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Theory of pattern formation in gels: Surface folding in highly compressible elastic bodies
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Gels are highly compressible elastic bodies near the volume phase transition. They undergo large
elastic deformations that cannot be described within the usual elastic theory. A theoretical frame-
work is proposed to incorporate a nonlinear elastic theory into the Ginzburg-Landau theory of
phase transition. Then we analyze patterns emerging on the upper surface of uniaxially deformed
gels whose lower surface is clamped to a substrate. On the upper surface a two-dimensional spino-
dal decomposition is shown to occur when the elongation ratio exceeds a critical value. If the gel is

uniaxially stretched and sufficiently compressible, the surface eventually folds itself, yielding period-
ic cusps in the late stage of the coarsening process. The folded parts are singular surfaces like
cracks in solids accompanied by large strains. Developing some mathematical techniques, we prop-
erly take into account a drastic change of the boundary conditions at the folded parts, but elastic de-
formations inside the gel are treated within a linear theory around uniaxial homogeneous states.
We also find that the cusp pattern exists only in a limited region of the parameter space, outside
which it is still an open question as to what kinds of patterns emerge in final stages of the spinodal
decomposition. We expect corrugated surfaces without folding when the gel is uniaxially stretched
and rather incompressible or when it is uniaxially compressed near the critical point.

I. INTRODUCTION

It is now well known that polymer gels can change
their volume drastically as a first-order phase transition,
through a small change of some external parameter. ' As
a striking observation, Tanaka found that transient pat-
terns consisting of numerous line segments of cusps
emerge on the surface in the course of swelling when the
volume change is large. Furthermore, he showed that
the same patterns can be formed permanently in equilib-
rium gels whose lower surfaces are fixed to a substrate
and whose upper surfaces are in contact with a solvent.
In these cases, the gels are uniaxially stretched in the
direction normal to the surface and compressed in the la-
teral directions. It may be expected that a mechanical in-
stability should be triggered for sufficiently large lateral
osmotic pressure producing some buckling of the outer
surface. Tanaka tried to estimate the free-energy change
due to emergence of periodic corrugations on the surface.
Although his theory is questionable, he could see that it
can be negative if the system is compressed in the lateral
directions. However, the essential aspect of the
phenomenon is that the pattern observed in gels is not
composed of mere corrugations, which are still in contact
with the solvent, but consists of cusps into the gel, as Ta-
naka himself stated. More precisely, it is periodically
folded parts on the surface in contact with themselves, as
recently found theoretically. Therefore, it is now very
desirable to develop mathematical theory to clarify the
elastic structure of the pattern and the conditions of its
observation. We expect that such an analysis should
have a bearing on a number of patterns in elastic materi-
als, such as those in phase-separating alloys. We also
notice that the pattern in gels closely resembles that of
brain surfaces.

Initial theories have treated clamped gels, which are
easier to study than swelling gels. Sekimoto and
Kawasaki have shown that an elastic model system with
uniaxial symmetry readily becomes linearly unstable
against small sinusoidal perturbations if its lower surface
is clamped and its upper surface is freely deformable.
The present author has incorporated a classical theory of
nonlinear elasticity with the usual scheme of phase transi-
tion ' where the order parameter is the deformation ten-
sor of gels. The minimum condition of the free-energy
functional then leads to equations for inhomogeneous
patterns. The free energy has been shown to be lowered
below its value in the homogeneous state when the sur-
face folds itself periodically. Details of these results will
be explained in this paper. Interestingly, the mathemat-
ics for the pattern has turned out to be very similar to
that for fractures in elastic bodies. In both the cases,
fundamental elements of the phenomena are surface
singularities, folded parts or cracks, accompanied by
large elastic strains. Their mathematical structure may
be clarified by regarding them as superposition of disloca-
tions (which will not be discussed here, however). Subse-
quent numerical simulations on simple elastic networks
by Hwa and Karder, and by Sekimoto and Kawasaki'
have confirmed that the surface tends to touch and fold
as surface corrugations grow. However, to realize the
folding in simulation, new computation rules are required
to assure the condition that the gel is not penetrable into
itself. By this reason, the simulations so far seem to have
not realized the folding unambiguously.

This paper is organized as follows. In Sec. II we ex-
plain a framework of nonlinear elasticity incorporated
into the Ginzburg-Landau theory of phase transition.
This framework is now giving rise to a number of new
predictions unique to gel, and the pattern of our concern
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cannot be described by the usual elastic theory of isotro-
pic bodies. "' In Sec. III we will show that the upper
surface of uniaxially clamped gels undergoes a spinodal
decomposition if the elongation ratio a~~ exceeds a certain
critical value. In Sec. IV we will calculate the cusp pat-
tern which is the final equilibrium state after the onset of
the instability in some parameter region. The approxima-
tion scheme used is a linear theory around uniaxial
homogeneous states, although it is still inadequate. In
Sec. V we will first calculate the free-energy change due
to the periodic cusp formation in the linear theory. It
can be surely negative, but the linear theory will turn out
to be insufficient to determine both the depth of the fold-
ing d and the period L~ as optimal values minimizing the
free energy. To find d and L~ we need to take into ac-
count nonlinear elastic effects. However, such calcula-
tions will not be presented in this paper due to great
mathematical difficulties encountered. Instead, we will
propose an expansion of the free energy in powers of
d/L~ and L~/L~~ where L~~ is the gel thickness. Then we
can derive some conjectural predictions on the behavior
of d and L~. In Sec. VI concluding remarks will be given.

I, =g X;
a

BXJ
(2.4)

The last term AF;„h is the gradient free energy indispens-
able in describing short wavelength fluctuations and
phase separation. ' It will be neglected, however, in this
paper for the purpose of presenting a first-simplest theory
of the pattern. Here it is convenient for later variational
calculations to rewrite AF as the integral over the origi-
nal coordinates xo as

EF=ks Tf dxo f(P)+ —,'voI, (2.&)

function f(P, T) is the ordinary mixing free energy plus
the ionization free energy (if the network is ionized) per
unit volume divided by k&T. ' ' Its dependence on P
and T will be suppressed for simplicity. The parameter
vo represents the effective chain density in the relaxed
state. ' We may introduce an effective polymerization in-
dex N by vovo =go/N, where vo is the volume of one po-
lymer segment. The quantity I, is the so-called first in-
variant in the nonlinear elasticity theory

2

II. ELASTIC MODEL FOR GELS

I; =OX, /Bx (2.1)

Here X=(x„xz,x3) are the Cartesian coordinates of
the deformed gel representing the real spatial position,
while xo=(x, ,x 2, x3 ) are those in some reference relaxed
state representing the original position before deforma-
tion. The classical rubber theory suggests that the sim-
plest form for b,F in terms of I, is given by' '
b,F=k~T f dX f(p, T)+ ,'vo I, +hF;„„, —(2.2)

V 0

where the integral is within the volume V of the de-
formed gel, and P is related to the determinant of the de-
formation tensor by

We are interested in gels swollen by a 0 or poor sol-
vent. Let hF be the Gibbs free-energy change after the
mixing of the solvent and an initially pure, unstrained po-
lymer network. ' When the gel is isotropic and is im-
mersed in a pure solvent, hF is a thermodynamic poten-
tial satisfying the thermodynamic relation d(b,F)= —( b S )d T+ lid V as a function of the temperature T
and the volume V. ' Here AS is the entropy change after
the mixing and II is the osmotic pressure. If AF is ex-
pressed as a function of T and V (or the polymer volume
fraction P cc 1/V), we can then examine the phase transi-
tion in which V is the order parameter. This has been the
usual approach so far. ' '

However, if we are interested in phase transitions in
anisotropically deformed gels or in inhomogeneous pat-
terns, we must express AF more generally in terms of the
deformation tensor

where use has been made of (2.3) and the integration re-
gion is within the volume Vo of the relaxed state.

