1.00 ~ ~

0 10 20 30
0 pe=0.35

In(B)

-2— A~L
9=0.02 qk~~
k

10 15

0.80
t

-4. —
0 5

0
ln(9)—

-4
0

,

~9=0.37 (c)
I ~~r r~

~~ 9=003~~ ~r

8

Q = 0.25

0.57
I

4

FIG. 2. Plots of ln{e) vs t for desorption reactions of single
particles from difFerent MFD*s of type II. (a) Q =1 (i.e. , homo-
geneous substratum with f = 1.0); (b) Q =0.50, f =0.8; and (c)

Q =0.25, f =0.57. e, =0.15 and 60=0.50 in all cases. The ar-
rows at the left and right hands of each figure indicate the cov-
erage intervals within which the straight lines are obtained. Re-
sults averaged over 80 dift'erent reactions in each case.

These random-walk exponents are in good agreement
with both the results of Meakin for single random walk-
ers and with values obtained by simulating recombination
reactions of adsorbed particles on the same type of sub-
strata (see also Table I). Let us note that according to
Fig. 2 the validity of the anomalous reaction rate equa-
tion covers at least the range 0.4& e) 0.03, and theoreti-
cal arguments suggest that it may also hold for 6~0.

One also should mention that plots, such as those
shown in Fig. 2, do not allow as precise a determination
of f as for recombination reactions. Nevertheless, we
have achieved enough resolution to state that on MFD
substrata (with Q & 1} the reaction order for the desorp-
tion of single particles is different than 1, at least for
6, &0. 15 and 6&0.4. So Eq. (17) should be considered
as appropriate for the description of particle desorption
from energetically heterogeneous substrata with random-
ly distributed active sites.

sociative adsorption (R,d) should be proportional to the
probability of finding two adjacent sites bare [(1—6) ],
that is,

R„=a,v(1 —6)', (19)

v=p/(2vrmkT)' =rip (20)

where p is the pressure and m is the mass of the incident
particles. Also rj=(2mmkT) '~ is a constant for a fixed
temperature.

Under equilibrium conditions the rate of adsorption
should be equal to the rate of desorption, so using Eqs.
(19) and (10), respectively, one obtains

~,v(1 —6)'= C,6, (21)

where Co is a constant. Equation (21) can be rewritten
using Eq. (20}, then

ex /2

(1—6)
Apv

Cp

' 1/2

gp
1 /2

where v is the number of incident molecules sticking at
the unit area per second and ao (with ao & 1) is the frac-
tion of those molecules which, after finding two adjacent
sites free, becomes readily adsorbed. In Eq. (19) eventual
corrections to the exponent of the term (1 —6), due to
the presence of geometric or energetic heterogeneities,
are neglected. Note that since ao [ao in Eq. (24)] is as-
sumed to be constant at a given temperature, the depen-
dence of the sticking coefficient on the energetic (adsorp-
tion) heterogeneity is neglected. This heterogeneity de-
pends on the particular structure of the substratum itself
and could eventually be induced by the adsorbate. There-
fore, Eqs. (19) and (24) hold for energetically homogene-
ous adsorption processes but, on the other hand, with
MFD's, the diffusion-limited reaction processes depend
on the energetic (diffusion) heterogeneity. Adsorption on
energetically homogeneous surfaces is a random process,
i.e., al] empty adsorption sites have the same adsorption
probability, but on heterogeneous surfaces adsorption
occurs at energetically favorable sites. Equations (19)
and (24) would also hold for the last case when the distri-
bution of particles on the substratum becomes indepen-
dent of the initial adsorption process after a relatively
short time compared with the diffusion-limited reaction.

According to the kinetic theory of gases, v can be writ-
ten as '

VI. ADSORPTION ISOTHKRMS

A. Dissociative adsorption and associative desorption

Let us consider the dissociative adsorption and recom-
binative desorption process of diatomic molecules on a
fractal surface within the low-coverage regime. At con-
stant temperature, when the stationary state has been
reached and the surface coverage at equilibrium is 8, one
can follow the early arguments of Langmuir: ' for a dia-
tomic molecule approaching the surface, the rate of dis-

with a =(aorI/Cz)' . Therefore, the isotherm of Eq. (22)
defines the relationship between the external pressure and
the surface coverage in a fractal medium. It should be
remembered that one expects Eq. (22) to be valid within
the low-coverage regime and when the interaction be-
tween the adparticles is negligible. The fractal nature of
the sample appears through the exponent x, which de-
pends on the random-walk exponent f according to Eq.
(10b). For f = 1 the classical result with x = 2 is
recovered.

