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Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations
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Using detailed asymptotic analyses of the dynamics of the phase-field model, we show that the
major sharp-interface models (Stefan, modified Stefan, Hele-Shaw, etc. ) all arise as limiting cases of
the phase-field equations. The scaling of the physical parameters in the microscopics leads to dis-
tinct macroscopic models with critical di8'erences.

I. INTRODUCTION u (O, x)=uo(x), x EQ . (1.7)

In this paper we show, using detailed formal asymptot-
ics, that one can obtain any of the major sharp-interface
(discontinuous-gradient) models (e.g. , Stefan, modified
Stefan models, Hele-Shaw models) as limiting cases of a
particular continuous representation of phase transitions
which is based on microscopic considerations (see Figs. 1

and 2). Furthermore, the distinctions in the macroscopic
sharp-interface models arise from the scaling relation-
ships in the microscopic parameters of the continuous or
phase-field model (see Sec. III). We discuss first the three
macroscopic sharp-interface problems which have been
used in modeling phase transitions.

One considers a material which may be in either of two
phases, e.g. , solid or liquid, and occupies a region O, CR
in space. We let u denote the (dimensionless) tempera-
ture and shift it so that u =0 is the usual equilibrium
melting temperature. In the classical Stefan problem, the
interface is defined to be

r(t) = Ix Cn: u (t,x)=OI,
while the liquid region 0, is defined by

Q, (t)=IxEQ: u(t, x))0], (1.2)

and the solid region Q2 analogously for negative u.
The temperature must satisfy the heat diffusion equa-

tion

u, =Kobu, xEO, (t) or x&02(t), (1.3)

where K is a dimensionless thermal diffusivity. Across
the interface the latent heat condition must be satisfied

lu =EC(Vu, —VuL ).n, x&I (t) (1.4)

one must specify external boundary conditions and initial
conditions, e.g.,

u (t,x)=us(t, x), x Ec)Q, t EIR+ (1.6)

where n is the unit normal to I (in the direction solid to
liquid), u the (normal) velocity, and l is a dimensionless
latent heat. Together with the temperature condition [by
definition of I (t)]

u (t,x)=D, x EI (t)

The mathematical problem' then is to find u and I, in
suitable function spaces, satisfying (1.3)—(1.7).

The physical situation is generally more complicated
than indicated by the classical Stefan model, particularly
in two or higher dimensions. One of the physical effects
neglected by the classical Stefan model is that of surface
tension, which is generally a stabilizing factor. As noted
by Gibbs in the last century, an immediate consequence
of surface tension, as an equilibrium property, to modify
the temperature at the interface so that

hs[u (t,x)]= eric(t—,x), x HI (t) (1.8}

hs [u (t,x)]= eric(t, x) acr—u (t,x—), (1.9)

where e has generally been regarded as an adjustable pa-
rameter. The phase-field equations to be discussed in Sec.
II have been used to derive (1.9) and relate ct to a micro-
scopic relaxation time. This will be discussed in detail in
Sec. II. The problem posed by Eqs. (1.3),(1.4),(1.9), which
we call the modified Stefan problem, can be studied in the
hope of obtaining a more realistic picture of the interface.

Perhaps the most interesting aspect of the differences
between the three models is manifested in the stability
properties of the interface. The interface for the classical
Stefan problem is notoriously unstable under some con-
ditions. The insertion of the condition (1.8} clearly re-
stricts the magnitude of the curvature and thereby the ex-

where As is the difference in entropy between liquid and
solid, cr is the surface tension, and tc(t, x) is the sum of
principal curvatures at a point on the interface. One may
thus study the system [(1.3),(1.4),(1.8)] as an alternative to
the classical Stefan model. However, there is now a prob-
lem of formulation which is often a practical problem as
well. The interface is no longer defined simply by (1.1)
but must be "tracked. " In some applications, such as
linear stability analysis, this is quite convenient; in others
such as numerical computations it presents difficulties.

