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Feynman's propagator for a charged particle with time-dependent mass
in a crossed time-varying electromagnetic field
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Through a sequence of time-dependent transformations and time substitution, we evaluate the
propagator of a harmonically bound charged particle with time-dependent mass in a time-varying
electromagnetic field by relating it to those of free particles. From this propagator we derive the
wave functions. The propagators beyond and at caustics are then investigated, respectively, by in-

cluding the Maslov phase factor and by using the modified semigroup property. Finally, we calcu-
late explicitly the propagator for the constant-damping case.

I. INTRODUCTION

In recent years there has been increasing interest in
quantizing the harmonic oscillator with variable mass'
and in quantizing the charged particle in a time-varying
electromagnetic field. In this regard, it would be
worthwhile to investigate quantum mechanically the
dynamical system that combines these two problems. In
this paper we quantize a harmonically bound charged
particle with time-variable mass in a time-dependent
crossed electromagnetic field by using Feynman's path-
integral approach. Although the entire expression ob-
tained for the propagator has no obvious physical inter-
pretation it is important to note its relevance in summar-
izing a great number of previous results obtained by vari-
ous authors. ' ' ' In addition, we observe also that
some special cases of this Lagrangian connects to some
propagators not previously calculated. For example, one
can mention the case of constant mass, which has, for the
first time, an expression valid beyond and at caustics.
Another important, physical case is that of time-
dependent frequency and mass, but without electric and
magnetic fields. In particular, this case can be mapped in
a system of electric and magnetic fields in the interior of a
Fabry-Perot cavity. ' ' In Sec. II, through a rotation, an
extended Galilean transformation, a linear space trans-
formation, and a time substitution, we are able to obtain
the propagator of our system by connecting it to propa-
gators of free particles and to derive the wave functions
by expanding the propagator. In Sec. III we investigate
the propagator beyond and at caustics by including the
Maslov correction factor and by using the modified semi-
group property of the propagator, respectively. In order
to illustrate our method, we evaluate the propagator ex-
plicitly for the damping case in Sec. IV.

II. PROPAGATOR AND THE WAVE FUNCTIONS

For a charged particle of variable mass m(t) and
charge q moving classically in a time-dependent elec-

tromagnetic field, the Lagrangian has the form (c = 1

throughout this paper)

L(r, r, t)= —,'m(t)r +q A(r, t) r —q&b(r, t), m(t))0

with A(r, t) and 4(r, t) being the vector and scalar poten-
tials. Choosing the symmetric gauge, ' A(r, t)
=( ,'B(t)xz,—2B—(t)x„0),—for the vector potential, we
consider the potentials

A(r, t) = ,'B (t)k Xr—

and

@(r,t)= P (t)r +e(t) r,
2m (t)

B(r, t)=VX A(r, t)=B(t)k (4)

and

E(r, t) = —VP(r, t) BA(r, t)
Bt

P (t)r+ kXr+e(t) .
B(t)~

m (t) 2

We now separate the Lagrangian (l) into the following
form

L (r, r, t) =L~(r~, r~, t)+L~~(x3, x, , t)

where

which are more general than the case studied by
Sokmen. Here m (t), B(t), P(t), and E, (t), the com-
ponents of the vector e(t), are arbitrary piecewise con-
tinuous functions of time, and the position vector
r=(x, , x2, x3). With the preceding potentials, the corre-
sponding electric and magnetic fields become
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qB (t)
L~(r~, r~, t) =

—,'m (t)r~+ (x, xz —x2x, )
2 il, + q, +0', (t)q, = @,(t),m(t) .

m (t) ' ' ' m (t)
(14)

P (t)r~ qe—~(t).r~,
2m t

the Lagrangian (12) becomes after lengthy manipulations

with r~ and e~(t) being the components of r and e(t) per-
pendicular to the magnetic field B(r, t), and

L, (y, ,y, , t ) = ,' m (—t)[y; —II~y, ]+ A, (y, , tA, t )

with

(15)

In order to decouple the coordinates x, and x2 in (7), we
introduce a rotation about three-axis by a time-dependent
angle co(t) =qB (t)i2m (t), or

X3

cos[a(t)] sin[a(t)] 0
—sin[a(t)] cos[a(t)] 0 xz

0 0 1

L~~(x3, x3, t)= —,'m(t)x 3
— P (t)x3 q E3('t)x3 (8)

2m (t) A, (y, , g, , t) =
—,'m (t)g;(g; —2y, )

++I 8, (A, )g;(A. )dA, .

