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The stability problem posed in statistical mechanics by self-gravitating systems is discussed for
the simpler case of systems with a purely attractive nonsingular pair potential of short range.
Molecular-dynamics simulations of such systems are reported and are found to agree remarkably
well with a modified version of the Hertel-Thirring cell model. A first-order phase transition is ob-
served between a homogeneous phase at high energies and a collapsing phase with a single, very
compact cluster in a diluted homogeneous background at low energies. The latter is not an exten-
sive or thermodynamic phase. According to the cell model, really large systems are most likely to
be found in a critical state hesitating between these two phases.

I. INTRODUCTION

It is an ironic situation in statistical mechanics that the
macroscopic properties of a system with a typical size of
1 cm usually are calculated by taking the limit in which
the system becomes infinitely large, whereas in the case of
extremely large systems, with sizes measured in light-
years or parsecs, that limit cannot be employed at all.
This is due to the stability condition which requires that
the total potential energy N of a system of N particles in
a volume V, interacting through a pair potential P(r),
obeys

N( r„.. . , r~ ) = —,
' g P( ~ r,. —r

~ ) ~ Ne, —

for all possible positions I r, j of the particles, with E posi-
tive and independent of N. The statistical analogues of
thermodynamic potentials like the entropy and the free
energy then become extensive quantities in the thermo-
dynamic limit, in which the volume V of the system in-
creases with N to infinity, while the energy density or the
temperature is kept constant. The role played by the
thermodynamic limit in statistical mechanics has been
discussed by many authors this limit is often
equivalent to a properly defined continuum limit, which
fits better with the historical development of thermo-
dynamics and in which the somewhat awkward notion of
an infinitely large system is avoided.

For ordinary systems of particles, with a short-range
pair potential that has a sufficiently hard core, the stabili-
ty condition is satisfied. This is not so for a self-
gravitating system of particles of mass m, with a pair po-
tential

P(r)= —Gm Ir,
G being the universal gravitational constant. A
statistical-mechanical description of such a system is
therefore difficult, the more so because the long range of
the gravitational potential and its singularity in the origin

are also a source of problems.
To describe gravothermal processes, astrophysicists

and cosmologists have used a variety of techniques, rang-
ing from phenomenological theories and numerical in-
tegrations of Fokker-Planck equations to Monte Carlo
simulations and the numerical solution of Newtonian dy-
namics; see the reviews given by Spitzer and Lynden-
Bell. The processes themselves vary from the birth of a
planet or a star via the formation of globular star clusters
or galaxies to the development of black holes or super-
clusters of galaxies. In general, a satisfactory description
does not exist; it would often require elements from wide-
ly difFerent branches of physics. In comparison with the
resulting difficulties the invalidity of the stability condi-
tion for the gravitational potential is a minor problem.

To simplify even this problem, let us remove the singu-
larity in the origin and the long range of the potential
given in Eq. (2) by considering a hypothetical system with
pair interaction

P(r)= —@exp( r lo ), —

where e and o. are positive constants, while 6 is an even
positive integer. This potential still violates the stability
condition, and in the canonical ensemble a complete col-
lapse of the system in the thermodynamic limit cannot be
prevented: at constant temperature, all potential energy
liberated when the particles coalesce into a single very
dense cluster of size r =cr is irreversibly drained away by
the heat bath. In the microcanonical ensemble, a com-
plete collapse is opposed by an increasing amount of ki-
netic energy, so one is curious to see what happens.

In this paper the results of a molecular-dynamics study
are presented for two-dimensional systems with 6=4 and
2, at various energies and densities. A new type of phase
transition is observed, between a uniform phase with
number density N/V at high energies and a collapsing
phase with a single stable cluster of particles Boating in a
diluted homogeneous background at low energies. The
latter phase, however, is not a thermodynamic phase in
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the usual sense because it lacks the property of extensivi-
ty.

The occurrence of this phase transition does not de-
pend on the dimensionality of the system. It may be not-
ed that van Hove's theorem, excluding the possibility of
a phase transition for one-dimensional systems with
short-range potentials, is not valid in the present case,
due to the absence of a hard core in the pair potential.
This could possibly be studied in detail for the particular
case of a one-dimensional system with a purely attractive
pair potential of rectangular shape, which may be exactly
solvable. However, for systems of higher dimensionality
exact solutions are impossible anyway.

To obtain some theoretical information for these cases,
one of us (A.C.) studied some time ago a d-dimensional
cell model in which the volume of the system is divided
into a number of cells, each pair of particles within the
same cell contributing a negative amount to the total po-
tential energy. It turned out that the same model for
d =3 had been studied earlier by Hertel and Thirring.
Although the main results are similar, the differences in
derivation, as well as interpretation and hence in some re-
sults, may justify that we include in this paper the d-
dimensiona1 version of the model, which is needed any-
way for a comparison with the molecular-dynamics re-
sults.

II. THE HERTEL-THIRRING MODEL REVISITED

M M

4(In; I
)= —

—,'eg n;(n; —1)=—
—,'eg n, + ,'eN . —(4)

In the following it will be assumed that both N and
n—:N/M are 1arge, while M is not small.

The microcanonical partition function is

Consider an isolated d-dimensional system of N parti-
cles with positions r, and momenta p, in a volume V, di-
vided in M cells of size L", with V =ML . The number
of particles in cell i is n, . When two particles are in the
same cell they contribute a negative amount —e to the
potential energy, irrespective of their mutual distance in
the cell. Particles in different cells do not interact.

The model is inspired by the treatment due to Ornstein
and van Kampen' of the van der Waals gas, the
difference being that the particles then are assumed to
have a hard core, leading to the typical excluded-volume
effect in the van der Waals equation of state. In the
present case there is no repulsion between the particles
whatsoever; a11 particles may reside in the same cell, this
being opposed only by entropy.

For a given distribution In; ) of the particles over the
cells, the total potential energy is

Z(N, V, E)= f dr, . f dr~ f dp, f dp~H(E —4—K),

where A is Dirac's constant, E the total energy of the sys-
tem, and K =g,p, /2m the kinetic energy. The unit
step function H(E —4& —K) restricts the integrations
over the momenta to a dN-dimensional hypersphere with
radius R =[2m (E —4)]' . The result of these integra-
tions is just the volume (~' R ) /1 ( ~dN+1) of this
hypersphere. The integrations over the positions can he
written as a sum over all possible distributions I n, I, mul-
tiplied by a factor L" . One finds

Z(N, V, E)
N+M

M )
1+ 1/n1

n
(9)

Abbreviating the prefactor in Eq. (6) as c, where c is a
dimensionless constant, and the general term in the sum-
mation over In; I as exp(NQ), we find a lower and an
upper bound for the partition function

c exp(NQ ) (Z (Acexp(NQ '),
where 1tj is the maximum of g and where

E M——
—,'N+ —,

' g n,

dN /2
is the number of terms in the sum. The entropy S, per
particle and divided by Boltzmann's constant k, can now
also be sandwiched:

I n,.
I P ,'dN+1) Qn—;!

inc+ 1t
Nk

lnZ & ~
lnJV

N N
(10)

(6)
where the factorial N! in the multinomial coefficients
happened to cancel and where some factors were rear-
ranged. The prime at the summation sign indicates that
the restriction

n. =N

The last term in the upper bound is negligible since n in
Eq. (9) is assumed to be large. Hence the maximum term
suffices.