In addition to the surface tension effect, metallurgists
observed that the temperature at the interface should be
reduced beyond the "supercooling" exhibited by (1.8). '

Although different expressions for this "kinetic under-
cooling" term have been used, the most prevalent model
has been the linear velocity dependence
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STEFAN-TYPE MODELS AS LIMITING CASES
OF THE PHASE FIELD EQUATIONS

HELE-SHAW AND CAHN-ALLEN MODELS AS LIMITING CASES
OF THE PHASE FIELD EQUATIONS

Phase field equations
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2

n( Qt ——$ 6@ + a'g(Q) + 2u

Phase field equations
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2
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FIG. l. In the scaling limits shown at left, the phase-field
equations are governed by the various Stefan-type limits. The
phase-field equations can be used to approximate any of these
sharp-interface problems.

FIG. 2. In the first two scaling limits, the phase-field model is
governed by the equations which are known as the quasistatic
limit in phase transitions and the Hele-Shaw equations in fluid
flow. In the last limit, the Cahn-Allen equation for antiphase
domain boundaries is attained.

+ 1 liquid
u + —q('1 ——+au —1 solid . (1.10)

tent of the instability. That is, if the temperature is re-
stricted via the initial and boundary conditions, then a
large surface tension u is not compatible with a large cur-
vature a..

The role of nonzero a in the problem [(1.3),(1.4),(1.9)]
is not as manifest. It has been shown that this is a stabil-
izing inAuence, in the sense that an unstable mode will
remain unstable but with a smaller amplitude.

Thus, it is clear that the three problems posed above
will lead to very different behavior of the interface. In
practical terms, a reliable calculation (numerical or
analytical) for a particular material is only possible if the
appropriate choice of models is made. This in turn de-
pends crucially on parameters such as o. and a.

We have assumed so far that the interface is perfectly
sharp, and that the latent heat is released on this set of
measure zero.

We note that Eqs. (1.3) and (1.4) can be incorporated in
a weak sense into the single equation

each of these three models as limiting cases. In Sec. VII
we show that two Hele-Shaw models also arise as limits.

II. THE PHASE-FIELD MODEL

As noted earlier, acceptance of the idea that the tem-
perature need not to be zero at the interface (or negative
in the solid, etc.) leads immediately to the question of
how one distinguishes the two phases. In fact, if there
were no macroscopically measurable quantity, let us call
it y, which differed in the two phases, then we probably
would not be interested in the interface between phases.
In general, this quantity y is called an "order parameter"
or "phase field, " and one occurrence of such a function is
in (1.10). The inhomogeneous heat equation (1.10) can be
expected to remain valid even if g is continuous. Howev-
er, the key question is how should one determine y? Ac-
cepting this second variable involves the implementation
of a second equation, which is fundamental in determin-
ing the relevant physics. Using the analog of Eq. (1.10)
and Landau-Ginzburg theory of phase transitions one
obtains the system '

Within this interpretation it is heuristically evident that
each of these three models describes an interface of
discontinuity in the phase y. In Sec. II we will consider
the phase-field model of phase transitions and then obtain

I
0] + cjot =KAQ

ag y, =g b,y+ —g(p)+2u,

(2.1)

(2.2)
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u(O, x)=u(x), y(O, x)=y(x), xEA

and boundary conditions, for example,

(2.3)

where g is a derivative of a symmetric double-well poten-
tial with minima at +1, e.g., g(y)= —,'(y —y ). The pa-
rameters I, K, a, g, and a, are dimensionless constants
whose physical interpretation can be found in Refs. 9 and
10. We can assume initial conditions

have been discussed in Refs. 18—20.
Single equation limits can also be obtained as limits.