Except for the term of the total derivative, A, (y, , tl, , t),
we see that (15) is the Lagrangian of the harmonic oscilla-
tor with time-varying mass and frequency. Therefore we
eliminated the time-dependent forced term q@,X, in (12)
by using (13) and (14). Applying a linear space transfor-
mation and a time substitution introduced by Cheng,

with a(t) = co(s)ds and A is the notation matrix. Un-

der the above rotation, the Lagrangian (7) can be written
as

Y; =y;, p, , sec[p;(t)], u, =t an[p, (t)], (17)
(t)

L~(R~, R~, t) = [R ~
—0 (t)R~] qC~(t) R~,—

2
(10)

where g(t) =&m (t) and s (t) and p (t) satisfyI I

where fI (t)=co (t)+qP (t) jm (t) and R~=(X, ,X2) and
C~(t) =Aej. With the help of (7)—(10), the Lagrangian (6}
can be put in the form

3

L(r, r, t)= g L;(X;,X;,t),
i=1

the Lagrangian (15) reads

L; ( Y;, Y;, t)= —,'m'Y, +A, (y, , q, , t) F, (s, , g, , t)—,

where

L, (X, , X, , t) =
,'m (t)[X,' ——0,'(t)X,']—

6q', (t) ,X, (12)
with

dY,
Y, =

dpi
(19)

y, =X, +g, (t) (13)

and choosing g;(t) to satisfy

with Q, (t)=A&(t)=Q (t) and 03(t)=qg (t)lm (t),
which is the Lagrangian of the time-dependent forced
harmonic oscillator with time-varying mass and frequen-
cy.

Performing an extended Galilean transformation '

F;(s, , g, , t)= —,'m'y, [sin[2p, (t)]—2(s, g
—s, g)/s, u, (I

(20)

For later convenience we assume that f'= f (t') andf"=f(t") for any function f of time t From the .La-
grangian (19) we see that our system has been reduced to
three one-dimensional free particles of mass m '.

Using the Van Vleck —Pauli formula, ' ' we obtain the
propagator as

3

K(y,",y,';z)= Q K, (y,",y, ~)
i=1

BY

Bp;

BYtt 1/2

K,F( Y,",Y,'; U, }exp —[A, (y, , g, , t ) F, ( s, , g, , t )]—
Bp;

(2&)

where w=t" —t, U, =u,"—u, ', and K, ( Y,",Y,'; U, ) is the well-known propagator' of an one-dimensional free particle.
With the help of (11)—(14) and (21), we obtain our main results
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K;(y;",y;r) =
i . ii )1/2(P I'P i

2vri A sin(p,"—p,' )

i 2 s, g
—s, g

exp y;
' '

mri, (rt, —2y ) a.

Xexp . „,[(m "p,"y," +m'p, ,'y; )cos(p' —p,') —2g'g"(p, ,'p,")' y y;"]
2Asin p" —p'

X exp f @,(t)g, (t) dt2' (22)

Using Mehler's formula'

exp[ —(x +y —2xyz)/(1 —z )] [ z 2 ] +
z"

(1—z')'" n=0 27

with x =(m'p, '/k)' y, y =(m "p' /fi)' y;", z =exp[ i (—p, ,
'-' —)I,')], and n =n;, we can rewrite (22) as

(23)

K;(y;",y,';r)= g g„*(y,t')P„(y;",t"),
n,. =0

where the wave functions are of the form

Q„(y, , t) =exp[ —i (n, + —,
' )p, (t)](p„(y, , t)

1/2

(24)

y„(y„t)=
2 'n, !

m (t)p, im (t)p' s, g
—s, g

X exp f 6, (A, )rt, (A. )dA, H„
m(t)p;

1/2

(25)

Here H„( ~ ) is the n, th Hermite polynomial. Making use of the transformation
i

cos[a(t)] —sin[a(t)] 0 xi '9i

yz = sin[a(t)] cos[a(t)] 0 x2 + g2

x,
(26)

we can now easily express the propagator (21) and the wave functions (24) in terms of the original coordinates x, , xz,
X3.