In any elastic theory the expression for the stress ten-
sor H; is of prime importance. ' It can be obtained, once
we have the free energy, as follows. We deform the gel
infinitesimally as X;~X;+5X;. Then the resultant
change in AF should be of the form

s(~F)= —f dxy n,, sx,
i,j J

(2.6)

5(EF)=k~Tf dxo
0

f (5p)

'aX
+Vog a 5X

(2.7)

Here we use the following identity which directly follows
from the definition (2.3):

The first term on the second line is the work exerted from
the outside on the surface, do and n; being the surface
element and the outward unit normal vector, while the
second term is the change within the elastic body due to
mechanical disequilibrium. Note that the volume ele-
ment dX is equal to dxo($0/P) from (2.3). The variation-
al change of hF can be readily obtained from (2.5) as

ax,
=det

ax,'-

$0 being the volume fraction in the relaxed state. The

a
6X(ax'

(2.8)
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where Bx /L& is the derivative of x with respect to X&

with the other X„held fixed. Now substitution of (2.8)
into (2.7) and some manipulations yield

bulk and shear moduli in the standard form. Our model
leads to

k
' =(4f' f N—;, vo — Xks T '

o i (lx,

ax,
ax('

(2.9)
V /ka T =vo(4/4'o)'"

(2.16)

(2.17)

where f'=c}f/"r)P. At this point we should note that the
functional derivative of hF with respect to L; and the
divergence of the stress tensor are simply related by

(2.10)

=Qf" —vo g X, , (2 11)„BP P 8

ax,'

where f"=r)f IBQ . To derive (2.11), use has been made
of the relation

a 'aX,

ax,o

=0, (2.12)

(2.13)

where y is the friction coefficient (equal to f in Tanaka's
notation) between the network and the solvent. The scal-
ing theory for 8 solvent suggests y ~P . Note that the
above form of the equation cannot correctly describe the
transverse motion of the network (where 5/=0). They
couple with the transverse velocity field and behave as
transverse sound modes in the long-wavelength limit.
Furthermore, even on the longitudinal motion, the veloci-
ty field can have significant eft'ects in easily deformable
gels (or in gels with very small shear modulus), particu-
larly near the spinodal point. " This aspect will be re-
ported shortly.

Flory's results simply follow if we set X, =(Po/P)'~ x, ,
assuming that the gel is homogeneous and isotropic.
Then,

which can be obtained by differentiating (2.8) with
respect to x, . Equation (2.10) shows that in mechanical
equilibrium the divergence of H, vanishes and, simul-
taneously, F attains an extremum value as a functional of
X(xo).

The simplest dynamic equation is given by '

See (3.15)—(3.17) below for a derivation of (2.16) and
(2.17). Here f" decreases as the solvent quality decreases
leading to phase transitions. " That is, if K becomes
negative, a macroscopic mechanical instability is first
triggered resulting in homogeneous expansion or shrink-
age of the gel. If K is further decreased below —4p/3,
then the gel undergoes spinodal decomposition and be-
comes opaque. This means that, in gels freely expandable
in the solvent, the mechanical instability point K =0 and
the cloud point K+ —', p=0 are separated due to finite
shear modules. See Ref. 11 on this point.

III. SURFACE INSTABILITY OF UNIAXIAL GELS

We present a linear stability analysis of uniaxially
clamped gels. Our approach is based on (2.2) or (2.5) and
is less general than that of Sekimoto and Kawasaki, but
it leads to simpler and more analytic results. The average
position in a uniaxial state is given by (a~~xo, aiyo, aizo),
where xo=(xo, yo, zo) is the original position in the re-
laxed state. We introduce new coordinates by

x =a~txo, y =n~o, z =a~zo . (3.1)

+ —,v, a] X8
By

(3.2)

where L, is the linear dimension of the gel in the z axis
and

4' =to/(a~~ai) v =vo0. /0o . (3.3)

The system is assumed to extend nearly to infinity in they
axis, while it has a finite depth L~~ in the x axis. At the
lower surface there is no displacement and

u=O for x =0 . (3.4)

The vector (x,y, z) will be denoted by x, and the displace-
ment vector u=(u, u, u, ) =X—x will be assumed to be
a small quantity. Furthermore we assume u, =0 suppos-
ing only two dimensional deformations independent of z.
Then, in terms of the new coordinates, AF is expressed as

2

bF/ksT=L, J Jdx dy f+ —,'v,
a~~ X

bF=ks TV[f + —,'vo(P/go)' ],
H Iks T=gf' f vo(globo)'~—— (2.15)

At the upper surface we have

g H; n =H~~n, for x =L~~,
J

(3.5)

where H is the osmotic pressure [or the diagonal com-
ponent of H;, (2.9), in the isotropic case]. We may also
calculate the small change in the stress tensor around an
isotropic case due to infinitesimal deformations. The
stress increment 5H, can then be written in terms of the Hiilk~T=(gf' f) v a (3.6)

where n is the normal vector and H~~ is the osmotic pres-
sure acting on the gel from above. If we neglect the Auc-
tuation, (3.5) becomes from (2.9)
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IIilkii T=(gf' f—), —v, ai . (3.7)

If the gel is clamped also at the lateral boundary walls or
extends nearly to infinity with fixed lateral dimensions,
thermodynamic equilibrium is described by the potential

~G=~F+ VHll=~F+ (3.8)

where ( ), is the value at P=P, . It should be noted that
in the uniaxial state the osmotic pressure from the lateral
boundaries H~ is different from Hll as

be shown below.
Now AF is characterized by essentially two dimension-

less parameters, e and 5. In Appendix A, we express
them in terms of parameters in the Flory theory to make
a connection with experiments. Physically, e represents
the degree of incompressibility and is a function of the
temperature (usually decreasing with decreasing T). To
see this, let us consider a small change in the stress tensor
5H; due to small displacements u, . Writing o;
= —5II,, /( k~ Tv, a~~ ) and using (2.9) we obtain to linear
order in u in the two-dimensional case,

We notice that b, G can be simply obtained if f in hF is
replaced by f+ 11~~~. Therefore, without loss of generality,
we may set Hll =0 in the following.

A. Formulations of the linear scheme

&„„=e(Vu)+2 u„—V u,B

Bx

& =e(V u)+5 2 u —V u
By y

(3.15)

(3.16)

I= u + u„,= B B

Bx
(3.9)

B
Bx"

B
u

By y
B

X (3.10)

Retaining the terms only up to second order we find

7:—[bF (bF), ]l(ki—i Tv, a~~~Lz)

1= f f dx dy —J+ e(I+J)—
2

2 2 '

1 B 1+— u +—5 u
2 Bx 2 By

(3.11)

where ( b,F ), is the free energy in the absence of the Auc-

tuations and

&=4o4.f"(4, ) l(voa~~ »
5 =a~/all

(3.12)

(3.13)

Next we expand (P, lg)f in (3.2) in powers of the rela-
tive volume change P, IP —1 =I+Jwhere

oxy = uy+5 ux= B "2B
Bx y By

(3.17)

(I+a) u —(1 e) u =—0,B B

Bx By

B B
u + u„=0.

Bx By

(3.18)

(3.19)

Notice that (3.18) is just the condition & „=0and (3.19)
does not involve 5 while o„does. These coincide with
the boundary conditions of free surfaces in the usual
linear elastic theory if e is replaced by K/p+ 3.

For two-dimensionally isotropic deformations, Bu; /
Bx ~5;-, with u, =0, o„and & change by the same
amount proportional to eV u. Particularly, for isotropic
gels, 5=1, the elastic coefficients are given by (2.16) and
(2.17), and e=K /@+ —,'.

Then the linearized form of the boundary condition
(3.5) will be calculated. The normal vector n on the
upper surface is proportional to the vector Bx/BX; at
x =L

ll, from which we can find n = 1 and
n = —Bu„/By to linear order in u. Noting that Hyy is
given by Ili, (3.7), to zeroth order, we may rewrite (3.5)
into the following two conditions at x =Lll

..

B. Dynamic equation and eigenvalue problem

The dynamic equation (2.13) can be linearized using
(3.15)—(3.17) into

u;=D e (V u)+ +5 u;
B B B' -, B'

Bx 2
By

2
(3.20)

2

V= f fdxdy — u, + u.
B B

2 Bx By where

The e is the degree of incompressibility, as wi11 be ex-
plained below, and 5 represents the degree of anisotropy.
The terms linear in u vanish in (3.11) due to (3.6). In this
section we will further replace —,'E(I +J) by ,'eI in—
(3.11), retaining only the bilinear terms. Then recom-
bination of the terms in (3.11) yields another expression,

2
B B+— u„— u + —~(V u)'

2 Bx "
By y 2

D =k~Tv, all

The density deviation 5$= —P(V.u) then obeys

(3.21)

1——(1—5 ) u
2 By

2

(3.14) 5$=D (1+a) —+(5 +e) 5$ .B B' -2 B'
Bt Bx 2

(3.22)

This form shows that, if e) 0, V can be negative (leading
to an instability) only for the stretched case 5 & 1 [other-
wise, all the terms in (3.14) are non-negative definite],
whereas, if e &0, 9' can be negative even for 5) 1, as will

A,e) —1, e) —5 (3.23)

The bulk instability can obvious1y be avoided under the
conditions
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A. 2If e & —1 or e & —5, spinodal decomposition occurs in
the bulk and this is the subject in the future. '"

The right-hand side of (3.20) suggests that we should
examine the following eigenvalue problem:

shown in Appendix 8, we may express u in the form

u„=(k /~, )(W+e ' —W e '
)

~z(g+e ' f—e '
) (3.26)

e (V u)+ +5 u, = —Au, ,
a a' -2 a'
X; dx By

(3.24) u =ik(W+e '+W e ' —g+e' —g e ').
where the eigenvector u satisfies the boundary conditions
(3.18) and (3.19). We can generally prove that the eigen-
value A. is real and there is an orthogonal complete set of
eigenvectors [u ] with eigenvalue X where p is an ap-
propriate subscript (see Appendix B). If we set
u= g A u, the scaled free energy 2, (3.14), can be ex-
pressed as

7= —,'g A. C A

P

where the C = jf dx dy ~u ~
are the normalization

coefficients. If all the A. are positive, the variables 3 in-

dependently obey a Gaussian distribution near equilibri-
um. However, the system is unstable if some A, is nega-
tive. In the following we explicitly solve (3.24).