By choosing l =0 and, for initial and boundary condi-
tions, u =0, one can trivialize the role of temperature
and thereby obtain the Cahn-Allen antiphase domain
boundary model '

(2.6}

u (O, x)=us(x), y(t, x)=y+(x), x EBQ (2.4) as a limiting case (see Fig. 2).

where y+ are the largest and smallest roots, respectively,
of a 'f (y)+2u =0. Since a will be a small parameter,
these roots will be near +1. The asymptotic analysis does
not depend crucially on the boundary conditions (2.4)
and one can use instead Neumann boundary conditions
By/Bv=Bu /Bv=O (v normal to M).

The interface in (2.1) and (2.2) is specified as

I (t) = (x EQ: y(t, x}=0) . (2.5)

Within this formulation, interfacial conditions such as
(1.4), (1.5), (1.8), and (1.9) need not be imposed and in fact
can be derived from (2.1) and (2.2) as a consequence of
the microscopic physics built into these equations.

We note that under rather general conditions there ex-
ists a unique global solution to Eqs. (2.1)—.(2.4) in arbi-
trary dimension which is smooth. The situation is quite
different for the problems discussed in Sec. I, in which
there is no existence theory for the modified Stefan prob-
lems and much of the existence theory for the classical
Stefan problem is limited to one and two dimensions. ' '

Our aim in this paper is to show using the methods of
Refs. 9, 11, and 17 that all of the sharp interface prob-
lems discussed in Secs. I and VII arise as particular limits
of the phase-field equations (2.1) and (2.2) in the asymp-
totic analysis as g, a, and in some cases a, approach zero.

The asymptotics of the dynamical situation considered
previously (e.g. , in Ref. 17) concerns the limit as g ap-
proaches zero with a and a fixed. This is an analysis of
the small temperature (i.e., proportional to g) linut.
Within this limit one does not obtain any of the Stefan or
Hele-Shaw limits discussed in Secs. I and VII.

In this paper, however, we show that scaling of the pa-
rameters (particularly the new parameter a) is crucial in
the limiting behavior of the equations. In particular, one
obtains distinct limits with very different behavior as a
consequence due to the physical implications of this scal-
ing (see Sec. III).

The objective in considering these limits is to make
contact with other macroscopic models which have been
or can be studied. The result of this asymptotic analysis
is that an arbitrary Stefan-type or Hele-Shaw —type model
with any set of physical parameters in any dimension can
be approximated with arbitrary accuracy by a suitable set
of phase-field equations (2.1), (2.2), and vice versa.

The significance of Secs. IV —VII is that they can be
used to study (e.g., numerically) such diverse phenomena
as fluid interface and various solidification problems us-
ing a single set of equations. One needs only to adjust
three parameters to observe the change from one system
to another. Some related conjectures for theorems have

III. THE BASIC IDEAS AND HEURISTICS

Before presenting detailed asymptotics, it is useful to
indicate, heuristically, the essential strategy, originally in-
troduced in Refs. 9 and 11 with different scaling. Let r be
the coordinate normal to the interface I (i.e., r is the dis-
tance to the interface if it is in the liquid region, negative
distance if it is in the solid region). Suppose that in
(2.1)—(2.4), y varies much more rapidly across the inter-
face than u and it attains y+ a short distance toward the
liquid side and y on the solid side. Suppose further that

y is approximately in the form y(r —ut), and make the
following assumptions on the parameters:

e—:g a, a=fixed, g, a~0, p=r/e . (3.1)

Under these conditions we may write (2.2) using the
prototype g (P) =——,'(P —P ), as

ave/ =P—+eattl + . + ,'(P P—}+2—au, (3.2)

where terms of order e in this expansion have been omit-
ted. If there exists an expansion of the form
/=hatt +op'+, then (3.2) implies that the O(l) bal-
ance is

(3.3a)

with solution

$0(p) =tanh(p/2) . (3.3b)

=-e[ —aut}5 —xP —2( ae/) ]u= F. (3.4)