III. PROPAGATOR BEYOND AND AT CAUSTICS

Applying the extended Feynman's formula' ' to (22), we obtain the propagator beyond caustics (P, =p, ,
"—p,')

T

i i
)

f /2

K, (y,",y,'; P;%,7r) =M(P, )
2m fil sm

im (t)
exp

2A'

s;g —s, g
y, + i);(ri; —2y; )

S;

X exp [(m "p, ,"y," + m 'p,'y )cosp; —2$'g"(p,'p, ,
")' y y;"]

2trt sm

Xexp 6;(t)g, (t)dt, k;=0, 1,2, . . .
2A

(27)

where the Malov correction factor M (P, ) =exp[ —im lnt($, /vr)/2] and Int(P, /rr) stands for the greatest integer which
is less than or equal to P;/vr. We can see that (27) is invahd at caustics or when P, =km. We now introduce the
modified semigroup property of the propagator. '

K, (y,",y, '; P, = k, ~)=exp( ik, rr/2) lK, (y,
"—

,y, ;t"—t)
I IK, (y, ,y,';t —i' )l

X f exp . —[S„(y,",y, ;t"—t)+S,.i(y;,y,';t —t')] .dy, (28)
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since the Maslov correction factor is already known at caustics. S,.1( ) is the classical action functional. Evaluating the
integral in (28), we finally obtain the propagator at caustics,

K, (y,",y, '; cp, =k, lr)= [g'g"(p, ,'t2,")'/']'/'exp( —ik, lr/2)

Xexp- im (t)
yi „+'9i(ll( 2V; )

5sl

Xexp f @;(t)21;(t)dt .5(g"p, ,
" sin(p, —p', )y,

"—g'p,"/2sin(p, "—p,. )y,.') . (29)

We should mention that the classical paths of interest for
the calculation of the propagator are those for which the
initial and final positions are specified. When the argu-
ments of the Dirac 5 function in (29) vanish, there exists
an infinite number of such classical paths, which should
be expected for a system described by a quadratic La-
grangian. Therefore, the total propagator (21) can be ob-
tained by combining (22) or (27) or (29) for each coordi-
nate y&, y2, and y3.

IV. CONSTANT DAMPING CASE

In this section we consider the following Lagrangian

L (r, r, t) = r + (x,x2 —x, x2) — r

Lagrangian (30) represents a damped charged particle of
mass mo in a crossed time-dependent electromagnetic
field

Equation (14) now becomes

rj, +yq, +0, g, =q 6,- /m 0, (32)

where 0, = $12=0p+ cpp, Q1= Sip, 6, =e,cos(coot),
= —elsin(toot), and 63=@&cos(tot) With. out loss of gen-
erality, hereafter we only investigate (32) for the under-
damping case or 0; & y . The particular solutions of (32)
are of the form

qe, sin(coot +P1) Ap
P, =tan

(g4+ 2 2)1/2 '

2+ [E1X1
+ Elx leos(Cist) ]

mo
(30)

q e, sin(coot +P2 )

4 2 21/2'mo(f1o+y coo)

where y, Bp, Po, e, , and e, are constants. The corre-
sponding equations of motion are given by

x] +yx] +Box] = —2coox2 —ycoox2+qe] /mo,

x 2 + yx 2 ++ox 2
—2Q)ox ) +y Q)ox ]

X 3 +yX3+ Qpx3 =E3COS(tot)

(31)

with Qp=q P„/mp and tpo=qBp/2mo. Therefore the

qe3sin(cot +/33) fop —cp

(f12 2)2+ 2 2 1/2 ' P, =tan
o[ o

(33)
which do not depend on the initial conditions of g;. We
should mention that for evaluating A; (y, , g, , t) in (21) we
only need the steady state ' of (32). Substituting (26) into
(22), we obtain explicitly the propagators for the
constant-damping charged particle

m co e~, (t +t )/2 iqe
K, (r, , r, ;r) = . exp [ ll 1

cos( coot ) 7/2cos(

toot�

) ]dt
2lri lit sin( p2, r) 2A'