We assume that u depends on y as exp(iky). As will be

k, =~i/k =(5 —R)' (3.28)

k'z=~z/k =[(e+k, )/( I+a)]'
where

(3.29)

A. =A, /k (3.30)

Here we are assuming a.,Waz or k, &1 [since
k i

—kz=e(k i
—1)/(I+a)] (Ref. 26). The four bound-

ary conditions, (3.4), (3.18) and (3.19), determine the ra-
tios among the four coefficients, W+, W, P+, and P
and in addition they yield an equation for k,

(3.27)

The factor exp(iky) is not written explicitly and the wave
numbers K& and K2 are defined by

(I+k,k )[2(1+k, ) +4&k2][cosh[(K, K2)L~~]
—I]+2(1—k', ) k, k2

=(1—kk2)[(1+k i) —4irtkz][cosh[(xi+f2)L~~] —1] (3.31)

The wave number k and the thickness L~~ appear only
through the product kL~~ in the hyperbolic functions and
hence (3.31) determines kL~~ as a function of k, and E.

We are interested in the unstable case k (0, and hence
may assume k, )0 and k'2) 0. [Note that (3.31) can also

A.
have solutions for A. )5 or for purely imaginary k, . ]
Then, because the left-hand side of (3.31) is positive
definite, we readily notice a necessary condition,

1 c (3.35)

of e. For 8, less than 6, there is some kL
~~

which satisfies
(3.31). Then A, is known to be bounded from below and
its minimum is the right-hand side of the following in-
equality:

(1—k,kr )[(1+k,)
—4k, k~] )0 . (3.32)

This condition is also sufficient for the existence of a solu-
tion to (3.31). In fact, if (3.32) holds for given positive k,
and k'2, (3.31) is always satisfied for some kL~~ because the
hyperbolic function on the right-hand side increases more
rapidly with increasing kL~~ than that on the left-hand
side and the right-hand side vanishes for kL~~ =0. In Ap-
pendix C it will be shown that (3.32) is just imposing an
upper limit to 8, ,

(3.33)

where 6, is a positive zero point of the following cubic
polynomial:

11'—5f, (z) =z'+ Sz'+
@+1

z —1. (3.34)

In Fig. 1 we show curves of k', versus e for kL
~~

=0.6, 1, 2,
and ~, the last one representing the marginal curve
k;=5, . Here 5,(0)=1 and 5, (ca)=0.296 as a function

I

I

I

I

I

I

I

I

I

I

I

I»

I

I

I

I

I

I

I

I

I

I

I

l

—1 0.5

FIG. 1. Solutions to (3.31) are shown in the kI-e plane for
fixed values of kL~~, where k& is related to k& and e by (3.29).
The numbers attached to the curves represent the value of kL~~.
Below the dotted curve, e+k& &0, k2 becomes purely imagi-
nary. The value of X, (3.30), can be obtained from k=6 ' —k'I.
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We have thus arrived at a very simple criterion: there are
eigenmodes with negative A, , and the system is unstable if

mer size. Thus, if we take into account hF;„z, A, should
be modified to

5&5, . (3.36) A. = —(5, —5 )k +bk (3.39)

(3.37)

A, =Rk 2 = —(5, —5 ) [ 1 —exp[ —25(k —k, )L
~~
] I k

where A, in (3.37) is a function of e

(3.38)

C. Spinodal decomposition on the
surface in clamped gels

Equation (3.38} shows that the L~~ dependence of A, can
soon be neglected once k considerably exceeds k, (say,
k /k, & 2), resulting in a simple relation, 1,= —(5,—5 )k . On the other hand, we should recall the pres-
ence of the gradient free energy AF;„„, in (2.2), which is
crucial in describing small-scale Auctuations. The scaling
theory for 0 solvent' ' suggests AF;„&
—fdX(ag) '~VP~, where a is the microscopic mono-

Particularly in the isotropic case 5= 1 the surface insta-
bility occurs for a &0. In Fig. 2 we show the phase dia-
gram in the linear theory. See Secs. IV and V for an ex-
planation of the regions II—IV.

Under (3.36) A, can be negative for k greater than a crit-
ical value k„which is determined by (3.31) by setting
A, =O. In particular, for small 5, —5, the coefficient in
front of the hyperbolic function on the right-hand side of
(3.31) is proportional to 5, —k, =5, —5 —X. Thus

[(5 2 5 2)/2b ]1/2 (5 2 5 2)1/2/R

The corresponding initial maximum growth rate is

I ~ Db
—1(5 2 5 2)2 DR

—2(5 2 5 2)2

(3.40)

(3.41)

where D is defined by (3.21). The time scale 1/I is
much faster than typica1 observation times, unless RG is
very large and 6, —5 is extremely small. Therefore, we
will observe only very late stages of the process in most
experiments.

As the Auctuations on the surface grow, some non-
linear mechanism should come into play serving to
suppress the growth and thus leading to some final, sta-
tionary pattern. In this paper, the following are expect-
ed: (i) If the gel is sufficiently incompressible (or if e is
large), nonlinear terms in b,F [such as the term —,'eJ in

(3.11)]can stop the growth at a relatively small saturation
level. (ii) However, if the gel is sufficiently compressible
(or for small e), such nonlinear terms are not effective
enough, allowing the final folding of the surface. These
aspects will be further discussed in the following sections.

D. Instability of gel plates with free surfaces

Here b-Na -RG, where N=go/(voa ) is the eff'ective

polymerization index and R& is the gyration radius of
one effective chain. This suggests that very fine surface
perturbations should grow as a spinodal decomposition
process, with the initial peak wave number given by

—0.5 0.5 1.5

When both the upper and lower surfaces are freely ex-
posed to solvent, we find a very different instability. That
is, if e & 0, the gel plate bends macroscopically (without
small-scale structures) for 5 & 1. This case corresponds to
the usual elastic instability of plates or rods subject to
compressional forces (Euler's problem). Let us consider
the eigenvalue problem (3.24) under the boundary condi-
tions (3.18)»d (3.19) at x =L~~ /2»d —

L
/2. The sys-

tem dimensions in the lateral directions are assumed to be
fixed. Then, assuming (3.26) and (3.27), we find
W+ = —8', f+ = —P, and the counterpart of (3.31),

( 1+k, )
—48 k2[ tanh( ,' a iL

~~

) /tanh( ——K2L
~~

) ]=0 .

(3.42)

FIG. 2. Phase diagram from the linear theory. The system is
stable in region I, while in regions II—IV it is unstable against
surface perturbations, but still stable with respect to bulk insta-
bilities. In region II we expect folding of the surfaces, as will be
shown in Sec. III. In region III the folding is unstable in the
sense that H» (0 at the contact for 5) 1. In region IV there
are no meaningful solutions in the linear scheme representing
periodic cusps. The dashed curve in region IV will be explained
in Sec. V. In region V we expect anisotropic spinodal decompo-
sition in the bulk with cylindrical domains, while in region VI
that with lamellar domains. In region VII the gel is unstable
against plane wave perturbations of any directions.

For ~k ~L~~ &&1, we obtain the same relation k, =5,(e} as
in the clamped case, as it should be. For ~k~L~~ &&1, on
the other hand, (3.42) yields

A. =5 —k i=(5 —1)+— (kL ) + .
3 1+v (3.43)

We can prove that eigenvectors with k&=1 are nonex-
istent except for the special point e=O.

If e) 0, the gel becomes unstable if 5 is lowered slightly
below 1. The critical value of 5 is 1 —

—,
' [e/

(1+a)](mL~~/L~) + if the gel size in the y axis is
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given by L . In this case the instability occurs only at
long wavelengths of order L ll, the upper bound of k is

k„„=[3(1+E)(1—5 )/e]'i /Lii . (3.44)

IV. FOLDING OF T'HK SURFACE

Obviously, the gel plate will bend as a whole in the same
manner as plates or rods bend under compression.