Using Stirling s formula, omitting irrelevant contribu-
tions of order 1/N, and redefining g by removing some
terms together with inc to a new constant

must be taken into account. The expression in
parentheses containing E in Eq. (6) can never be negative;
the smallest value that E can take is —,'eN(N —1), cor-—
responding with N particles at rest in one cell.

2 L
g =——,

' d ln + —,
' d + 1+( —,

' d —1 )lnN,

one finds

S/Nk =g+Q (12)
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where f is the maximum of

M M
g—= —,'d ln r)+ g v, —g v, lnv,

subject to the condition

v, =1
~ (14)

III. FINDING THE MAXIMUM

In M-dimensional [v, ) space Eq. (14), together with
O~v; ~1, defines an (M —1)-dimensional simplex. The
maximum of g cannot occur along the boundaries of this
simplex, where at least one particular v, vanishes: due to
the second term in Eq. (13), at least one derivative
Bg/Bv, is then infinite. When q is negative, another re-
striction follows from

The relative occupation numbers v;:—n;/N were intro-
duced, together with the quantity r)+ gv; ~0, (17)

2E 1"= eN' (15)

where both terms are of the same order if E/e and N are
so. The smallest value g= —1 is reached when all parti-
cles are at rest in a single cell.

These expressions show that the thermodynamic limit,
with N~ ~ at constant values of E/N and V/N, leads
to difficulties. In the usual procedure the depth e and the
range L of the pair potential are not changed in the limit,
which implies that the number of cells M is proportional
to N. The last term of g can be added to g, giving

M Mf'= —,'d ln Nr)+N g v, —gv, ln(Nv, ) .

If the maximum g' of this quantity occurs at the uni-
form distribution v; = 1/M there is no problem: g' is
constant in the limit, because Ng and N/M are so. The
entropy then is an extensive quantity. When, however,
the maximum would correspond with a nonuniform dis-
tribution, this is no more true.

While restricting their attention to the case d =3, Her-
tel and Thirring avoid this problem by assuming that
M = V/L is constant for N~ ~ at constant values of
E/N and V/N, whereas e is taken to be proportional to
1/N. This "scaling procedure, " as it will be called here,
is similar to the limit of an infinitely weak interaction of
infinitely long range used in the Kac-Uhlenbeck-Hemmer
study" of a one-dimensional van der Waals Auid. Since g
and M now are constant, the maximalization of P is in-
dependent of N. The stability condition is restored by
this procedure, and the entropy is an extensive quantity
under all circumstances. This holds for any value of d. It
may be verified that in Eq. (11) the troublesome last term
of g now can be combined with the first term into a quan-
tity which is constant in the limit.

In the Kac-Uhlenbeck-Hemmer study the scaling pro-
cedure is necessary to obtain a phase transition in the
one-dimensional van der Waals system. In the present
case a phase transition always occurs (irrespective of the
dimensionality of the system) due to the purely attractive
pair potential; the scaling procedure is only needed to
maintain extensivity. From a physical point of view the
scaling procedure is unwanted, because it removes the
cosmological implications from the model, or simply be-
cause it is undesirable to manipulate the pair potential for
calculational purposes only. It will not be used here; it is
sufficient to assume that N is large but finite.

g= —,'d ln g+g'v;+ 1 —g'v; —g'v, lnv,

1 —g'v, ln 1 —g'v;

where the prime means summation from i = 1 to
i =M —1; when the prime is omitted the term i =M will
be included. The stationary points obey

Bg d(v, vM )

av, Z+yv~
—ln (19)

for i =1, . . . , M —1, where vM was reintroduced for
short. The homogeneous case v;=vM=1/M for all i is
always a solution, unless it violates Eq. (17). Other sta-
tionary points are found by rewriting Eq. (19) for all
values of i for which v;&v~ holds:

dvM 1
ln

'g+ gv; v'/vM 1 vM
(20)

When (v, ) is a solution, the left-hand side has a fixed
value, and since the right-hand side is monotonous, only
one value for v, /v~&1 can occur. There is no loss of
generality when we assume that the additional stationary
points obey, possibly after renumbering,

0&v =v = . =v &v =v = . . =v &1
1 2 q q+1 q+1 M

(21)
with 0&q &M —1.

Replacing v~ in Eq. (19) again by g'( I —v; ), one finds
for the elements of the (M —1)X(M —1) matrix + of
second derivatives:

Q2f
jk=

g

d 2d( v, —v~ )( vk —v~ )
(1+5,„)—

g+gv~ ' (g+gv; )

6
1 1

(22)
vj VM

where Kronecker's 5 symbol was used. For short, the
quantities

where g ~ —1 holds. The value g= —1 corresponds with
a complete collapse at zero temperature, with v; =1 for
one of the cells. At the boundaries due to Eq. (17), the
first term in Eq. (13) gives g= —oo.

The maximum of 1tj can thus be found by
diff'erentiation. Equation (14) is incorporated by eliminat-
ing vM,

'2
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d 1

i)+gv;
ds=

il+ gv';
—2d(v, —vM )

(7)+gv, )

(23)

a =r+s+t —A, , b =s+t, c =2s —A,

are introduced, k being an eigenvalue. The characteristic
equation is

To correspond with a maximum all M —1 eigenvalues
must be negative in the stationary point. Consider the ei-
genvalue A, =s. Using Eqs. (20) and (23) one finds

dvM
~vM SvM —1=

i)+ gv';
1 V]

ln
v I /vM 1 vM

—1, (31)

where v, & vM holds. The function lny/(y —1) is, howev-
er, always larger than 1 for y & 1. Hence the eigenvalue
A, =s is always positive in the stationary point. Similarly,
X=r is found to be always negative. It follows that all
factors s —

A, in Eq. (30) must disappear; this happens for
q=M —2andq =M —1:

D (q;q')—:I'I' —~l
I
=o, D (M —2;1)=(r —k)

with q'=M —1 —q, while I is the unit matrix. The deter-
minant has the following symmetric form, in which the
first q rows and columns are slightly separated from the
remaining ones:

X[A, —
A, (Ms +Mt 2t +r)—

+2(Mt 2t +—r)s + (M —2)s ), (32)

D (M —1;0)=(r —iL) [(M —1)s +(M —1)t +r —X] .