X exP [ [x,cos(toot) —X2sin(coot)+ rt, ]'+ [x, sin(coot)+X2cos(Plot)+ 1)2]') I.
4A

im
IXexp (2'l, [2[x,cos(toot) —X2sin(toot)]+1), I+2'12I2[xlsin(coot)+X2cos(toot)+rt2]I )~,„2A

im "co~
X exp t

[x", cos(coot" )
—x,"sin(coot" ) + 11,] + [x", sin(coot" ) +x,"cos(capt" )+212]' I21ritan(to, r)

Em co]
X exp [ [X 1 COS(Q)pt ) X 2 Sill(tempt ) + 711 ] + [X 1

Sill( Coot ) +X 2 COS(Q)pt ) + 712]2A tan(co] ~)

X exp
] (t'-+t")/2

Em ocu] e

%sin( cg] z) I [x 1 cos(cc1pt ) x 2 sin(Plot') + ri, ][x", cos(coot" )
—x 2' sin(coot" )+ 2)2]

+[x', sin(toot')+x2cos(toot')+ll, ]

X [x", sin(coot")+x,"cos(coot")+ri2]I, to, =f1', —y-' (34)
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and

x", ,x', ; r) = m co e&"+'")"m oco3e

2vri fi sin(co3&)

1Cj C3
exp g3cos(cot)dr

Xexp
™

[y(x3+Q3) z'13(4x3+2z), )]~,4fi

ltd
exp . I [m "(x

3 + g3) +m (x 3+ g3) ]cos(co37 )
2%sin co3r

—2moe~" +' '~ (x3+g3)(x3'+q3)), co3=00—y (35)

since s; =0 and p; = co; t.
Considering the case of e& =0 (or z)~ =z1z=0) and co=0 (or z1&=qe3/mo03) and combining (34) and (35), we get the

total propagator (after simplifications),

K (r",r', r) =K~(r,",r~; r)K~~(x 3 x 3 7 )

m ~ e]'('+'")/2
mph) )e

2niA sin(co, r)

y(t'+ f")/2m pc03e

2vri A sin(co3r)

lg E3%
exp

2mmo

X exp
imoy [(x" +x" )er' (x,—+xz )e~' ]

r

EQ)

Xexp [m "(x"
, +xz )+m'(x'& +xz )]2A'tan co, r)

~ y(f'+ f")/2

Xexp [(x Ix &'+xzxz' )cos(coos)+(x ixz —x i xz )»n(~o&) lfi sin(co, w)

l Q)3
Xexp [(m "z" +m'z' )cos(co3r) 2moe "—+' ' z'z" ]2A'sin(co3r)

Xexp (m "z" —m'z' ), z =x, +qe3/mo&3 (36)

moQ( mo03
K (r",r', r) =

2mi R sin(A, r) 2mi A sin(Q3~)

lg E3'7
exp

2&m o&~3

in which K~(r ",r~;r) is in agreement with Eq. (35) in Ref. 17. For y =0, the preceding equation reduces to
' 1/2

imoQ&
Xexp (x', +xz +x", +xz )2' tan Q, r

lm
X exp — . [(x',x", +xzxz' )cos(coor)+(x', xz' —xzx", )sin(coor)]

fistn Q,r

lmoQ3
X exp . [(z' +z" )cos(Q3i) —2z'z" ]2' sin A3r

(37)

from which we see that the Bloch density matrix
K (r",r'; i AP) is ex—actly equivalent to that of Glasser. '

In this paper we obtained the propagator for a har-
monically bound charged particle with time-dependent
mass in a crossed time-varying electromagnetic field by
relating the propagator to those of free particles through
a sequence of space transformations and time substitu-
tion. Our results are more general than the previous
known results, ' ' in the sense that (1) the time-

dependent mass has been taken into account, (2) the most
general time-varying crossed electromagnetic field has
been considered, (3) the Maslov correction factor (or
Morse index) has been included in the propagator beyond
caustics, and (4) the Dirac 5 function has appeared in the
propagator at caustics as it should be for a quadratic La-
grangian. In other words, for a quadratic Lagrangian
there exists an infinite number of classical paths with
fixed end points in which the arguments of the Dirac 6
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function vanish. As for the constant-damping case, we
evaluated explicitly the propagator which includes the
well known results"' as special cases as we expect. As a
final remark we should mention that the present method
is inadequate to evaluate the propagator for an anisotrop-
ic bound charged particle in a time-varying crossed elec-
tromagnetic field.
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