Noting that the derivative of the O(1) solution satisfies
the homogeneous equation for (3.4), LP =0, one has the
solvability condition

0=(F,Q )=ef P [ avP ~P 2(a—/e)u]dp . (—3.5)

Since

f Pp=P+ P ——=2

one has from (3.5) the identity

E'

4u (t, x) = — cJ0ic(t, x)——ao 0v (t,x)—
a ' a

on I, where

(3.6)

Subtracting the O(1) equation (3.3) from (3.2) one has the
O(e) equation [provided ae ' is O(1) or smaller]

Lyl yl + l [1 (3/0)2]yl
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oo =—f (&g) dp= —', .

Hence, ea '=pa ' emerges as an important scaling
factor.

Next, we perform a short calculation to understand the
significance of ea o o in (3.6). Equation (2.2) was de-
rived from ~y, =57/5y, where the free energy 9 is given
by

2
1

V[rp] = f dx (Vg) + ((p —1) —2u(p
2 8a

for this prototype g (y). The surface tension o is defined
as

(3.7)

where A is the area of the interface. To calculate this to
first order, one may multiply Eq. (3.3) by P„and integrate
to obtain

of course, depends on the particular microscopics con-
sidered. The double well can also be regarded (from the
point of view of P field theory, as a probabilistic mea-
sure that expresses the "preference, "

by the "spins" or
particles, to be in the liquid, solid, or interfacial part of
the phase diagram. On a more fundamental level, the
Landau-Ginzburg free energy incorporates the subtle
concept of the correlation length, which is a measure of
the distance within which atoms inAuence one another on
a probabilistic basis. The correlation length concept pro-
vides yet another approach to understanding the different
macroscopic limits.

IV. THE MODIFIED STEFAN LIMIT
The heuristic calculations of Sec. III suggest the fol-

lowing limit which we will verify explicitly.
Proposition 4.1. In the limit g, a ~0 with ct and ga

fixed, there exists a formal asymptotic solution of the
phase-field model [(2.1) and (2.2)] which is governed by
the modified Stefan model [(1.3),(1.4), and (1.9)].

We verify this by setting

0= %r%rr +
p %r %

which is an exact integral, i.e.,

Then the free energy in (3.7) may be written as

(3.&)

(3.9)

f (cp) —=c,g (y),
and rewriting Eqs. (2.1) and (2.2) as

l
u, + —y, =Kobu,

«~cp, =&~~cp+f (cp)+2ue, .

(4.1)

(4.2)

(4.3)

f gi( o)zd f (po)2d (3.10)

Noting that the difference in entropy density between
liquid and solid is

=4, (3.1 1)

where V is the volume, the relation (1.9) follows as an
O(1) statement within this heuristic derivation, provided
ea ' =ga

' =O(1) or smaller. If, however, ga
' ap-

proaches zero, then one obtains the usual u =0 Stefan
condition (1.5). Finally, if a approaches zero while

ga ' =O(1), one has the limit (1.8).
In each of the scalings, the interfacial width is e, and

the solution y is approximated by (3.3). Hence, far from
the interface, &p is constant (to arbitrary order in e), so
that the heat equation (1.3) is valid. Across the interface,
as e approaches zero, one obtains, as a result of integra-
tion, the latent heat condition (1.4) (see also the end of
Sec. VI).

In attaining the three Stefan-type limits discussed in
Sec. I, it is clear that there is a crucial interplay between
e'=pa'~ and ea '=pa ', i.e., in the roles of interfa-
cial thickness and interfacial tension. At a deeper level of
physics, one has a competition between the molecular or
atomic forces, represented by g and the well depth,
represented by a '. The well depth, and in fact, the en-
tire double-well potential, a g(y), is obtained from the
microscopic physics. One can regard it as a representa-
tion of the energy barrier between the two phases which,

(4.4)

We formally expand the variables in their original
coordinates to obtain the outer expansion as

u (x,y, t, Ei)= u (x,y, t)+ecru (x,y, t)+e'i ' ' '