(33)
a b . b
b

~ ~ o s

D(q;q')= b b a
s ~ ~ ~ s

s ~ ~ 0 s
c s ' ' s

(26)

s ' ' s s ~ o s

Subtracting the second column and row from the first
ones, and repeating this process q

—1 times, we find

Writing the quadratic form in Eq. (32) as A,
—A k+B

one finds that B/s =23 —(M+2)s holds. This means
that A & 0 and B )0 cannot be true simultaneously, s still
being positive. The two solutions k+ of A,

—AA, +B=0
then cannot both be negative: Eq. (32) can never corre-
spond to a maximum. It should be noted, however, that
the existence of positive eigenvalues close to zero cannot
be excluded, indicating long relaxation times in the dy-
namics of the model; this may also happen for smaller
values of q.

The only remaining possibility is Eq. (33), which corre-
sponds with a maximum when

D(q;q')=q(a b) i 'D(l;—q') (q —1)(a b)—D(0;q') . — A, =(M —1)s+(M —1)t +r &0 (34)

With D (0; 1)=c and D (0;0)= 1 we get

D (1;q') =(a +c 2s)D (0;q') —(s—c) D (0;q' —1),—

(27) holds. This leads to the inhomogeneous solution, with
v, =v] & vM for i =1, . . . , M —1. In equilibrium, any in-
homogeneity that may occur is restricted to a single cell
with an increased occupation number to which all other
cells contribute in equal amounts.

D(0;q')=(c —s)~ '[(q' —l)s+c] .

Insertion into Eq. (27) and use of Eqs. (24) leads to

D (q;M —
q

—1)=(r —A. )~ '(s —
A, )

X[A, —A.(Ms+qt +r)

(29)

IV. THE HOMOGENEOUS PHASE

The homogeneous solution v, =vM for all i is in fact
still contained in Eq. (34): put s =r and t =0, and note
that Eqs. (20) and (31) are invalid in this case. The result-
ing characteristic equation, (r —A. ) (Mr —

A, )=0, also
follows from Eq. (30) by putting q =0 and s =r. The re-
quirement s =r &0 for v, =1/M gives rise to the energy
condition

+(M q)(qt +r)s +qs~] . — i) & alt, = (d —1 ) /M, (35)
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=
—,'d ln g+ + lnM .

1

M
(36)

which is stronger than Eq. (17). When Eq. (35) holds, the
homogeneous solution corresponds to at least a local
maximum,

V. THE COLLAPSING PHASE

The only other possibility for a (local) maximum g of
the entropy function l( occurs when Eq. (34) holds in
combination with an (M —2)-fold degenerate eigenvalue
A, =r &0. In this case, v, =v, &M &vM must hold for
i =1, . . . , M —l. Incorporating this condition into
one finds

All properties of the homogeneous phase follow from

——d lnS, 2~m eL +—'d +1+(—'d —1) lnN
e'd 2

g= —,'d in[a)+(M —1)v, +vM]

—(M —1)v, lnv, —vM lnvM .

The stationarity condition now reads

(42)

+ —,'d ln g+ + lnM . (37) r)+(M —1)v, + vM
(43)

The temperature and the specific heat are
where (M —1 )v, + vM = 1 is understood. Substitution of
x = vM /v, and elimination of v& leads to

1=
aSZaE

eN 1

kd
~+ M

(38)
with

d(x —1)7l=
(M —1+x) lnx

M —1+x
(M —1+x)

(44)

1
V= (39)

Using Eq. (15) one finds that Eq. (38) is equivalent with
E =K +N, where K =

—,'dNkT is the kinetic energy of the
system and 4= (eN /2M—)+ ,'eN the p—otential energy.
In the homogeneous phase the specific heat at constant
volume is that of an ideal gas, as could be expected. The
above results agree with those obtained by Hertel and
Thirring for the case d =3, although the derivations
differ.

At constant linear cell size L, which is a measure for
the range of an effective pair potential between the parti-
cles, the pressure is

pL =T BS eN d —2
V ML ad 2M

(40)

Hertel and Thirring do not calculate the pressure explic-
itly, but note that it is always equal to the ideal-gas pres-
sure NkT/V. Apparently, they differentiated with
respect to V =ML " by varying L at constant M. For
general d their results would be

"='av- ML"d ™' (41)

which in view of Eq. (38) is indeed identical to
pM=NkT/V. In this interpretation, in which the cell
volume varies with V, the potential energy cannot con-
tribute to the work done on the system.

Using the equations in this section it is easy to show
that the homogeneous phase has the property of exten-
sivity, irrespective of whether in the thermodynamic limit
the usual procedure is followed or the scaling procedure.
From a physical point of view, homogeneity is indeed a
sufficient prerequisite of extensivity.

x =(M —1)vM /(1 —v~ ) . (45)

»m v' (~)=(—~)'",
M~ oo

(46)

which does not depend on d. This asymptote follows

These equations determine g as a function of vM. The in-
verse function gives for each g the value or values of vM
for which f is stationary. Upon insertion into Eq. (42)
the values that maximize P are found; they are denoted
by vM(n)

This solution turns out to have two branches; one for
g) gz with vM = 1/M, corresponding to the homogene-
ous phase; and one for g below a critical value g, (larger
than gh ) with vM ) 1/M, corresponding to the collapsing
phase. Between gh and g, the two maxima coexist; they
are equally large for g=g„which is taken as the location
of the true phase transition. Below g, the homogeneous
phase is metastable (its maximum being the smaller of the
two), and above g, the collapsing phase is so. The rela-
tion 0~ g& &g, &g, holds for all finite values of M, the
equal sign referring exclusively to the case d =1. In the
limit M ~ ~ not only g& vanishes, as it should according
to Eq. (35), but also q, and q, vanish. The behavior of
these quantities is sketched in Fig. 1 for the case d =2.

The dependence of the function vM(g) on E and N is
completely contained in g, apart from N ))M, which is
always understood. It is shown in Fig. 2 for three widely
different values of M, again for d =2. The dependence on
M of this function is seen to be rather weak. For M =20
(too small a value for the maximum-term method to be
reliable) the homogeneous branch is included, together
with the tie lines at qz, g„and g„' the occurrence of
these tie lines for finite systems is of course due to the
maximum-term method. For M =10 only the branch of
the collapsing phase is shown, ending at g=g, with a
vertical slope. The third curve in the figure, restricted to
the domain —1 q 0, is the asymptote
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0 ~ 12

do not appear. The results are

2 L= —,'d ln +—'d+1+( —'d —1) lnN
g2y 2

+ 1 d ln + 1 —2v+Mv'

0 ~ 08 1 —v—(1—v)ln —v lnv,
M —1

(47)

0 ~ 04
eN 1 —2v+Mv

rl+
kd

(48)

0
0 0 02 0 ~ 04

1/t1

g+eN (1 —v) 1 —2v+Mv
dL "(M —1)

d(l —v)
2(M —1)

FIG. 1. The end points gz and g, of the metastable branches
and the transition point g, are shown as functions of the inverse
number of cells, for the two-dimensional cell remodel. The
straight line for qz obeys Eq. (35).