Since, in principle, Eq. (22) holds at low coverage, one
can further approximate (1 —6) ' = 1, obtaining
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B. Nondissociative adsorption and desorption processes

Using arguments similar to those employed in Sec.
VI A, one has that the rate of adsorption of single parti-
cles can be written as

R,d =aov(1 —8), (24)

where ao (ao + 1) is the sticking coefficient and v is given
by Eq. (20). Under equilibrium conditions, using Eqs.
(17) and (24), one obtains

aov(1 —6)=C'6( —ln6)' (25)

where C' is a constant at a fixed temperature. Regroup-
ing Eq. (25), it follows that

8( —ln6)'- "f aov

1 —e C'= ~'
with 'b=( ao/t)C'). Note that the fractal nature of the
substratum appears through the exponent f. Also, for
f =1 and for f =1, 8~0 one recovers, respectively, the
well-known Langmuir and Henry isotherms, ' which
hold for homogeneous substrata.

VII. DISCUSSION AND CONCLUSIONS

Two types of isotherms, Eqs. (22) and (26), valid in the
1ow-coverage regime, for dissociative processes and
single-particle adsorption and desorption processes, re-
spectively, have been proposed in order to take the frac-
ta1 nature of the adsorbent into account. Classical iso-
therms are recovered from the proposed ones for homo-
geneous substrata.

For geometrically heterogeneous fractal substrata, the

2/x ] /x g, 1/x
7

with b =a, which takes the form of the well-known
Freundlich adsorption isotherm, ' " proposed in 1907,
as quoted in Ref. 21, where "the constants b and x (em-
piric) depend on the nature of both the adsorbent-
adsorbate system and temperature. " '

Figure 3 shows plots of e versus p
' obtained with the

aid of Eq. (22), assuming a = 1. The nearly straight line is
obtained using x =2, but increasing x, marked deviations
from the classical behavior are observed. The inset in
Fig. 3 shows plots of e versus p on a logarithmic scale,
for x =2 and 4, obtained with both Eqs. (22) and (23).
Note that the approximation 1=(1—6) introduced in
Eq. (23) does not cause appreciable deviations from the
exact behavior [Eq. (22)] for 6 SO. 10. Also, the onset of
adsorption becomes shifted to lower pressures for the
anomalous isotherm as compared with the classical one.
The employed values of x are within the typical ones for
fractals and MFD's (see Table I).

0.4— I .r./ ~

s/i
0.2 ~ ~ ~ o.c

/ ~
/'

///

l

0.3

0.0
10

p1/2

I

0.6

10

FIG. 3. Plots of 6 vs p', for the adsorption isotherms
defined by Eq. {22) (assuming a = 1) for dissociative-
adsorption —associative-desorption processes on diff'erent subs-
trata. ~, x =2 (homogeneous surface with f =1); ~, x =2.75
(f=

—,); and A, x =4 (f =
—,'). The inset shows plots of e vs p

on a logarithmic scale corresponding to (a) x =2, Eq. (22), solid
line, and Pq. (23), dashed line. The last is obtained assuming
(1 —e) '=1 in Eq. (22). (b) Same as (a) but for x =4.

ACKNOWLEDGMENTS

This work was financially supported by the Consejo
Nacional de Investigaciones Cientjficas y Tecnicas
(CONICET) de la Republica Argentina. E. V. A. wishes
to acknowledge the Alexander von Humboldt Founda-
tion (Federal Republic of Germany) for financial support.

fractal behavior appears due to the dependence of the iso-
therms on the random-walk exponent f [note that x de-
pends on f, Eq. (10b)], while Co and C' depend on ElkT
through a Boltzmann term [Eq. (1)].

For MFD's and ICP's plus MFD's the isotherms also
depend on f. Increasing the heterogeneity by decreasing
Q, higher coverages are obtained at the same pressure, as
is shown in Fig. 3, due to the diminution of the reaction
rate.

We have shown that Eq. (22) takes the form of the
well-known Freundlich isotherm equation (23) for 6~0.
It has been found that this isotherm satisfactorily fits ex-
perimental data of a great variety of adsorbent-adsorbate
systems, including the adsorption of atoms and complex
molecules. ' Nevertheless, it should be kept in mind that
the adsorption isotherm proposed in this work [Eq. (22)
or Eq. (23)] is only valid for the dissociative adsorption of
diatomic species, which desorb upon recombination. The
above condition could eventually be satisfied, among oth-
ers, by the adsorption and desorption of H2 and N2 on
ammonia synthesis catalysts and other microporous (frac-
tal' '"

) substrata.
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