+u (x,y,t)+-2

cp(x, y, t, e, )=cp (x,y, t)+e,cp'(x, y, t)+e)

r(x,y, t, e&)=r (x,y, t)+e&r'(x, y, t)+e&

s(x,y, t, e, )= s (x,y, t)+e,s'(x, y, t)+e,
+y-(x, y, t)+

(4.5)

(4.6)

(4.7)

(4.&)

At this point one may carry out the asymptotics of
(4.2) and (4.3) in the style of Ref. 11 or Ref. 17. We
choose a direct application of the latter, which is a corn-
plete asymptotic analysis for both variables, in order to
display explicitly the inner and outer expansions. For
convenience, we discuss two dimensions. For higher di-
mensions the procedure is essentially the same and the
net difference is that the curvature is replaced by the sum
of principal curvatures. The interface I (t) defined by
(2.5) is regular provided the initial and boundary condi-
tions are smooth. Hence, for a sufficiently small neigh-
borhood around I (t), we may define r (x,y, t) to be + the
distance from (x,y) to I (t), such that the positive sign is
in the direction of positive cp (i.e., liquid) and vice versa.
We define s (x,y, t) as a measure of arc length from some
fixed point so that (r, s) is a local coordinate system. The
interface I (t) may be described as the set of points at
which (x,y, t) vanishes. Furthermore, in a neighborhood
of I one has'
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Note that the terms on the right-hand side of (4.5) and
(4.6) may be discontinuous at r =0 but are smooth for
r %0.

By "stretching out" the variable r and defining a new
variable

P„+f (P)+2e U e—ar, P, +eP, hr

+e (~Vs~ P„+bsP, a—P, —as, g, )=0 . (4.19)

The inner expansion is obtained by matching formal
orders in (4.18) and (4.19) as follows: For 0(1),

z =r jei (4.9) U =0
ZZ 7 (4.20)

we write the inner expansion

u (x,y, t, e, ) =—U(z, s, t, e, )

=U (z, s, t)+e, U'(z, s, t)+ (4.10)

P„+f(P )=0 . (4.21)

The solution to (4.20) is U =az+b. The matching con-
dition used in Ref. 17 implies [see Eq. (A10) in the Ap-
pendix]

p(x, y, t, e, }:P(z,—s, t, e, ) U'(+, t) =u'(r', t) . (4.22)

=P (z, s, t)+e, U'(z, s, t)+ . (4.11) This can only be satisfied if a =0; otherwise u would be
unbounded at the interface. Hence, we conclude that

The notation' f ~ r means the limiting value off as I is

approached from r )0 or r (0, respectively.
The outer expansion. We obtain a sequence of equa-

tions (for r&0) by substituting the expansions (4.5)—(4.8)
into (4.2) and (4.3), as follows: For 0(1),

U =b, (4.23)

where b may depend on t or s but not on z. Using the
same matching condition again, we have (for both Dir-
ichlet and Neumann conditions on 811)

ut + tpt =Kobuo l o (4.12) y'(+, t) =q'(r', t) =+1 . (4.24)

f(q )=0,
for 0(e, ),

(4.13) By definition of the interface (2.5), one has P(O, t)=0 so
that P (O, t)=0 (a contradiction would result otherwise).
Hence, P (z)—:g(z) is the unique solution of

utl+ —ftl =KB u 1 (4.14) P"(z)+f (g) =0, P(+ ~ ) =+1, g(0) =0 . (4.25)

f'(qPhp'+2u =0,
and for 0 (e, ),

(4.15) The 0 (e, ) balance in (4.18) implies

l I
(4.26)

2 l 2ut2+ 0 2t =KB ut2 (4.16) since U, =0 by (4.23). Integrating (4.26), one obtains

aV' ~m'=f'(V')V '+ ,'f"(V')(m')'+-2u'- (4.17) KU,' = r, P(z)+c, (s, t) .—o (4.27)

The 0(1) equations imply the following. Equation
(4.13) has solutions +1 and 0. Note that this is true for
both Dirichlet of Neumann boundary conditions. Hence,
for r&0, i.e., in the liquid or solid, Eq. (4.12) reduces to
the heat equation (1.3). This is the first of three objec-
tives.