In these equations v is short for vM(7)). For d =3, they
are identical to the results of Hertel and Thirring for the
collapsing phase, except for the pressure; their interpreta-
tion would not lead to pL but to

eN + 1 —2v+Mv
M (50)

directly from Eq. (43), as shown in Sec. VIII as part of a
general discussion of the limit M~ ~ (at a constant
value of N/M). In the meantime, the system is still taken
to be large but finite.

Once vM(il) is known for the collapsing phase, the en-
tropy of that phase is known, and the temperature and
pressure are found by differentiations with respect to g
and M. Because of stationarity the derivatives of v~(i))

1 ~ 0

0 ~ 8

0

0 ~ 6

0 ~ 4

which in view of Eq. (48) is still equal to the ideal-gas
pressure. Since M is always assumed to be large, the
main difference between pL and pM is the factor 1 —v in
Eq. (49). Varying L at stationarity leaves the distribution
over the cells intact, which indeed implies that only the
kinetic degrees of freedom contribute to the pressure;
their infjuence is contained in the first terms of Eqs. (37)
and (47), the only terms where L appears.

Strictly speaking, by renumbering the cells we intro-
duced an M-fold degeneracy for the maximum, corre-
sponding to the collapsed phase. The lower bound on Z
in Eq. (8) should therefore be multiplied by a factor M.
The extra term lnM/N that would have to be added to
Eq. (47) is usually negligible. Another remark concerns
the appearance of the factors N and N in Eqs. (48) —(50):
they should be seen in relation to the N dependence of g.
However, the collapsing phase is not extensive; see Sec.
VIII, where the asymptotic properties of the cell model
are discussed.

The inverse of the specific heat is the derivative of T
with respect to E, that is, with respect to —,'eN g, but now
the derivative of v~ with respect to g enters:

0 ~ 2

1 2 2(Mv —1) Bv
C Nkd M —1

(51)

0 i I I I

—1 ~ 0 -0 ~ 8 -0 ~ 6 -0 ~ 4 -0 ~ 2
t I

0 0 ~ 2 0 ~ 4

FICx. 2. The degree of occupation vM(g) which maximizes
the entropy of the two-dimensional cell model for a few values
of M. For M =20 the homogeneous solution vM=1/M is in-
cluded and the tie lines at gz, g„and g, are shown. The curve
for M = 00 is the asymptote given by Eq. (46).

It is easily verified that Eqs. (37)—(41) are retrieved by
putting v= 1/M in the above equations.

Curves showing the behavior of these quantities for the
typical case d =2 will be given in Sec. VII as part of the
comparison with the molecular-dynamics results for a
system with a true pair potential. In anticipation, a rath-
er unusual feature of the collapsing phase is discussed
here. Referring to Eqs. (38) and (48), we note that T is
small in two cases: in the homogeneous phase for g posi-
tive but small, and in the collapsing phase for g= —1,
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when the collapse is almost complete. The slope of T(r))
corresponds with that for an ideal gas in both cases;
indeed, in both cases the potential energy is constant. In
between, T shows a maximum, corresponding to an
infinite specific heat, at a value of g well inside the col-
lapsing phase. %'hen g approaches this value from above
the specific heat is negative: more particles fall into the
collapsing cluster and the mean kinetic energy increases.

A negative specific heat is a common phenomenon in
astrophysics (see the discussion by Lynden-Bell ), but in
statistical mechanics it is almost anathema because the
equivalence of the microcanonical and the canonical en-
semble in the thermodynamic limit holds only for states
with a positive specific heat, just as the equivalence in the
limit of the canonical and the grand ensemble is only true
for states with a positive isothermal compressibility.
Indeed, in the canonical ensemble the specific heat is
essentially equal to the variance of the total energy,
which is positive by definition. For finite systems the mi-
crocanonical and the canonical enseroble lead to difFerent
thermodynamic quantities, although the canonical parti-
tion function by being the Laplace transform of the mi-
crocanonical partition function contains the same
mathematical information as the latter as lor|g as all
terms of Z(N, V, E) are taken into account. It is especial-
ly the information pertaining to states with negative
specific heat which in the thermodynamic limit (taken in
the usual manner or according to the scaling procedure)
cannot be carried over to the canonical ensemble; this is
also true when instead of the limit the maximum-term
method is used, which does not require that the system be
strictly infinite. For the present system the use of the
canonical ensemble would exclude the most interesting
states and must be sacrificed, which is only fitting for a
model with cosmological pretensions: one cannot put the
universe into a heat bath.

VI. THE SIMULATED SYSTEM

Does the cell model describe the properties of a hy-
pothetical system of purely attractive particles, with a
true pair potential like that of Eq. (3)? Since the particles
are imaginary, only computer experiments can tell. Us-
ing the molecular-dynamics method we studied a two-
dimensional system of N particles in a periodic box of
volume V, for two different system sizes (N = 132, 600) at
four different densities (p*=0.64, 0.29, 0.13, and 0.03).
The potential of Eq. (3) was used with 5=2 or 5=4. This
potential was cut ofF at the distance 8 =3o.. As a func-
tion of the total energy we determined the temperature,
the pressure, and the specific heat by averaging the ap-
propriate expressions over the trajectory in phase space
generated during a measuring run.

For completeness, these expressions are given explicitly
in terms of the velocities v; and positions r; of the parti-
cles:

where r; is short for r; —r and where K, P, and 4 are,
respectively, the kinetic energy, the mechanical pressure,
and the potential energy. The temperature and the ther-
modynamical pressure follow directly from 1'=(E &/

,'dNk —andp = (P &, the brackets indicating time averages
over the trajectory generated in a run. In molecular-
dynarnics experiments, at constant value of the total ener-
gy E = ( K & + ( 4 &, the specific heat follows from

Nk 2 4 ((~ &
—«&),2 2

Cy d d Nk T
(54)

as was first shown by Lebowitz, Percus, and Verlet. '

There is no a priori reason why this quantity should be
positive. In the equation, E could be replaced by 4, their
variances being equal in the microcanonical ensemble.
As mentioned, we adopted d =2 in the simulations.

The calculations were performed on the Delft
molecular-dynainics processor (DMDP) built by Bak-
ker, ' a special-purpose machirie which because of its
speed and continuous availability is very suitable for this
problem in view of the relatively long relaxation times
that were encountered. Each measuring run consisted of
=10 sufficiently small time steps for the numerical in-
tegration of Newton's equations and took 2 to 3 h on the
DMDP. The initial conditions for a measuring run were
obtained in a relaxation run of =10 time steps, taking
about the same amount of real time as a measuring run
because less interaction with the host computer was re-
quired. For the initial conditions of a relaxation run the
final conditions of the previous measuring run were used,
after energy adjustment by scaling the particle velocities.
Both "heating" and "cooling" sequences of measuring
runs were carried out.