However, if @&0, an instability occurs for 5&5„ in
which the system is unstable at short wavelengths, as in
the clamped case. Further„ if 6) 1, there can be no mac-
roscopic bending, since A. is positive at long wavelengths
from (3.43). Thus, if e(0 and 5) 1, fine patterns will ap-
pear on both the upper and lower surfaces. For 5 & 1 and
a &0, the system is unstable at all wavelengths (if b,I';„h is
not taken into account).

Here we point out a great difference between the modes
of instabilities in our system and those in usual isotropic
elastic materials. In the latter, since 6=1, plates or rods
become unstable obviously only for variable system
length (L in our notation) parallel to the compressional
force. On the other hand, if the elastic coeScients are
anisotropic as in our system, instabilities can occur even
for fixed L . Notice that 2 is positive-definite in (3.43) if
5=1 and e=E j'p+ —,

' )0.

not the case self-consistently, and therefore (4.3) becomes

B = BX =0 or u„
X b

Bx
b

(4.4)

=Pf' f+v,—a~~ u
B u„~0
y b

for lyl &d, (4.5)

where use has been made of (4.2). As in Sec. III we ex-
pand (P, /P)f, in powers of P, /P —1=I+J, to retain the
terms up to second order. Then in the folded surface re-
gion we have

H
VV

k TB

B
u~ +(1+2@) u„

B

Bx V
b By b

aJ u„
b

B
x

y
(4.6)

where we have set I= —2 from (4.1) and (4.4). The quan-
tity in the square brackets of (4.6) must be non-negative.

Third, the osmotic pressure at the folded surface should
be non-negative; otherwise, the contact will be pulled
back from the inside of the gel. From (2.9) this condition
is written as

A. Boundary conditions in the folded region

For small e, growing corrugations will eventually
touch each other and then folded parts will form on the
surface just because any parts of the gel are impenetrable
into each other. Let a two-dimensionally folded part ex-
ist in the region, —d &y &d and X=Lll, where d is the
depth of the folding. The boundary conditions here are
diff'erent from those, (3.18) and (3.19), on the surface in
contact with the solvent. First, the condition of contact
1S

Y=y+u =0 or u
V By V

b

= —1 for lyl &d . (4.1)

Hereafter, ( )~ denotes the value at x =Li. Equation (2.3)
means that the density at the folded part is written as

B B
u ux

B '„ By
(4.2)

BX BY =0 for lyl &d,
Bx&

(4.3)

In the region 0&y &d (or —d &y &0) the profile is
meaningful only if (Bu„/By)b is positive (or negative).
The positivity of P then requires that (Bu /Bx )b be nega-
tive for 0 &y (d (or positive for —d (y &0). Second, if
the surface is very smooth, the shear stress must vanish
and (2.9) yields

B. Single cusp in thick gels

e (V.u)+ +5 u; =0 . (4.7)
Bx By

The boundary conditions are (4.1) and (4.4) for lyl & d
and x =L~~, while (3.18) and (3.19) for lyl )d and x =Li.

It is convenient to introduce two functions of y defined
on the upper surface,

'

B B
uv+ u~ (4.8)

Bx V By
U(y) =

b

We impose the boundary conditions (4.1) and (4.4) at
the folded part, which cause strong nonlinear deforma-
tions in the bulk. Then the linear scheme in Sec. III
should be a poor approximation, at least in the neighbor-
hood of the cusp. However, solutions to the linearized
equation in the bulk region do exist and can lower the
free energy below the value for the homogeneous state in
certain parameter regions. Therefore, these solutions can
be a starting point for more complete theories. To be
precise, our theory in this approximation is partly a non-
linear theory accounting for the great change of the
boundary conditions at the folded parts. To the end of il-

lustrating the mathematical structure of the folding, we
first calculate a stationary single cusp in the limit
Li~ ~. Namely, we assume (3.20) with no time depen-
dence in the bulk,

where x, =al~ 'x and x2 =a~ 'y are the original coordi-
nates. If (BY/Bx)b=(Bu /Bx)t, were zero, P would be
infinite for lyl &d from (4.2). This will be shown to be

R (y) = (1—e) u —(1+e) u„
B B

By V Bx

=2ee(d —
lyl ), (4.9)
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a
u = — 5(1—5 )(HU)+ —C'R .

1

By ~
b

C C

Here H is the Hilbert transformation,
I

(Hf )(y)=m. ' f dy'
y' —y

(4.10)

(4.11)

where the Cauthy principal value should be taken in the
integration. The two coefticients C and C' are defined by

C=(1+5 )
—45k,

C =1+5z—25k,

where

k=[(a+5 )/(I+a)]'

(4.12)

(4.13)

(4.14)

Equation (4.10) can be readily solved if we notice that
the Hilbert transformation of the function
y8(d —~y~)/(d —y )' is equal to 1 for ~y~ &d and to
1 —(y~/(y —d )' for (y~ )d. Because (Bu /By)„
= —1 for ~y~ (d from (4.1), we obtain

U= U, e(d —lyi),(d2 2)1/2
(4.15)

where 8(p) is the step function being equal to zero for
p &0 and to 1 for p )0. The second line of (4.9) has been
derived from the boundary conditions. The two func-
tions are nonvanishing only in the region ~y~ &d. In Ap-
pendix D we will derive the following integral equation
on the upper surface (with y as its argument):

positive quantity (Appendix C), these conditions are
equivalent to

5&5, for e)0 and 5&1 for a&0 . (4.19b)

Just outside the folded region, 0&y —d «d, we have
Y~(y —d)'/ from (4.17), and a nearly parabolic profile,
X—X(d)=constXeY lnY, from (4.18). For e)0, the
surface is mildly protuberant at the position of folding,
while for e (0, it is shrinking inward (see Fig. 3 below).
In more detail, we may calculate Bu„(x,y) /By and
Bu (x,y)/By as functions of x and y in the limit L~~ » oo.
See (4.34) and (4.35) below. Also we notice that the con-
stant term in u„remains indefinite if the limit L~~~~ ~
has been taken at the beginning. By this reason we defer
the calculation of the free-energy change to Sec. V.

Finally, we remark that the line 5=1 is a singular line
in the calculation. We may take the limit 5~1 in the
above expressions, and we find Uo»0 from C /( 1
—5 )» —2e/( I+a) and C'/(1 —5 )~1/( I+a). The
results of this limit are obviously those derivable from the
usual linear elastic theory for isotropic bodies in which
5=1. In this case (4.6) shows II /kiiT=2ev, a~~ in the
linear order, leading to e) 0. However, we notice that
the periodic solution in the case 5~1 is meaningful only
for e(0 [see (4.33) below in the region p (a]. Further-
more, the free-energy change due to the cusp formation
can be negative only for @ &0 if 5=1, as will become evi-
dent from (5.6) and (5.7) below. Therefore, the usual
linear elastic theory cannot reproduce physically mean-
ingful patterns.

Bu = —1+
By b

1+2'
z z iyz

(
2 d2)i/2 C

&&e(ly I

—d )

Using (Dl) in Appendix D we also find

with

Uo=(C+2eC')/[5(1 —5 )] .

Substitution of U into (4.10) then yields

(4.16)

(4.17)

C. Periodic clasps in thick gels

We proceed to the calculation of a two-dimensional
periodic pattern with period L~ in the y direction. The
folding is assumed to take place in the regions,
nL~ —d &y & nL~+d, with n =0, +1, . . . , on the upper
surface. Within the linear scheme, use will be made of
(4.7) in the bulk, (3.4) on the lower boundary, (3.18) and
(3.19) in the free-surface regions, and (4.1) and (4.4) in the
folded regions. For mathematical simplicity the calcula-
tion will be performed under the condition

Bu. C U-
By b C

2
@ )

d+
mC d —y

(4.18)

C )0 and 5 & 1 . (4.19a)

Because C is equal to (5 —1)(5 —5, ) multiplied by a

The surface profile can be obtained by integration of
(4.17) and (4.18), with respect to y, and is meaningful only
for (BY/By ), ) 0 in the region y )d. This condition sim-

ply becomes C )0 because the quantity C+2eC' is
positive-definite if 5%1. Then, the relation (Bu„/By )b )0
in the region 0 &y & d is always satisfied (see Appendix
D). In addition, the condition (4.5) must hold. In the
linear scheme, we neglect the third term (ccJ) in the
square brackets of (4.6) to find that Il is equal to a posi-
tive quantity divided by 1 —5 from (4.15) and (4.18).
Thus we require the following two conditions to have a
meaningful cusp:

2~L~~/L~ 1 . (4.20)

f 'dy = —2d+ f ' dy =0,
o By „ d By

We shall find that the thick-gel limit L~~ ~ Oo is quickly
approached under the above condition.

It should not be overlooked that the total volume is
changed for @%0 due to the periodic cusp formation.
Notice that the average of u„(x,y) over one period,
0 &y & L ~, is equal to const Xx because its second deriva-
tive, with respect to x, vanishes from (4.7) and is zero at
x =0. Then we integrate (Bu„/Bx)b at x =L~~ over one
period; it is equal to —1 in the folded region from (4.4),
and to

[(1—e)/( I+a)](Bu /By )

outside the folded region from (3.18). Further from
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we obtain

1 i 4E
Q~ = dy u„(Ll,y)=-

Lj o
" 1+@ L~

For 0 & x (L~I the average is linear in x as

(4.21)

where k1 =2~/Lr and the Cauthy principal value should
be taken at y'=y. Note that each term in (4.24) vanishes
if averaged over one period. The operator & is in essence
very simple if the variable y is changed to a new variable

p defined by

L~ 4e df dy u„(x,y)= — x .
Li o

" 1+@ Li
(4.22)

The above quantity is just the zeroth component of the
Fourier series of u„(x,y) with respect to y. The volume
of the gel after the cusp formation is given in the linear
approximation by

Q~V1+=V1-
LIi 1+a L

(4.23)

The volume change divided by the initial volume V is
determined by the ratio d/L~ and is independent of LII
(however long L~~ is). The boundary conditions (4.1) and
(4.4) are, themselves, strong ones, causing large deforma-
tions near the surface and changing the total volume in

this manner. On the other hand, we find fo 'dy u~=0
from the boundary conditions.

We can show that the derivative Bu/By tends to a
well-defined limit as L~~ ~ ~, whereas the zeroth Fourier
component of u„ is linear in x, as shown in (4.22). Then
the counterpart of the integral Eq. (4.10) readily follows
in the periodic case (Appendix D); in terms of U and R,
(4.8) and (4.9), it reads

y 1" "2 " 1= ——5(1 —5 )(&U)+ —C' R —2
By b C C Li

&f= f dy'f(y')cot[ —,'k~(y' —y }], (4.25)

(4.24)

Here & is an operator on periodic functions of y with
period L~,

p = tan( —,
' key ) . (4.26)

Noting that p varies from —ao to ~ in the one period,
L1 /—2 (y (L1/2, we may rewrite (4.25) as

@f= f d—p', f(p')—oo p p
L~f dy'f (y')tan( —,

' ~y'),
Li o

(4.27)

U= U, , e(a —IpI),
(a 2

p 2)1/2

where

(4.28)

a =tan( —,'kid ) =tan(1rd/Lr) . (4.29)

The coefficient U, has a little more complicated form
than Uo, (4.16),

U, = [C+2EC'(1 —2d/Lr )]/[g(1 —5 2)b ],
where

(4.30)

I2 =cos( —,'kid ) = 1

(1+ 2)1/2
(4.31)

The factor b, in the denominator, stems from the second
term on the right-hand side of (4.27). The functional
form of the derivative (Bu /By)b is nearly the same as
(4.17),

where f(p)= f(y)=f—(2k' 'tan 'p). The first term is
just the ordinary Hilbert transformation and the second
term is simply a constant, the latter role being to ensure

Jo'dy Af =0.
Analogously to (4.15), we can solve (4.24) by setting

B

By
= —1+ — 1+2' 1 — —2e e(IpI —a) .

2d C' Ipl C'
b (

2 2)1/2 (4.32)

On the other hand, (Buy/By)b is exactly of the form of
(4.18), provided that d and y are replaced by a and p. Al-
though redundant, we write it here,

B C'
u = U —(2e/mC)@1 —t2 )ln

a +p
By b C a —p

(4.33)

lated, analytically in the limit LII ~ ~, in the forms (Ap-
pendix D)

B u„=C „F„(g,)+C, 2F„($2)+C2, Gr(g, )+C22Gr (g2),
By

(4.34}
B

By
3'u = —1+D„Fr(01)+D,2Fr($2)+D2, G„(g, )

As in the single cusp case, the condition (4.19a) [or
(4.19b)] must again be required by the same reasons.

Moreover, the overall behavior of u(x, y) can be calcu-

+D22Gr1((2) .

Here C, and D, are coefficients defined by

(4.35)
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Cii = — D—ii =(1+5 )Ui IC,
5

C„5b+C,2kb+ (C2, 5+ C22k)(1 —2d /Li )

=1—4ed/(I+a)Li .

Cp] = D2] = 4'/C1
(4.36)

C22 =
AD 22

= 2m@ I +5 )/C,
and g, and (2 are complex variables defined by

g, =y+i5(L~~ —x), (2=y+i@L~~ —x) . (4.37)

= tan( —,
' keg) /[a —tan ( —,

' keg) ]'

In the same manner Gz(g) and Gi(g) are defined by

(4.38)

G(g) = G2i (g)+iG~(g) = ln
1 a —tan( —,

' keg)
(4.39)

a + tan( —,
' keg)

After some calculations we can also derive

a
u~ = —1+C„5F~(g, )+C,2k'F~($2) —C2, 5G„(g, )

22~R (02) (4.40)

uy
= D„5F~(g—, ) D, 2xF~ ((—2) +D2, 5G~(g, )

+D 22 +~I ( P2 ) (4.41)

Equations (4.34), (4.35), (4.40), and (4.41) cannot be
explicitly integrated to give the deformed position
X=x+ u and Y=y+ u, except for the case e=O. For
a=0, however, we obtain a simple result,

The functions F„(z) and F~(z) are the real and imaginary
parts of the following analytic function of g, defined in
the upper plane Imp & 0:

F(g) =FR (g)+i'(g)

~e~d/Li &5, —5 as 5~5, , (4.43)

(iv) Far from the upper surface we have ~3u„/By~0,
Bu IBy 0, Bu„/Bx —4ed l(1+a)L, and Bu IBx 0,
the corrections being of order exp[ —Ski(L~~ —x)] or
exp[ kk—i(Li —x)]. This justifies the criterion (4.20) for
the thick-gel limit, if 5 and 8 are assumed to be of order
1. (Our model will not be meaningful for 5 « 1.)

Numerically integrating (4.34) and (4.35), we display
one period of the gel pattern in Figs. 3(a)—3(d) for Li = 1

and L~~ =0.8. The other parameters are written in each
figure. We notice the following from the figures: (i} The
gel is strongly compressed just below the apex of the
cusp. Our results imply P, lg ~ L

~~

—x at y =0 as x ~L
~~.

(ii) The surface x =0.8 and the curve of x =0.796 are no-
ticeably separated at y—= +d, indicating enormous and
unphysical expansion here. In fact, on the folded part,
(4.2) leads to P, /P —(d —y) ' as y approaches d from
below. More generally, (3.34) and (3.35) show that near
the point y=d and x =L~~, u„and uy are expressed as
constant terms plus linear combinations of p' cos( —,'0 )

and p' sin( —,
' 8 ) with p e ' = g

—a, g being defined by
(4.37). The points y =+1 correspond to tips of cracks in
the fracture theory. (iii) Use of (4.34) and (4.35) in writ-
ing the figures has been justified because the eff'ect of the
cusp has been confirmed to be very small at the bottom,
even for the ratio L

~~

/Li =0.8 [except for the homogene-
ous change (4.22)].

We also note that the coefficients C;~ and D, diverge as
5~5, because C is of order (1 —5 )(5,—5 ). The diver-
gent parts of u are of order ~e~ ~y

—d
~

' /(5, —5 ) for
y =d and x =L~~. The profile becomes deformed into
meaningless shapes if we let 6~5, with d held fixed.
Therefore to avoid unphysical profiles, we must require

Y+i 5(L
~~

—X)= (i m}'Liln .
[ [cos ( ,

' keg) b]—'—
where the proportionality constant is of order 1 and has
been deleted. If (4.43) is not satisfied, unphysical overlap-
ping occurs in the region y =L~/2 and x =L~~. Further-
more, for e& 1, (4.34) and (4.35) result in overlapping
[namely, (BX/Bx) &0] just below the apex of the cusp in
region IV of Fig. 2. From (4.40) we find for y=0,
L~~

—x «d, and d/Lz «1,

+cos( —,'keg) j, (4.42)

BX 2, k, (L„—x)a 5 C„+—k'C,

+ —(5 C2, +k C22) (4 44)

The boundary between regions II and IV in Fig. 2 is ob-
tained by setting the quantity in the large parentheses of
(4.44) equal to 0. The maximum of e in region II is given
by 0.46 at 5=0.57. By writing profiles from (4.34) and
(4.35), we find that the overlapping is small near the
boundary curve, such that it seems to be remedied if non-
linear elastic effects are accounted for. However, for
e & 1, the overlapping is so destructive, indicating no cusp
formation for e & 1.

f 0 'dy ( Bu„ /Bx ) = —4ed l(1+e)

in accord with (4.22), if we notice the relation

where g=y+i5(L~~ —x ) and b =cos( ,'kid ). —

The mapping g~co=tan( —,'keg) is a conformal trans-
formation, in which the one period, —,'Li &Re(& ,—'Li-
and 0 & Imp & oo, is mapped into the upper plane,—~ &Redo& ~ and Ima2&0. As Imp~~ we have
co~i, F~ib, and G~2d/L~ —1. We can check the fol-
lowing mathematical details: (i) As x~Li or as g, and

(2~y, (4.34) and (4.35) surely reduce to (4.32) and (4.33)
(see the last sentence of Appendix D). (ii) The right-hand
side of (4.34) is odd and periodic in y, while that of (4.35)
is even and periodic. Furthermore, the latter should van-
ish if integrated over one period. This can be proved

L~
from (4.30), and the relations f0'dyF =ibLi and

L~f0'dyG =2d Li, which hold irr—espectively of the value

of x. (iii) From (4.40) we can derive
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V. FREE-ENERGY CHANGE AND ITS MINIMIZATION

A. Free-energy change in the linear approximation

Here we estimate the free-energy change due to the
pattern formation, on the basis of the results so far. We
note that the scaled free energy 2, (3.11) or (3.14), in the
bilinear approximation can be expressed in the form of a
surface integral at x =L~~. We denote its integral over
one period by L~~~L~9, . Then, from (3.11) and (3.14), we
obtain

satisfying (4.7), we readily obtain
L~/2

L„L,V, =-'f '
dy(u, U u„—R) . (5.2)

Here U and R are defined by (4.8) and (4.9), so that the
integrand of (5.2) is nonvanishing only in the folded re-
gion ~y~ &d. We have found that u = —y, U is odd, and
u„ is even in the region ~y~ & d. Therefore, decomposing
u„at x =L~~ into the sum of u„, (4.21), and u, —u„we
find

(LyLIl )7& 6F (bF) (k~ Tv +lI) VV& (5 1) L~~~L~V,
= (LI/L, )d' —f dy yU

0

where L is the linear dimension of the ge1 in the y axis
assumed to be much longer than L~, and V is the volume
in the homogeneous state. If u is a stationary solution

d—2mf dy(u„—u„)|, . (5.3)

The first term is an increase of the free energy due to

(a) e= —0.1, (5'=0.9, d=0. 1 (b) ~= —0.1, ~=0.35, d=0. 1

O.H

0.7

0.6

0.5

0.796
— 0.7

0.6

0.5

0.3

—0.5 —0.3
I ~ I I—0.1 0.1

Y
0.3 0.5 —0.5 —0.3 —0.1

I I

0.1 0.5

(c) ~=0.2, 8'=0.35, d=0. 1 (d) ~=0.2, 6'=0.78, d=0.02

z 08

0.796

0.6

0.5

0.7

—0.6

—0.5

0.3

CO—0.5 —0.3 -0.1 0.1
I I

0.3 0.5 —0.5
I r—0.3 —0.1

I I I I & I

0.1 0.3 0.5

FICx. 3. Cusp profiles in one period for L~ = 1 and L)) =0.8 from (4.22), (4.34), and (4.35). Here, e = —0. 1, 6=0.9, and d =0. 1 in

(a); e= —0. 1, 5=0.35, and d =0. 1 in (b); @=0.2, 6=0.35, and d =0. 1 in (c); and a=0.2, 6=0.78„and d =0.02 in (d). The curves in

each figure represent the initial heights x =0.8, 0.796, 0.7, 0.6, 0.5, 0.4, and 0.3 from above in the homogeneous state before the cusp
formation. In (d) 5 is close to the critical value 5, =0.82 at @=0.2, and deformations are large even for d=0.02. As stated below
(4. 19b), the surface is protuberant at the position of folding for e & 0, while it is shrinking inward for e (0.
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the overall volume change. In fact, if the volume of the
system were homogeneously changed as (4.22) without
any patterns, the resultant increase of 7 could be calcu-
lated from (3.14) exactly into the first term of (5.3). The
other two terms in (5.3) are generally very complicated;
however, they can be expressed as power series of the fac-
tors exp( Sk—iLi) and exp( —kkiL~~). Assuming (4.20),
and neglecting corrections of the order of these factors,
we simply take the limit L~~ ~ ~ in the second and third
terms. That is, we substitute (4.28) into the integrand of
the second term of (5.3) and (4.33) into

of o.„&o. , below the dotted curve in region IV, where
the profile itself is meaningless, containing unphysical
overlapping as found below (4.44).

B. Free-energy minimum and nonlinear contributions

The next step of the theory is to minimize V as a func-
tion of L~ and d, and to determine their optimal values.
However, this procedure is not possible within the linear
theory. To show this, we rewrite 7, , (5.5), in terms of
new dimensionless variables

(u„—u„)i, = f dy'Fi(y') — A i,y, , 1
(5.4)

Then,

s =d/L, (5.10)

where Fi(y):—(Bu„/By)b given in (4.33), and A i is the
integral of the first term of (5.4) over one period. After
some calculations, we find that 7, is proportional to d in
the limit d/Li « 1 (as in the case of cracks ), so that we
express 9'i in the form

8 2

Vi = (d /L i )
—( cr „—o

q )d /L iL ~~,1+a (5.5)

c7 =[2m(1 —2d/Li)C'] Ji /[5(1 —5 )C] . (5.7)

Here, J, and J2 are positive quantities of order 1 only
weakly dependent on the ratio d /L ~; J, =~/4 and
Jz-(2/m. )ln(L„/d) for small d/Li, while they behave as
J, =Jz-(2/~)lna for a =tan( ,'kid) &&1 (s—ee Appendix
E).

To estimate o.„and o. we recall the relations
C —(5 —5, )(5 —1) and C' —1 —5, where the propor-
tionality coefficients are positive quantities of order 1 (see
Appendix C). Then we can estimate each term in cr„ando: the first term in o.„—(5, —5 )/5, the second term
in o„—E /(5, —5 ), and o -e /5(5, —5 ), where
1 —2d/L~ is assumed to be not close to 0. Each term
changes its sign across the curve 5 =6„and the cusp has
a meaningful shape only for 5 & 5, as found in (4.19b) and
in the sentence below (4.33). From these estimates we no-
tice that there are two limiting cases: If 5 is not close to
S„such that 5, —5 ) ~e~, we find

where o.„and cr are positive quantities written as

cr„=JiC/5(1 —5 )+[2e(1—2d/Li)] J2@1—5 )IC,
(5.6)

2, =aos' —(o „—o p
)s'r, (5.1 1)

P, =a(p .
—(a„—cr~)s r+ais +p,s r + (5.12)

The coefficients a„p, , . . . , should be able to be calculat-
ed by perturbation calculations starting with the linear
solution given in Sec. IVC. This suggests that these
coefficients are functions of A=el(5, —8 ), since
eC'/C-A, which appear in (4.32) and (4.33). They will
tend to some limits as

~

A
~

~0 and grow with some
powers of A for ~A~ ~ ~. Note that o „—o.

~ behaves in
this manner, as shown in (5.8) and (5.9). If ai )0, pi )0,
and (o.„—o. ) )4aop„9', can attain a minimum with
only the two additional terms written in (5.12). The op-
timal values are

r =(a„—op)/2P„s =
—,'[(o.„—o~) —4aoP, ]./4a, P, .

where a0=8@ /( I+a). The right-hand side can surely be
negative for a„&o. with increasing r, but there can be
no upper limit of r in this form (even if we take into ac-
count the r dependence of o „—o ).

Here we should recall that the gel is strongly deformed
near the cusp of the gel, as shown in Fig. 3. This non-
linear effect should give rise to a positive contribution to
Vi. Also, the effect of finite thickness should be taken
into account. However, I have not yet succeeded in cal-
culating these effects at present. Instead of tackling these
tough calculations, we tentatively present a phenomeno-
logical approach to determine r and s. Let r and s both
be considerably smaller than 1. Then we assume that 7,
may be expanded as

o „—cr~ =J, C /5(1 —5 ) —(5, —5 ) /5 .