The inner expansion Using the (r. ,s) coordinate system
one may write the Laplacian as

lim U,'(z, t) =u„( I +, t) .
Z~+ oo

(4.28)

Noting that the boundary conditions (4.25) at +~ used
in (4.27) imply together with (4.28), the interface condi-
tion

Using the matching condition' [see Eq. (A12) in the Ap-
pendix] and differentiating with respect to z, one obtains

Au =u„„+b,ru„+~Vs~ u„+casu,
l oKu„~r =+ r, +e, (s, t) . — (4.29)

and the time derivative u, as u, + r, u, +st g, . Scaling the
r variable by use of the Eq. (4.9},one may write (4.2) and
(4.3) as

KU„+e r, U, — r, P, +K—hrU, —l
K [u, ]„=—lv (4.30)

Since the normal velocity v (dropping the subscript) is
given by —r„we may write r, = —v in (4.29). Subtract-
ing (4.29) with the minus sign from (4.29) with the plus
sign, one has the latent heat condition to lowest order as

eU, +s, U, +—P, +.—s, P, —

+K(~Vs~ U„+bsU, } =0, (4.18)

Having shown that the heat equation (1.3) and the la-
tent heat condition (1.4) both arise as the lowest-order
terms we now pursue the evaluation of the temperature at
the interface.

The 0 (e& ) terms for (4.19) are (recalling the sign of v )
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LP =f„+f'(P )f'= 2—U a—v f'(z) —a g'(z) . (4.31)

Since P' is a solution (and simple eigenvalue) to LP'=0
(with P' and t/i' vanishing at + oo ) one has the solvability
condition

f g'(z)[ 2U— av—f'(z) Ir P—'(z)]dz =0 . (4.32)

Recalling that U must be constant in z [by (4.23)], one
has then

o I ou, +—g, =%au (5.1)

the alternative modified Stefan model [(1.3), (1.4), and
(1.8)].

We verify this by using the same formalism as in Sec.
IV. We then have the following for the outer expansion
and the inner expansion.

The outer expansion. For 0(1),

4U =( —av —K )f [q'(z))'dz .

The first matching condition applies again so that

(4.33)
f(y )=0,

for 0(e, ),

(5.2)

uo(ro, t) = (XU K
0 0

(4.34)

uf +—
tpg =Kobu

f'(qr )qr'+2u =0,
(5.3)

(5.4)

0= Z dZ

We verify that o as defined above agrees with the
definition (3.7). Note that the free energy PI qr I which
leads to (4.3) in the form rq&, =59'/5y is [with
G'(q )—:4g(y)]

for 0(e, ),

2u;+ —~—Khu-,

b,qP=f'(—y )tp + —,'f"(qP-)(y'} +2u' .

(5.5)

(5.6)

2 1
V[y] = f dx (Vy) + G(y) —2uq&, (4.35)

0 2 4a

We see that the outer expansion is identical to Sec. IV
up through 0(e, ).

The inner expansion For 0. (1),

and the integration trick used in (3.8) leads to

p2
(g„)'= G(y) .