The use of the DMDP also implied a restriction: in
this machine the usual linked-list method of molecular
dynamics is employed, but the linked lists can contain at
most 256 particles. This length is sufhcient for Lennard-
Jones systems or other systems involving a hard core in
the pair potential, but when the largest system studied
here, with N =600, enters the collapsing phase the list
soon overflows, making a correct simulation impossible.
This problem could be circumvented by using a general-
purpose computer, but for N & 1000 the relaxation times
would probably become too long anyway, in particular at
low densities.

For a quantitative comparison of the cell model with
the simulated syStem the parameters must be identified.
For the depth of the potential well we adopted already—e in both cases. The spatial scales can be fixed by iden-
tifying the location of the inflection point of P(r) as given
by Eq. (3) with the position of the cell boundary of the
cell model r =0 referring to the rniddle of the cell. The
inflection point occurs at

5—1(r/o. ) =
5

K= —,'m g U,',
2K 1 BN

=dV dV~"' ar,,
'

(52)

(53)

that is, at r/a=0. 71 for 5=2 and at r/cr=0. 93 for
5=4. The ratio L/cr, where L is the linear cell size,
should be twice these values; we adopted L /o. =1.42 for
5=2 and L/o. =1.86 for 5=4, with more than sufhcient
accuracy, given the weak dependence on M of the cell



5996 A. COMPAGNER, C. BRUIN, AND A. ROELSE 39

model. It may be noted also that a central potential does
not fit into a square box without ambiguity.

There are no other parameters that can be adjusted. In
the comparison reduced quantities are employed, defined
by

kT No. p V CvC*=
e '

V
' eN' Nk ' (56)

where p* is the reduced density. Notice that the number
of cells M = V/L of the cell model follows from the re-
duced density by means of

0.50N Ip' for 5=2,
M=

0.29N/p* for 5=4 .
(57)

For the energy, the parameter g defined in Eq. (15) will
be used. The inclusion of the term —1/N guarantees
that both for the cell model and for the simulated system
the completely collapsed state always occurs at g= —1

with T*=O, irrespective of N. The ground state of the
system, in which all particles are almost at rest at the bot-
tom of their collective well, can be interpreted as that of a
system of independent particles moving in a collective
quasiexternal field. In the Appendix it is shown that T*
increases linearly for an initial increase of g beyond its
absolute minimum; in particular, for d =2 the following
relations, valid for g& —1, are found immediately from
Eq. (A5):

T' = 'N ( rl+—1 ),6
5+2

C*=1+—.2
V

(58)

(59)

VII. SIMULATION RESULTS

During a simulation run at a particular value of g, a
small number of momentary configurations obtained in
the DMDP were transferred to the host computer for
display or for further analysis. One of these
configurations, at i)=0.035, is shown in Fig. 3. The size
of the circles representing the particles is such that the
centers of two circles just in contact are a distance
r =0.93o (for 5=4) apart, corresponding with the
infiection point of the pair potential given by Eq. (55).
The particle diameter thus is equal to —,'L, half the cell
size of the cell model with which the system will be com-
pared.

For |i= oo the pair potential of Eq. (3) is a rectangular
well. Then, the collective field in the ground state is also
a rectangular well, and the system behaves as an ideal
gas. The same ground state occurs in the cell model; the
last two equations, with 5= ~, must hold also in that
case.

To see how the general properties of systems of purely
attractive particles depend on the shape of the pair poten-
tial it may be interesting to do simulations with larger
(even) values of 5 than employed here. One could also ex-
periment with altogether di6'erent shapes of the attractive
pair potential, although for practical reasons they should
remain to be nonsingular and of short range.

FIG. 3. A typical configuration in the homogeneous phase
during a simulation at g=0.035 of a system of N =600 particles
with the pair potential of Eq. (3) for 5=4. The reduced density
is p*=0.64. The diameter of the particles is given by Eq. (55).
The chainlike structures are not completely random, but also
very unstable.

The chainlike structures apparent in Fig. 3 turn out to
have a very transient nature and do not indicate the pres-
ence of bound states: the system is in the homogeneous
phase. These structures are largely accidental (the eye
discovers similar structures in completely random
configurations), but a detailed cluster analysis reveals the
presence of small correlations, in particular upon ap-
proaching the collapsing phase. This premonitory
phenomenon turns up also in the temperature (see below).

When the energy is decreased sufficiently, a sudden
transition is observed in which the system, passing some-
times through a transient state with two or more clusters,
ends up in a state with a single compact cluster floating
slowly around in a diluted homogeneous background: the
collapsing phase is entered. A typical configuration is
shown in Fig. 4. The collapsing cluster is very stable, al-

OO OOO 0

',s,P@ ~o gD

n OOO ~csPOO CP Qe,

FICx. 4. A typical configuration of the same system as in Fig.
3, but now at g=0.015, in the collapsing phase. The cluster
contains 192 particles and is stable, apart from minor fluctua-
tions.
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though a steady exchange of individual particles with the
background takes place. Upon formation it immediately
contains a sizable fraction of all particles, indicating that
the phase transition is of first order, resembling conden-
sation. The new phase is not a bulk phase, however, the
size of the collapsing cluster being of the same order as
the size of the particles. Due to the absence of a hard
core the collective potential inside a cluster cannot be sa-
turated, and this is why the collapsing phase cannot be
extensive.

The first-order character of the transition is confirmed
by the behavior of the thermodynamic quantities and by
the appearance of metastable states: in series of runs
with decreasing or increasing q (indicated with "cooling"
or "heating" in some of the figures below) a rather nar-
row region just above g=0 was encountered where the
two phases overlap. A precise determination of the end-
points of the metastable branches was difficult because of
the long lifetimes involved.

The configurations were analyzed numerically by
adapting a method due to Stoddard' to our purposes,
which lead to the number of particles N, in the largest
"connected" cluster for each configuration. In the homo-
geneous phase this number was always small, though
somewhat arbitrary (depending on a "connectivity dis-
tance"). In the collapsing phase, N, as determined by the
method has a precise meaning and, upon inspection, was
found to agree with the number of particles in the col-
lapsing cluster. The data points in Fig. 5 give the quanti-
ty v=N, /N, averaged over 11 diff'erent configurations for
each value of g, for the same system of 600 particles as in

E—4
,'N(rl+ go)— (6O)

holds exactly, both for the ideal gas (with go= 1 /N) and
for the cell model (with go= 1/M). For the simulated
system it holds asymptotically, with go apparently some-
what larger than 1/M; the same behavior was found in
all the other simulated systems, irrespective of size and
density. The small diff'erences in go between the three

1 ~ 0 =-'=

the preceding two figures; because of the linked-list
overAow no data were obtained for g & —0.01. The solid
line shows vM of the corresponding cell model, with M
given by Eq. (57), including the tie lines at ilI„7)„and g,
(in general, the region of metastabilities seems to be
somewhat larger for the cell model than for the simulated
systems). The same quantities are compared in Fig. 6 for
a system with 132 particles, for which all g values are ac-
cessible in the simulations. The agreement is satisfactory.
Below g= —0.8 the collapse is complete, with v=1.

Now for the thermodynamic quantities. Because of the
linked-list problem, results are shown only for the
N = 132 system. In Fig. 7 the data points are the
molecular-dynamics results for the reduced temperature
at various values of g for a rather dense system with
6=4. The error bars are smaller than the symbols used
for the data points. The value M =59 listed in the figure
follows from Eq. (57), and enables one to find the solu-
tion v=vM(rl) of the two-dimensional cell model. Equa-
tions (38) and (48) then result in the solid curve shown in
the figure, where the tie lines of the cell model are includ-
ed also.

In the homogeneous phase the agreement is satisfacto-
ry, but this is not amazing. Indeed, when g is suSciently
positive the particles can move freely and changes in en-

ergy will a6'ect only the kinetic energy. The relation

0 ~ 3 0 ~ 8-

0 ~ 2 0 ~ 6-

0 ~ 1- 0 ~ 4-

0-0 ~ 05

XX

0 ~ 05 0-10 0 ~ 2-
N = 132
M = 59
0 HEAT ING

x COOL ING
FIG. 5. The data points show ~=N, /N, the relative number

of particles in the largest cluster averaged over 11 different
configurations at each g, for the system as indicated. The solid
line is vM(g) of the corresponding cell model, including the tie
lines. The black dots indicate the runs of the "heating" se-

quence during which the configurations of Figs. 3 and 4 oc-
curred.

0 0 0

0 I i I

—1-0 —0-8 -0-6 —0 ~ 4 —0-2
I I

0 0 ~ 2 0 ~ 4

FIG. 6. The same as Fig. 5 but for a smaller system not re-
stricted by linked-list overflow. Below g= —0.8 the collapse is
complete.
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FIG. 7. The reduced temperature T* as a function of g for a

typical system. The data points are the molecular-dynamics re-
sults; the error bars are too small to be shown. The solid curve
is the corresponding cell-model result ~ The independent parti-
cle result of Eq. (58) is shown by the dashed line for 6=4 and by
the dotted line for 6= ~.

cases are due to the differences in the potential energy of
a random configuration. Close to the end point of the
homogeneous branch, just visible in the figure, one sees
that T' for the simulated system lies slightly above its
linear asymptote. This premonitory phenomenon must
be ascribed to transient clusters which decrease the aver-

30-

I I

2

yx — 0.29
N = 132
M = 228

HERTING
+ COOLING

20-

10

0 I l

—1 ~ 0 -0-8 —0-6 —0 ~ 4 —0 ~ 2
I

0 0-2 0. 4

FIG. 8. The same as Fig. 7, but for a smaller density and for
a pair potential that is less steep: 6=2. For this value of 6,
equipartition holds in the completely collapsed state. Indeed,
the slope of the corresponding dashed line is one-half of the
slope of the dotted line belonging to 6= ~.

age potential energy below the value for a random
configuration, increasing thereby the temperature.

In the collapsing phase the agreement is less satisfacto-
ry, although the phase transition occurs at the right place
and although the qualitative features, including a region
where dT*/Bg is negative, are similar. Again, the error
bars are smaller than the symbols, but probably they are
too flattering: in the collapsing phase, during a few test
runs of = 10 elementary time steps and especially at low
densities, long relaxation times were encountered which
reduce the efficiency of the simulation. The slow relaxa-
tion is probably due to two effects: the collapsing cluster
is very compact and offers only a small cross section to
the particles of the background, and any surplus energy
in a collapsing cluster can be diverted among many inter-
nal degrees of freedom before it concentrates on a single
particle which has to be kicked out in order for the sys-
tem to approach equilibrium. These effects explain the
small differences between results obtained in the sequence
of runs with decreasing g and the results of the "heating"
sequence. On the scale of the figure they do not turn up
in the form of metastabilities. The metastable region
seemed to be smaller for the simulated system than for
the cell model, but definite conclusions could not be
reached.

For tl~ —0.8 in Fig. 7 (see also Fig. 6) the collapse is
complete, both in the simulation system and in the cell
model. The latter is again in a state where energy
changes are passed on fully to the temperature. Equation
(48) gives T*= ,'N(t)+1) f—or v= 1, which is essentially
the same as Eq. (60) if the diff'erence in potential energy is
taken into account. This also agrees with the
independent-particle result of Eq. (58) for 5= oo, indicat-
ed by the dotted line in the figure. Insertion of 6=4 in
Eq. (58) leads to the dashed line in the figure; now, the
bottom of the collective well in which the particles are
moving quasi-independently is not completely flat. The
nice agreement between the dashed line and the simula-
tion results for g & —0. 8 provides a check to the
molecular-dynamics calculations and suggests that the
difference in T in the collapsing phase between the cell
model and the simulated system is mainly due to the
different shapes of the respective pair potentials. This is
supported by the good agreement found between X,. /N
and vM. That the rectangular well of the cell model is at-
tached to space rather than to the particles probably has
little influence; one could check this by simulating sys-
tems with higher values of 6.

As a further example, Fig. 8 shows T* for a system
with 6=2 at a lower density. Here, and in the remaining
figures, the error bars are again smaller than the symbols
indicating the data points. The agreement in the homo-
geneous phase with the cell model and in the completely
collapsed state with the independent-particle model is
again satisfactory (in this case, the collective well is quad-
ratic, equipartition holds, and the slope is half that for
6= ~ ). Although the additional assumption N ))M of
the cell model is far from being obeyed in this case, the
general agreement does not seem to suffer.

Results for the reduced pressure are compared in Fig.
9, obtained for the same system as in Figs. 6 and 7, in the



39 COLLAPSING SYSTEMS 5999

30- 0 ~ 64
N 132

20-

10-

—1 ~ 0 —0 ~ 8 —0 ~ 6 -0 ~ 4 -0 ~ 2
I

0 ~ 0 ~ 2 0 ~ 4
-2
—1-0

0 ~ 64
132
59

HERT ING

COOLING

—0 ~ 8 —0-6 -0 ~ 4 —0 ~ 2
I

0
~

0 ~ 2 0 ~ 4

FIG. 9. The reduced pressure p* as a function of g for a typi-
cal system. The data points are the molecular-dynamics results,
and the solid curve is p& of the corresponding ceil model. In
the collapsing phase the difference ofpM = T* (see Fig. 7, drawn
on the same scale) both with the data points and with pL is
large.

FIG. 10. The inverse of the reduced specific heat as a func-
tion of g for the same system as in Fig. 7. The data points are
the molecular-dynamics results, and the solid curve is the cell-
model result. The dashed line obeys Eq. (59) for 6=4, the dot-
ted line for 5= ~. Below q= —0.7 no accurate data were ob-
tained.

same computer experiments. The solid curve shows pL* of
the cell model, given by Eqs. (40) and (49) in reduced
form. In the homogeneous phase the agreement is again
satisfactory, and also the diA'erence with the ideal-gas law
p~=T* of Eqs. (38) and (41) is small. In the collapsing
phase pM is still equal to T"; see Eqs. (48) and (50).
Hence, to obtain pM for the collapsing phase, the cell-
model result for T in Fig. 7 can be copied in Fig. 9,
which is drawn on the same scale. The di6'erence with pL'

is now large, due mainly to the factor (1—v) in Eq. (49).
It is this factor which produces the horizontal part pz =0
for g ~ —0.8, also found in the simulation.

Finally, an example for the specific heat, or rather its
inverse, is shown in Fig. 10, again for the system of Figs.
6, 7, and 9. The solid curve represents Eqs. (39) and (51),
the dashed line is Eq. (59) for 5=4, and the dotted line is
that equation for 6= (x). The scatter in the data points is
considerable, although plot ting 1/Cz instead of Cz
helped somewhat. It turned out that below q ~ —0.7 the
variance of the kinetic energy in Eq. (54) became too
small to be calculated accurately by the DMDP. The
corresponding data points had to be discarded. However,
the approach around g= —0.6 to the dashed line is con-
vincing enough, in combination with the correct slope in
r)= —1 of T*(rj) shown in Fig. 7. We conclude that the
overall agreement is not bad, the specific heat being a
rather sensitive quantity.

Only a few of the results obtained for the various quan-
tities and systems can be shown here. Computer experi-
ments for the other densities, both for 5=2 and 4, and
also for the larger system with % =600 were found to
give a very similar picture. Since the cell model (apart
from M, for which a reasonable a priori estimate was

made) contains no parameter that can be fitted it per-
forms remarkably well. A more general conclusion is
that statistical mechanics can be applied successfully to
systems of purely attractive particles, even though the
stability condition is not obeyed —at least when the sys-
tems are finite.

VIII. ASYMPTQTIC PROPERTIES

The correspondence between the predictions of the cell
model and the properties of small systems with a true
attractive-well pair potential suggests that also the
asymptotic behavior, beyond reach in computer experi-
ments, may be similar. If qualitatively important features
of nonrelativistic self-gravitating systems are conserved
when the pair potential of Eq. (2) is replaced by that of
Eq. (3), then the asymptotic properties of the cell model
may have some significance for cosmology.

When in the thermodynamic limit the scaling pro-
cedure of Hertel and Thirring is followed, keeping Ne
and M together with N/L" and E/N constant while N
increases indefinitely, not only the homogeneous phase is
extensive but also the collapsing phase. The entropy of
Eq. (47) then is found to be an extensive quantity, and
also the temperature, the pressure and the specific heat of
Eqs. (48)—(51) behave as proper thermodynamic quanti-
ties should. That Cz is negative in a certain range of g
values is somewhat unusual, but not impossible when en-
ergy instead of temperature is used as an independent
variable. Hertel and Thirring showed also that use of the
scaling procedure in the canonical ensemble leads to an
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extensive free energy and prevents the occurrence of a
complete collapse (except at T =0) and of states with a
negative specific heat. In short, by repairing the stability
condition the scaling procedure leads to results that are
in keeping with thermodynamics. However, the overall
dependence on M remaining in the limit is somewhat ar-
bitrary, and the manipulation of the parameters L and e
characterizing range and strength of the pair interaction
makes the scaling procedure into a mathematical artifact.

For the cell model the usual thermodynamic limit im-
plies N~ ~ at constant values of E/N, V/N, and M/N.
The quantities L and e are also constant (but may be of
the order of the spatial and energy scales of self-
gravitating systems). In addition, the constant n =N/M
is taken to be very large. What happens to the collapsing
phase in this limit?

Consider the effect on Eq. (43), assuming for the mo-
ment that q is a free variable. For —1 (g (0, a solution
of that equation in the limit M~ ~, with both v~ and
Mv, of the order of 1, is possible only when the right-
hand side diverges. Hence, the denominator in the left-
hand side must vanish. Neglecting the term (M —1)v& in
the denominator one obtains the asymptote
v=v~=( —ri)'~ of Eq. (46), shown in Fig. 2. Due to
the logarithmic term, the convergence to this asymptote
is exceedingly slow; even for M =10' the diff'erence in
v~ at g= —0.5 still amounts to 6%%uo.

Putting v=( —g)' in Eq. (47) one discovers that the
entropy per particle contains contributions proportional
to ln M or ln N. A removal of these terms by way of a re-
normalization of the entropy would be quite arbitrary.
Also, the use of g as a free variable in the limit amounts
to keeping E/N constant rather than E/N. Consistent
results with g as a free variable are only possible for finite
systems, however large they may be.

When E/N is kept constant in the limit, irrespective of
the value or even the sign of that constant, the system
ends up at g=O with vanishing v~ and v&, in the state
where kinetic and potential energy are in complete bal-
ance. This is in contrast with the behavior in the canoni-
cal ensemble, in which, with T constant in the limit in-
stead of E/N and now without the scaling procedure, the
system is driven into the completely collapsed state at
g= —1. The state at or around g=0 cannot be reached
by the canonical ensemble.

It is not difficult to show that the asymptotic behavior
of the collapsing phase in g=O according to the micro-
canonical ensemble is given, in crudest approximation, by

Nv~(0) =, Nv, (0)= (61)
lnM ' ' M

in terms of the number of particles in cell M (which could
have been any cell, before renumbering) and their number
in each of the other cells. The collapse is far from com-
plete: although one cell takes a diverging amount of par-
ticles, this does not happen at the expense of the other
cellsI

Upon insertion of v=d/lnM into Eqs. (47)—(50) the
thermodynamic limit of the cell model appears not to ex-
ist. Of course, this is precisely what the stability condi-
tion is meant to prevent. The situation just stresses that

the thermodynamic limit (or, perhaps, rather the continu-
um limit to which it is equivalent) is a useful technique
to derive the "classical" or "continuum" thermodynam-
ics of systems of macroscopic size, but cannot be applied
to self-gravitating systems that are really large right from
the outset. There is no reason, however, to reject Eqs.
(47) —(50) for finite N and M, although when N and M are
not extremely large, Eq. (61) may not be precise enough
(whereas g=0 may be too precise). The correction terms
involved are of order ln lnM/lnM, which means a devia-
tion of 10% for M = 1 5 X 10' and of 5% for
M =2.6X 10, truly astronomical values.