On the other hand, if 0 & 5, —5
~
e~ (namely, if close to

the curve 5 =5, ), we find

We assume P, —1 for
~

A
~

& 1. Then,

r-5, —5 for ~e~ &5,—5

(5.13)

(5.14)

o.„—cT =4e (Jq —Ji )(1 —2d/Li) @I—5 )/C

-e l(5, —5'), (5.9)

where J2 —J, is positive-definite. Note that o „—o.
diverges as 6~5, in the second case. This requires that
the optimal value of d, which minimizes 7, must goes to
0 as 5~5„consistently with (4.43). We can numerically
check o.„&o. everywhere in region II of Fig. 2. On the
other hand, in region IV of Fig. 2 there appears a region

Namely, even if @~0, r should remain finite. The value
of s should also be of the order of some power of 6, —5
On the other hand, let p, —A "~oo as ~A~ ~oo; then,
r —(5, —5 )A '' "' and s remains positive only for
4 ~ 2+ 2n. These lead to n = 1. As regards s, we can
determine the upper bound from (4.42). Thus

r-5, —5, s (5, —5 )/(e) for 5, —5

(5.15)
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These results are consistent with the initial assumptions,
r &1 and s &1.

The above results have no firm theoretical basis and
must be highly conjectural. We need to calculate
a„g, , . . . explicitly. In some cases, more higher-order
terms might be necessary, and the optimal value of r
might not satisfy (4.20). Nevertheless, we propose (5.14)
and (5.15) as guiding predictions for future measurements
of r and s in various conditions. Such experiments should
be very informative even if they would contradict (5.14)
and (5.15).

VI. SUMMARY AND CONCLUDING REMARKS

We give a summary of our results together with com-
ments. In Sec. II we have presented our phenomenologi-
cal model of gels near the phase transition. This model
will be useful also to study a number of other interesting
problems involving anisotropy and inhomogeneities, such
as phase transitions in affinely deformed gels ' or spino-
dal decomposition in gels.

In Sec. III we have developed the linear scheme around
uniaxial homogeneous states, and have focused our atten-
tion on the stability of the upper surface of uniaxially
clamped gels for two given parameters, 5=+~/a~~ and E

(the degree of incompressibility), which are defined in
(3.12) and (3.13) and examined in Appendix A. When the
gel is stretched in the region 5 & S, (e), it becomes unsta-
ble against surface perturbations in an intermediate
wave-number region. The lower bound arises from the
fact that the lower surface is fixed and is of order
In[1/(5, —5 )]/L~~. The upper bound arises from the
gradient term in the free energy and is of order
(5, —6 )' /RG. Here L~~ and RG are the gel thickness
and the gyration radius. As stated at the end of Sec.
III C, the growth of surface corrugations will saturate, re-
sulting in some final patterns on the surface. However,
nothing is virtually known at present on effects of non-
linear terms (higher than quadratic in the displacement u)
in the free energy bF, (2.2). It is natural to expect that, if
such nonlinear contributions to AF increase greatly
against large corrugations, their growth will be stopped
before folding. Then the final pattern will be some corru-
gated surface without folding. This seems to be the case,
particularly for large e', indeed, if e is large, there is no
reason for neglecting the term ,'ej ( ~ u —)in (3.11). In
this paper, however, we have not examined such a possi-
bility. Instead, we have assumed from the beginning that
corrugations grow until they touch to form folding. This
should be the case, of course, for ~e~

& 1, in view of the
actual observation of the cusp pattern. In Sec. III D, to
clarify the special nature of the instability in clamped
gels, we have examined the stability of gel plates whose
lower and upper surfaces are both in contact with sol-
vent. In the latter case, if e&0, the plate simply bends
for 6 & 1 without small-scale Auctuation enhancement.
However, if e &0 and 5) 1, the nature of the instability
remains similar to that of clamped gels in region III of
Fig. 2.

In Sec. IV A we have shown that the boundary condi-
tions at the folded part, (4.1) and (4.4), are very different

from those of the surface in contact with the solvent,
(3.18) and (3.19). That is, the folded parts press each oth-
er. In Sec. IV B a single cusp in thick gels has been calcu-
lated as an illustrative example. There, we have derived
the integral Eq. (4.10) involving the Hilbert transforma-
tion for the strain Bu, /t)y+t)u /Bx on the upper surface.
The analytic solution is similar to that of cracks, and the
upper points y =+d corresponds to tips of cracks. Then
in Sec. III C, the analytic solutions representing periodic
roll patterns have been obtained in the thick-gel case
(4.20). The gradients of the displacement, Bu, /Bx, are
expressed as (4.34), (4.35), (4.40), and (4.41) in terms of
the analytic functions F(g) and G(g) defined in (4.38) and
(4.39). The coefficients in these expressions, (4.36),
diverge as I/(5, —5 ) in the limit 6~8„which then
leads to (4.43): the ratio of the depth of the folding to the
period d/L~ must be, at most, of order (6, —5 )/~e~ as
6~5, .

In Sec. V, the free-energy change due to the periodic
cusp formation has been calculated as (5.5) in the linear
scheme, which can be surely negative if o.„)o . Unfor-
tunately, however, to determine the optimal values of d
and L~, which minimize the free energy, we must further
take into account the nonlinear elastic effect near the
cusp and the finite thickness effect. In this paper, defer-
ring this task to the future, we have proposed the expan-
sion (5.12) of the free energy in powers of r =Lt /L~~ and
s =d/L~, assuming that r and s are considerably smaller
than 1. Then the estimations of r, (5.14) and (5.15), have
followed. The thick-gel assumption, (4.20), seems to be
supported at least near the marginal curve 6=6, . The
contents of this section are very insufficient and further
efforts are required.

Final comments are as follows: (i) Our solutions to the
cusp patterns give extremum to the free energy as a func-
tional of the displacement. However, they do not give
the minimum. Hence there should be some coarsening of
the pattern and gradual increase of d, until L~ and d min-
imize the free energy. This process has indeed been ob-
served, and a coarsening law, L~(t) ~ t, has been
found. ' Some insight into the coarsening can be ob-
tained from the simulation by Hwa and Kardar, and
simulation on a two-dimensional cell pattern by Nagai
et al. ' (ii) In the experiment hexagonal patterns were
observed. However, roll patterns will also appear when
the linear dimension L, in the z axis is not large. (iii) As
argued above, the cusp formation for large e is very im-
probable. We also stress that nothing is known about the
pattern formation in regions III and IV in Fig. 2. There-
fore, observation of the pattern, with changing external
parameters such as the temperature, is strongly needed.
Experiments can be compared with our theory if use will
be made of the results in Appendix A, where e and 6 are
expressed in terms of the usual parameters in the litera-
ture. (iv) Matsuo and Tanaka have reported their finding
of intriguing patterns in shrinking gels. Hirotsu also
observed a network pattern on the surface of a gel slight-
ly shrinking near the critical point. Such a corrugated
pattern will appear permanently for 5& 1 and e &0 (re-
gion III in Fig. 2) as long as the lateral dimensions are
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fixed (even if the lower surface is not clamped as shown in
Sec. III D). (v) If the system is situated very close to the
curve 8=5,(e) in Fig. 2, the amplitude of the surface in-
homogeneities will be small and cubic, and quartic terms
in the free energy will suSce to describe the patterns.
Here, the transition can well be of first-order due to the
general presence of the cubic terms. To see such a
discontinuity, we propose experiments on a clamped gel
in the presence of a temperature gradient in the lateral
direction. (vi) Indeed, we encounter a rich variety of new
phenomena emerging when networks undergo phase
transitions.

e'+ 1 =a 'P ( —,'P —
yQ '+3a )

= —a 'P (du/dP) . (A6)

The second line has been derived using (AS). The ratio
8=a~ /a

~~

is writ ten as

5= (a~/$0)p . (A7)

Note that the critical point under H~~=O can be ob-
tained from du/dP=d u/dP =0. More general cases
with II~~AO are discussed in Ref. 33. The critical value of
y (for given a) and the critical volume fraction are given
by
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APPENDIX A

%'e consider uniaxial homogeneous gels whose lower
surface is clamped, and express 6 and e in terms of pa-
rameters in the Flory theory. ' ' ' For simplicity we as-
sume that the osmotic pressure from above H~~ vanishes.
The free-energy density f in (2.2) is given by

f=a [(1—P)ln(1 —P)+gg(1 —P)]

+v ( ,'+ f, )(P/P )ln—(P/P ), (A 1)

where a is the monomer size, g is the interaction parame-
ter representing the solvent quality with respect to the
polymer, and f, is the degree of ionization per eff'ective

chain. The y may be assumed to depend on the ternpera-
ture Tby

For y & y, there occurs a first-order phase transition, and
two phases can coexist with a sharp planar interface. In
this case, there are no shear deformations because the
system is allowed to change its shape in only one direc-
tion. The phase change will occur from the upper surface
like the melting of ice into water. Let u, be the value of
u at the two-phase coexistence, and P, and $2 be the
volume fractions in the two phases. Then from

g(P&)=g($2), we find the Maxwell rule j&'dP[u(P)
—u, ]=0. In particular, when y/y, —1 is a small posi-
tive number, we find near the critical point,

/$, -2(y/y, —l)(P/P, —1)—8(P/P, —1)—+const .