2 " 4a
(4.36}

U =0
ZZ

0.', +f(4")=o
(5.7)

(5.8)

Let 0, ' denote that portion of 0 which is within 5 =e~

(0(p (1)of the interface. Writing Vp in the (r, s) coor-
dinates, and then transforming to z and utilizing (4.36),
one obtains a local version of (4.35) near the interface,

0
2

+e,O(1)
dzA ~ zen'

—2u [rp +e,q)'+0(e, )] (4.37)

where An. is the area of Q' and the 0(1) terms involve
derivatives of qP with respect to z and s. Note that qP=g
is symmetric, Bu /Bz is 0 ( e, ) and that the integration of
y, can be extended to ( —~, + ~ ) with an error of less
than 0(ei}. Using (4.37) in a local interpretation of (3.7)
(i.e., using 0 ) one finds the surface tension o is indeed
given by the second equation in (4.34). Similarly, the en-
tropy difference remains 4 using (3.11) with (4.35).
Hence, the outer problem at the 0(1) level is determined
completely by Eqs. (1.3}, (4.30), and (4.34), so that Propo-
sition 4.1 has been verified.

V. THE ALTERNATIVE MODIFIED STEFAN LIMIT

We consider the same basic limit as in the previous sec-
tion but allow e to approach zero in an arbitrary way.
Physically this means that the (dimensionless) relaxation
time r is small in comparison with g in (2.1) and (2.2).

Proposition 5.1. In the limit g, , aa0 with ga
fixed, there exists a formal asymptotic solution of the
phase-field model [(2.1) and (2.2)] which is governed by

for 0(e, ),

o oZV,', r,'V,' r,'y—,' rex—rV—0=0—, (5.9)

L 0' =0",.+f'(4')—4' = —2U' —'0' (5.10)

The analysis of the 0(1) outer expansion leads to the
same conclusions as in Sec. IV, i.e., y is +1 or 0, and u

satisfied the heat equation (1.3). The 0(1) inner expan-
sion proceeds similarly and one obtains, again,

U =b (b independent of z) .

Since the matching condition

P'(+, t)=qP(I', t) =+1

(5.1 1)

(5.12)

0 0
u (I +,t)= cr —= f [P'(z)]'dz . (5.13)

This completes the argument for Proposition 5.1.

and the 0(l) inner balance (5.8) are identical, it follows
that P (z) = f(z) where f is the unique solution to (4.25).

Noting that the 0 (e& ) inner balance equation (5.9) is
identical to (4.26) (since U, =0 again) and that the
matching relation (4.28) is valid, one finds that the latent
heat condition (4.30) remains valid.

There remains only the evaluation of the U term in
(5.11). Since P, (z)=P'(z) solves Lg'=0, P' must be or-
thogonal to the inhomogeneous term in (5.10) which now
differs from (4.31). The first matching condition still ap-
plies and one obtains the result
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VI. THE CLASSICAL STEFAN LIMIT

The calculations of Sec. III suggest the following.
Proposition 6.1. In the limit g, a, ga '~ ~0, there ex-

ists a formal asymptotic solution of the phase-field model
[(2.1) and (2.2)] which is governed by the classical Stefan
model [(1.3), (1.4), and (1.5)]. We also note that there is
more flexibility in the scaling of g and a within this limit
since the same 0(1) condition at the interface can be ex-
pected when ga '~ =@a ' (which is proportional to the
surface tension) is of any order smaller than 0(l). We
choose a particular scaling in order to make the calcula-
tions explicit (in one parameter) and easily manageable in
other calculations. We let

KU„+e' r—, U, — r—,P, +KB rU,
I

—e U, + U, s, + —P, + —P, s, +K(U„iVsi

P„+f (P), +2K U F(ar—, g, +br/, )

+U bs) =0,
(6.12)

(6.13)+F ( ~Vs~ P„+As', —aP, —aP, s, )=0 .

This yields the inner expansion: For 0(1),

a=fixed, a =(co, (~0 . (6.1) U,, =O, (6.14)

Multiplying (2.2) by g and setting F =g we may rewrite
the system (2.1) and (2.2) as

0,', +f (4'') =0

for 0(e),

(6.15)

l
u~+ yr =J( hu,

aF p, =F b,g+f(y)+2uF

(6.2)

(6.3)

U,', =0,
L4"=0,', +f'(4')4'=0

and for 0(F ),

(6.16)

(6.17)

where f (y)=cog (qr). We use the same outer expansion
(4.5)—(4.8) now in F, and an inner expansion similar to
(4.10), (4.11) except that in this case, the "stretched vari-
able" z is defined by

U;, =0,
LP =P;, +f'(P )P = f"(P )(P—') l2 —2U

=0.

(6.18)

(6.19)

z =r/F (6.4)

o ~ ou, + —y, =Kobu (6.5)

In general, the matching relations for this case differ from
the previous' due to the cubic in (6.4). However, a sim-
ple generalization of these relations is derived in the Ap-
pendix.

By formally equating powers of e, one obtains the outer
expansion: For 0(l),

U =b (b independent of z) . (6.20)

Since Eq. (6.15) is identical to (4.21), the first matching
relation is unchanged, leading to the same boundary con-
ditions, one concludes that P (z) =g(z) defined by (4.25).

Next, we proceed to evaluate the constant b. Since y
and g' are constant (for r&0) and one has

We note that the first matching condition used in (4.22)
remains valid in this scaling also, so that (6.14) once
again has the solution

f (qP) =0,

and for 0(F),

(6.6)
lim qr (r, s, t) =0,p

o+ Br

lim tp'(z, s, t) =0 .
(6.21)

ut + Ipt K Laku 7
(6.7)

(6.8)

Applying the second matching relation (All), which
differs from the previous version, one has

(6.22)

The 0(1) balance is the same as in Sec. IV, so that one
obtains the heat equation (1.3) in each region and qP is
+1 or 0. In the 0 (e') balance above one obtains

Thus, Eq. (6.17) with boundary condition (6.22) has the
unique (symmetric) solution

q'=0,
u,'=Eau' .

Using the coordinate system (z, s) we write

U(z, s, t, F)—= u ( yx, t, e),
P(z, s, t, F)=qr(x, y, t, F),

(6.9)

(6.10)

(6.11)

(6.23)

To proceed further, we study the 0 (F ) equation
(6.19). Since g' solves the homogeneous equation (6.17)
one obtains the solvability condition for (6.19) as

so that Eqs. (6.2) and (6.3) are transformed into Noting that f,f" are odd while f', g' are even, the first



5894 G. CAGINALP 39

term vanishes, leading to the result

0= 2b 'z dz=4b . (6.24)

Au =0 in Q],Q2,
l[Vu]+ = ——v on I

K

(7.1)

(7.2)

Using (6.20) and the first matching relation (4.22), one
has CXU K o. on I (7.3)

u Ir =0 (6.25)

Finally, we need to obtain the latent heat condition.
One can do this by proceeding to third order in e, since
the lr, /2 term arises as an e term in (6.12). We take the
following alternative approach which is more illuminat-
ing and less tedious. If the asymptotic methods are valid,
then there exists u and p (obtained from the inner and
outer expansions) which satisfies

(6.26)

where (u, y) is the true solution which we know
(rigorously) exists. The function g must be g (to this or-
der) since it satisfies these requirements on both the inner
and the outer regions.

Using the (r, s) moving coordinate system, the Eq. (2.1)
for (u, g) can be written as

c 2
2

6'h ut+ gt =Au (7.4)

subject to suitable initial and boundary conditions, e.g. ,
(1.6) and (1.7). Here u is the pressure instead of tempera-
ture and the other physical constants l, K, a have a
different meaning, while o. is the interfacial tension be-
tween the fluids. We consider the two cases, a&0 and
(z =0.

Proposition 7 1 . I.n the formal limit (~0 with
a =g c, , K—:g, 1—:g c2, and a, c, fixed, there ex-
ists a formal asymptotic solution of the phase-field model
[(2.1), (2.2)] which is governed by the Hele-Shaw model
[(7.1)—(7.3)]. