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Dissipative quantum dynamics of a charged particle in a magnetic field
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We calculate the position autocorrelation and magnetic moment of a charged particle at finite
temperatures moving in two dimensions in the presence of a magnetic field and a dissipative envi-
ronment. We show that the time-dependent position-autocorrelation function does not change
qualitatively from the free-particle behavior. This implies that orbital magnetic moment of a
charged particle is zero at all temperatures.

I. INTRODUCTION II. MODEL AND BASIC NOTATION
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where R (t) is the position of the electron at time t and 8
is the magnetic field in the z direction.

We then go on to calculate the orbital magnetic rno-
ment of the electron at finite as well as at zero tempera-
ture and show that the time-averaged magnetic moment
goes to zero when there is a confining potential. These
results are, of course, known to hold at nonzero temper-
ature k~T))A/t; we show that they even work at zero
temperature (or k~ T &&A'/t).

The plan of the paper is as follows. In Sec. II we intro-
duce the general formalism and notation used in the rest
of the paper. In Sec. III we discuss the general proper-
ties of the noise-auto-correlation function. In Sec. IV we
calculate the position-auto-correlation function at both
finite and zero temperatures. In Sec. V we calculate the
magnetic moment of the electron with and without a
confining potential, at zero and nonzero temperatures.
We summarize our findings in Sec. VI.

In this paper we consider the problem of a quanturn-
mechanical charged particle (henceforth referred to as an
electron) moving in two dimensions in the presence of a
magnetic field and coupled to a dissipative environ-
ment. ' The main result of this work is that the time
dependence of the position-autocorrelation function is
qualitatively the same as that of a free particle, the only
difference being that the overall coefficient is decreased
from the free-particle value by a factor depending on the
magnetic field. This is found to be the case even at zero
temperature or equivalently at times t «A/k&T, where
the dynamics is essentially quantum mechanical. Quanti-
tatively,

The Hamiltonian on which our analysis is based is
'2 2
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where P, M, e, and R are the momentum, mass, charge,
and position of the electron, respectively. A is the vector
potential and c is the velocity of light. The electron is
linearly coupled to a set of harmonic oscillators labeled
by a with frequencies co, mass m, coordinates x and
momenta p . C is the coupling between the electron
and the oscillator path. The last term is added to ensure
that the effective potential for the electron, obtained by
eliminating x in favor of R, is zero apart from the mag-
netic field term. The equations of motion for the coordi-
nates R(t) and momentum P(t) of the electron in the
Heisenberg picture are

x (t)= —co x (2.3)

Now eliminating x (t) and combining Eqs. (2.2) and (2.3)
we find that

R(t)+ (vXB)+fK(t t')v(t')= —A(t), —
Mc

(2.4)

where the memory kernel K ( t —t '
) is

MC
K(t —t')=g cos[co (t —t')]

m
(2.5)

P(t)= — gC x (t)+ —(vXB) +Rg(c /m co ),
a c a

(2.2)

R(t)= — g x (t)+ (vXB)
M Mc

+ gC /(m co).
a

The equation of motion for the oscillator coordinate
x (t) is

R(t)C
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and

A(t)=g cos[co (t —to)]R(to)
M
m

+gC
m co

1/2

(2.6)

where b(t) and b (t) are two-dimensional annihilation
and creation operators satisfying the commutation rela-
tion

[b, b ]=1 .

Now defining Z =X+iY, where X and Y are the two
components of R, it is easy to see that

(2.10)

Since we are looking at time scales t &)y, all single
time averages are time independent and all two-time
correlations will depend only on the time difference. We
must emphasize the point that so far whatever we have
done is entirely consistent with microscopic physics. It
can easily be shown that the commutation relation,
[x(t),p(t)]=i% holds for all times. This should be con-
trasted with earlier approaches, ' where phenomenologi-
cal Hamiltonians were written down to incorporate dissi-
pation, which had serious problems of interpretation.

Let us define the Fourier transform off (t):

f(co)= f e' 'f(t)dt .

The autocorrelation function of the fluctuating force per
unit mass

Z(t)+ Z(t)+ f K(t t')Z(t—')dt'= —A (t},
Mc 0

where

C
A (t)=g cos[co (t —to)][X(to )+ iY(to }]
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P~( t) = ,' ( A *—(t + t ') A ( t )+ A *(t ') A ( t + t ') ) (2.11)
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The factor of 2 is important and it comes from the fact
that A is a combination of A and A . The autocorrela-
tion function of the position of the particle can be found
very easily by Fourier transforming the equations of
motion. We find

+e ' ' [b (to)+ia (to)] (2.8)

K(t)= ~ e(t)e
+R

(2.9)

where e(t) is the unit step function. y is the bandwidth
of the oscillators and ~~ will turn out to be the relaxation
time of the velocity of the particle. Let us now discuss
the initial conditions for this problem.