The simultaneous presence in g=0 of the homogene-
ous and the collapsing phase suggests, in combination
with the contraction into g=0 of the whole region of
metastabilities (see Fig. 1), that for large N and M fluc-
tuations occur between the two phases. Because of the
matter transport that would be necessary, these Auctua-
tions must be very slow. When the asymptotic result of
Eq. (60) is valid, even approximately, it is hard to believe
that these fluctuations could be restricted to a single cell
at the time. As long as the background density N/M
remains the same, almost any number of "collapsing"
cells with dN/lnM particles could be accommodated.
Asymptotically, their mean spatial separation should in-
crease, and the relaxation times involved would diverge
strongly. The M-fold degeneracy of the entropy max-
imum should now be taken into account, and also the
inhuence of premonitory phenomena in the homogeneous
phase in g =0 may become important.

This picture can be supported by studying the eigenval-
ues A. =r and A, =s occurring in Eq. (30) in more detail, al-
though a dynamical analysis of the cell model, in all its
simplicity, will hardly be convincing. The cell model
does not discriminate between neighboring cells and cells
that are farther apart, to mention just one obstacle. Nev-
ertheless, it is safe to conclude that the asymptotic time-
dependent behavior of the model would destroy the very
notion of equilibrium on which the calculations are
based, and that a similar statement would hold a fortiori
for a more realistic system. In the limit, an impasse is
reached: in an infinite system that is not extensive any-
thing can happen.

While being disastrous from a thermodynamical point
of view, this may have interesting cosmological conse-
quences, as we will argue. Consider, for definiteness, a
large but finite system at g=0, described by the cell mod-
el. Not only are N and M large, but also L. Such a sys-
tem would not be in equilibrium either, with the same
averaged state being observed at any one moment in time.
Rather, on the modest time scale available to an earthly
cell-model watcher, g=O would correspond with a criti-
cal state taken from a degenerate ensemble of approxi-
mate maximum-entropy states. Precisely because the no-
tion of equilibrium does not apply, the picture that was
sketched has a certain cosmological appeal. We are even
tempted to formulate a new cosmological principle,
which, by being based on entropy considerations and be-
cause it is reminiscent of the anthropic principle (de-
scribed e.g. , by Rozental' and Rosen' ), is called the en
tropic principle: Very large systems of purely attractive
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particles tend to be in a critical state characterized by
g=0, with slowly relaxing fluctuations of large amplitude
that are rather localized in space.

Loosely speaking, g=O seems to be likely for a really
large system, although there is no a priori reason for such
a state of affairs. However, if g were appreciably
different from zero, equilibrium would be restored and
the system should be found either, for g) 0, well inside a
stable homogeneous phase or, for g&0, well inside a
stable collapsing phase with a single cluster against a di-
luted homogeneous background. In either case, the
structure of the system would be much simpler than for
g=O, with much faster fluctuations of lesser amplitude.
The similarity with the anthropic principle is evident

Whether these speculations are of any use in cosmolo-
gy or just are due to overstretching the significance of the
cell model remains to be seen. It may be that a replace-
ment of the artificial square-well potential by a true gravi-
tational pair potential will completely destroy these sim-
ple and very qualitative conclusions. Leaving aside many
other obvious criticisms that can be raised, one may,
however, speculate that such a replacement would just
enhance the structural complexity of the system at g=O,
by providing a hierarchy of spatial scales.

IX. CONCLUSIONS

Molecular dynamics is a suitable method to study sys-
tems of particles with a purely attractive pair potential of
short range. The results agree remarkably well with the
predictions of the modified Hertel-Thirring cell model ~

The stability condition is not necessary for an applica-
tion of statistical mechanics. When it is not obeyed,
relevant equilibrium properties of arbitrarily large but
finite systems can be obtained by means of the micro-
canonical ensemble. The canonical ensemble may give
misleading results by exaggerating the significance of (al-
most) completely collapsed states.

In systems of purely attractive particles, a first-order
transition accompanied by metastable states occurs be-
tween a homogeneous phase at high energies and a col-
lapsing phase at low energies. The latter phase is charac-
terized by the occurrence of a single, compact cluster
containing a fraction of all particles. This phase is not
extensive and may not be called thermodynamic: the
thermodynamic limit does not exist for these systems.
The phase transition takes place in a narrow region just
above g=O, where g=2E/eN —1/N is the energy pa-
rameter that governs the behavior of the system.

The cell model suggests that when N is very large,
g=0 is very likely. This leads to a new cosmological
principle, the entropic principle: Large systems of purely
attractive particles tend to be in a critical state, hesitating
between homogeneity and a partial collapse.
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APPENDIX: THE GROUND STATE

In the completely collapsed state, at T =0, the particles
are carrying out small independent oscillations in their
collective well, which acts as an external field. This field
is symmetric with respect to the center of mass, the
motion of which is negligible and which is taken as ori-
gin. For this system, it is expedient to use the canonical
ensemble. The canonical partition function is

Z =g&/gd&N) (A 1)

where X=fi/(2irmkT)' is the de Broglie wavelength,
while

Q = f d r exp( 4&/Nk —T )
vo

(A2)

is the configuration integral per particle. The collective
well is

,'N(N ——1—)Eexp(—r /o).
,'N(N —1—)e(1—r /o ), (A3)

E:F+ TS = 'N—(N —1)e+—'—d —1+—NkT .
2

2 2 5
(A5)

Using i) of Eq. (15) and taking d =2 one obtains Eq. (58)
in the main text. In the thermodynamic limit, the free
energy, the entropy, and the total energy, all taken per
particle, diverge.

It may be noted that for 5=2 the collective well of Eq.
(A3) is harmonic, such that equipartition of energy holds;
the resulting slope of T versus E is indeed half of that for
the case 5= ~, corresponding to an ideal gas in a rec-
tangular well.

where 6 is even and where use was made of r &(0. for
T=O. The d-dimensional spherical volume Vo in Eq.
(A2) is rather arbitrary; its radius should be large enough
to catch all relevant oscillations. In the integral, the r-
independent factor is moved up in front, and dr is re-
placed by Cr" 'dr, where C is some constant. Finally,
the integrand is scaled by substituting

y =(r/o )[—,'(N —1)e/kT]'

for r. The remaining integral can be taken over all y.
One finds

exp[ —,
' (N —1 )e/k T]—CI dy 'exp( —y ),

[ —,'(N —1)e/dT]

(A4)

where C' is a new constant. The integral converges and
is another constant. With the usual formulas for the free
energy F= —kT lnZ, and for the entropy S= —BF/BT,
one finds for the total energy
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