(A9)

If the system is stable (neither metastable nor unstable), e
assumes a minimum at the two-phase coexistence in our
model. It is equal to e= —1+12(y/y, —1)+ near
the critical point.

u =—1 —2y= A(T —Ts), (A2) APPENDIX 8

where A is a constant and T& is the 0 temperature.
Here we fix the elongation ratio a~ in the perpendicular
directions. Then P=(P0/a~)/a~~ or a~~ should be deter-
mined by the minimum condition of the total free ener-
gy. Defining g =hF/( V0$0ks Ta ), we obtain (v, u) = f f dx dy

a a
V~ VBx" By~

a a
Bx "

By

First, to find some general relations, we introduce a
Hermitian form (v, u) for two two-dimensional vectors
v(x) and u(x) by

g = u P+ —,'P +y in/+ ,'aP +c—onst, (A3)

where we have expanded ln(1 —P) in (Al) in powers of P
assuming P « 1 and

B B
X

a +a

y=v0a (f;+ ,')/40, a=v0a 40/a— (A4)
+e(V.v)(V u)

The condition H~~
=0 is equivalent to the condition

Bg/BP =0 [see (3.6)], which yields
+(5 —1) v

A, 2 a
By

(Bl)

u= —
—,'0 —y4 '+a4 '.

On the other hand, e defined by (3.12) becomes

(AS) The integration region is given by 0 (x & L,
~~

and
—(x) &y & ~, and u and v satisfy the boundary condi-
tions (3.18) and (3.19). Then we readily obtain

t

(v, u) =(u, v) = —f fdx dyv eV(V u)+ +5
2

u
a' -2 a'

Bx Bp
(B2)
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Hence any eigenvalue A, of (3.24) must be real, and
different eigenfunctions, ui and u2, with diff''erent eigen-
values are orthogonal in the sense that Jdx dyu, uz=0.

Next, assuming u ~ exp(iky) we find from (3.24),

tively. Thus C divided by (5 —1)(5 —5, ) is positive-
definite. Next, the positivity of the factor C+2eC' will
be shown, which appears in Uo, (4.16). By writing z =5
we have from (4.12)-(4.14),

B2
(1+e) —(e+5 )k +A. (V u)=0,

Bx
(B3)

C+2eC'=[(1+z)(1+z+2e)+4M(1+e)] '(1 —z)

X[(2e+z+I) +4z] . (C3)

82
$ 2k2+ g

Bx

a a
uy u~ —0 (B4)

This shows that u can be expressed as a linear combina-
tion of e and e ' if iriWirz, and we obtain (3.26) and
(3.27), where i~, and i~z are defined by (3.28) and (3.29).
The boundary condition (3.4) leads to

W++ W =/++/
W~ —W =kikz( P+ —

ir'r ),
while (3.18) and (3.19) yield

W'++ W =
—,'(1+k, )(Q++f ),

W+ —W =[2k,kz/(1+k i)](P+ —g ) .

(B5)

(B6)

(B7)

(B8)

Here W+ —= W+ exp(+aiL~~ ), and f+ =—/+exp(+i~zL~~ ).
From these equations we can derive (3.31).

Finally we consider the eigenvalue problem for
k, =kz= l. From (3.4) and (3.24), A. is uniquely equal to
6 —1 and u„and u are expressed as

u = 3 i [sinh(kx) —akx cosh(kx)] —ia Azkx sinh(kx ),
(B9)

u = Az[sinh(kx)+akx cosh(kx)] —iaA, kx sinh(kx),

(B10)

where 3, and A z are coefficients and a =e/(2+ e).
Then imposing (3.18) and (3.19) we obtain

tanh ( kLll 1+e(2+ e) /[1+ e (kL (Bl 1)

APPENDIX C

The equivalence of (3.32) and (3.33) follows from the
relations

This has a solution only for e &0 (since 2+ e & 0)»d kL~~

is a monotonically decreasing function of e'= ~e~ in the
region 0 ( e' & 1. We find kL~~~

——,
' ln(2/e') for e' && 1 and

kL~~ 0 as e' 1.

This also indicates that Uo vanishes in the limit 6~1.
Third, we show the positivity of (Bu /By)i„(4. 18), in

the region 0&y (d. A manipulation like (Cl) leads to
C'(1 —5 ) &0 for any 5, so that the first term in (4.18) is
positive-definite. We then examine whether or not the
second logarithmic term can cancel the first term. For
this purpose, we may assume e&0 and 6(6, (1 to find
k & 1 and C' & (1 —5 ) . The last inequality, if substitut-
ed into (4.18), assures the positivity.

APPENDIX D

1. Single cusp in the limit L
~~

~ ao

It is convenient to introduce x'=L~~ —x (&0 in the
gel). Let ( )„denote the Fourier transform with respect
toy. In the limit L~~~ ~, (U„)k»d (U~)„depend on x'
as f, =exp( —5~k ~x') or fz =exp( —ir~k x'), where 8 is
defined by (4.14), and the coefficients in front of f i and

fz can be written in terms of the Fourier transforms of
U, (4.8), and R, (4.9). Some calculations yield

u =—[(1+5 ) Ul, +2ig(sgnk )Rk ]fi

igc25Uk—+i(1+5 )(sgnk)Ri, ]fz, (Dl)

u = 5[i( 1+5 )(sgnk ) U„2irR, ]f, —
Bg k C

+—[ —2i 5(sgnk ) U„+(1+5 )Ri. ]f, ,

(D2)

where sgnk, the sign of k, appears from derivatives with
respect to x. Then (4.10) follows with the aid of the fol-
lowing relation for arbitrary function f (x):

Hf =i(2ir) ' J dk(sgnk)fi, e'"i', (D3)

where H is the Hilbert transformation defined by (4.11).

1 —kikz=(1 —z)(z + 1+e)/[(1+e)(1+k,irz)], (Cl) 2. Periodic case in the limit L
~~

~ ao

(1+k i) 4irikz=(z —1)f,(—z)/[(1+k i) +4k', kz], (C2)

where k, is written as z, and f, (z) is defined in (3.34).
Thus the left-hand side of (3.32) is equal to —(1 z) f,(z)—
multiplied by a positive quantity. Elementary calcula-
tions show that f, (z) has a unique positive root and f, (z)
is equal to (z —5, ) multiplied by a positive quantity for
z)0.

The coefficient C, defined by (4.12), is just equal to the
quantity in (C2) if we replace ki and kz by 5 and k; respec-

&f= g i(sgnn )f„e
n(AO)

(D4)

If f(y) is a periodic function with period Li, it can be
expressed as f (y) = g„ f„exp(ik„y ), where k„=2irn /
Lz. Here ( )„denotes the Fourier component. Then
(Dl) and (D2) still hold for Bu„/By and Bu /By, provided
that the lower subscript k is replaced by n, sgnk by sgnn,
and ~k~ in the definitions of f i and fz by k„. Equation
(4.24) can be obtained from the relation
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Equations (4.34) and (4.35) can be calculated as follows.
Note that the following function is an analytic function
of z in the upper complex plane:

F(z)=2 g f e (D5)
n()0)

where z is a complex variable, and f„(=f"„) is the
Fourier component of any real periodic function f (y).
Then the real and imaginary parts of F are expressed as

F„(z)= g f,exp(ik„z„—
l klzt ),

n(&0)

These theorems can now give rise to (4.34) and (4.35),
if use is made of (Dl) and (D2). On approaching the
real axis, we have Ftt ~pe(a —lpl)/(a —p )', Ft~
Iple(lpl —a )/(p —a )', Grt

—B(lpl —a ), and Gt
~vr 'lnl(a +p)/(a —p)l with p =tan( —,'kty).

APPENDIX E

Here Eqs. (5.6) and (5.7) will be derived. The terms
proportional to J& in (5.6) and (5.7) are contributions
from U, (4.28), and the first term of (4.33). The J, reads

Ft(z) = — g i(sgnn )f„exp(ik„z„—lk lzt ),
n(+0)

(D7) dJ, = f dyyp/(a —p )' (El)

«y) fo Ft-—(~f )(—y) . (D&)

where zrt =Re(z) and zt = 1m(z). Let z approach the real
axis as z~ ~y and zr ~0; then, where p, a, and b are defined in (4.26), (4.29), and (4.31).

The second term in (5.6) is the contribution from the
second logarithmic term in (4.33). The Jz is defined by

(1—2d/L~) J2= f dy[1 —2y/Lt —O(d —y)(1 —y/d)]In
0 Q P

We can examine the behaviors of J, and J2 in detail by changing the integration variable y to appropriate ones. Nu-
merical analysis shows J2 )J, & 0 for any d /L~.
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