The kernel has a memory time which is of the order
y '. Thus, if we choose to look at times much larger
than y, the initial position of the particle is irrelevant.
We assume that the initial coordinates of the oscillators
are in thermal equilibrium at temperature T. Therefore

This is an exact equation for the dynamics of the charged
particle and has been obtained by integrating out the fast
degrees of freedom in the spirit of the Mori's formalism.
This we could do exactly because of the simple model sys-
tem we have chosen. Note that no irreversible effects
have been put in so far.

We introduced relaxation into the system by making
the bath of oscillators take a continuous set of frequen-
cies, which means the Poincare recurrence time is
infinite. This approach is pioneered by Senitzky and
used by Caldeira and Leggett to tackle the problem of
macroscopic quantum tunneling and coherence. In order
to allow detailed analysis we choose the memory kernel
K(t) to be of the form

Czz(t) = ,' (Z (t)Z'(t —+t'}+Z*(t)Z(t + t') ),
where

(2.13)

and

2Rzz(t)= f" d~ ' e'"
&R ~ ~ 6) +y
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cu +icoK(co) (eB/Mc)co—
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III. PROPERTIES OF THE NOISE-NOISE
CORRELATION FUNCTION

Properties of the noise-autocorrelation function have
been dealt with exclusively in the paper by Aslangul
et al. We merely sketch them here for completeness and
because we shall use them in the calculations that follow.
From Eq. (2.12) it is clear that

( A ~(co)i ) = coth(ph'co/2) .
M~ ~2+ y~

(3.1)

For piiico «1 (i.e., high temperatures) this is approxi-
mately

We shall use this equation exclusively for the calculations
which follow.
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4k~ T
M~~ y2+~2

which for frequencies co « y becomes

4k~ T
M~+

(3.2)

(3.3)

turn (t « filks T) and classical (t &)AlksT) regimes is
the same as that of a free particle. We proceed as fol-
lows. Upon simplification Eq. (2.14) this yields

Czz(t) = f den
2Ay2

2m.

This is ordinary white noise. But if PAL@ » 1 then

2A

M7R N2+y2

Note that this form of A (co) implies that

(3.4)
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( A (t)) = f den~ A(co)~ e' '= f den
QO —oo Q7 +y

which diverges at large frequencies. On physical grounds
we would like ( A (t) ) to be finite. We shall thus impose
a high-frequency cutoff co,„. It is reasonable to take
co,„=y, since we are in any case iriterested in the
physics of time scales much larger than y '. Thus, if we
make measurements at a fixed temperature T, we should
see quantum behavior for frequencies ~))k~ T/%=co„
i.e., for time scales t «Rlk~T. For co&&co, (t))trito„')
classical behavior will be seen, which, for co «y, will be
ordinary Brownian motion. Note that the crossover time
scale co, ' diverges as T~O.

IV. CALCULATION OF POSITION
AUTOCORRELATION FUNCTION

Here we calculate the position-autocorrelation func-
tion and show that its qualitative behavior in both quan-

where ~, =eB/Mc is the cyclotron frequency. For time
scales that are sufficiently large (i.e. , t »A'Iks T) this in-
tegral is easily evaluated,

Czz(t) . 4k' T M~R + co,
1

R

(4.2)

This tells us, not surprisingly, that at any nonzero tem-
perature the long-time behavior of the particle is going to
be classical and diffusive but with a reduced diffusion
coefficient. As is already known, the magnetic field does
not confine a classical Brownian particle. We see quan-
tum behavior by looking at time scales t &&R/k~ T. This
behavior is easily extracted by setting T=0 in the in-

tegral, so that we are always in the quantum regime. One
might wonder whether the combination of a magnetic
field and "quantum dissipation" can confine a particle at
zero temperature. It turns out that it cannot. The calcu-
lations go as follows:

2Ay 1
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7 g oo 7T

I Q)t
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To summarize, the effect of the magnetic field on the po-
sition autocorrelation is a quantitative one. The func-
tional dependence on time is unchanged. The classical
diffusion and quantum subdiffusion still take place. Only
the overall coefficient is smaller by a field-dependent fac-
tor. This is the first of our two principal results.

Evaluating this integral and noting that there is an upper
cutoff y

' to the frequency integral we get, for t ))y—1
CO

I

idea is to test whether the time average orbital magnetic
moment of the electron goes to zero even at T =0 due to
the presence of dissipative environment. Indeed, we find
that it does, if we are careful. Let us first show that our
results agree with the known results in the classical limit,
for example, at nonzero temperature, where all the quan-
tum effects are washed out on a sufficiently long time
scale. Then we do the calculation for zero temperature
and show that the results hold there as well.

The orbital magnetic moment p of the electron is given
by

p= (vxR),
2c

V. ORBITAL MAGNETIC MOMENT
OF THE ELECTRON

We calculate the orbital magnetic moment of the elec-
tron in the presence of the dissipative environment. The

which implies that

p= Im((Z*Z)) .
2c

Now let us take /3%co « 1,

(5.2)
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This integral is straightforward, if a little tedious. We
simply v rite down the final form for the magnetic mo-
ment

2cM
kB Tcoc

1 2+CO
7R

(5.3)

—
l el
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(
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r2

(5.7)

This seeming contradiction to the Bohr —van Leeuwen
theorem is a result of the fact that we have not bounded
the motion of the particle. The "skipping orbits" which
are the usual dynamical explanation of the Bohr —van
Leeuwen result can only arise if the particle is confined
externally by walls or by a potential. To see this we irn-

pose a confining potential which we take to be the
harmonic-oscillator potential in two dimensions. Then
the equation of motion becomes

Z(t)+ f K(t t')Z(—t')+ Z(t)+co,Z(t)= —A (t) .
0 Mc

(5.4)

The orbital magnetic moment of the electron, averaged
up to a time 7, is

which is nonzero. In the above equation

e=tan ~cP
7' ~,' 4l—r~')

2

CO

7R
+f CO
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Now let us put in a confining potential as we did for the
nonzero-temperature case, evaluating the integral and
then letting the frequency of the confining potential go to
zero. We find that the orbital magnetic moment, aver-
aged up to a finite time 7, is given by

(
lel 2R) 2

2c M7R

p(r)= f dco
COe

Mc 7R 7T 2 2 2 CO

( CO COO COCO
C ) +

7R

(5.5) CO e ICOS

X dco
y +~ ~ mo ~~. +~k

(5.8)
This integral, by inspection, goes as 7, so that if
averaging time 7 is taken to infinity, we see that
lim, „p(r)=0, for any coo&0. Note that what we have
done here is to take the limit of infinite averaging time 7
first and then take co0~0. Had we worked with a finite 7
then we would have seen that for ~07»1, the equilibri-
um statistical mechanics result of Bohr —van Leeuwen
holds, while for co07«1, the particle would not have ex-
plored most of the phase space and would have a nonzero
orbital magnetic moment. Note also that in the presence
of a confining potential where the "skipping cycles" do
not occur as such, the cancellation is due to the restoring
force of the confining potential which causes the guiding
center of the Larmour orbit to move in a sense counter to
the Larmour orbit itself. For a lucid discussion of this
classical regime see Ref. 10.

Now we follow the same procedure at zero tempera-
ture. First we perform the calculation without a
confining potential, and find that p=0. Then we go on to
calculate the orbital moment when there is a confining
potential and find that in this case it is zero again. The
orbital moment of the electron at T =0 without the
confining potential is

lel 2a)"
2c m7R

1
X j dco . '2

2~
2 2 2 1

y (CO
—

CO ) + CO COCO~

R

(5.6)

As in the classical case (5.5) this gives lim, „p(r)=0 for
any co0&0. Thus quantum dissipation with confining po-
tential suffices to make the time-averaged magnetic mo-
ment go to zero even at zero temperature. This is the
second principal result of this work.

VI. CONCLUSION

In this paper we have used the formalism developed in
Refs. 1, 2, and 4 to calculate the dissipative dynamics of a
charged spinless particle in the presence of a magnetic
field. Firstly, we have obtained the position-
autocorrelation function in the presence of a magnetic
field and we have shown that it is qualitatively the same
as that of a free particle provided there is dissipation.
Secondly, we have calculated the time-averaged induced
orbital magnetic moment of the electron and found it to
be zero both for zero and finite temperatures in the pres-
ence of dissipation, showing therefore that the motion of
the charged particle (as far as the magnetic moment is
concerned) is rendered "classical. "
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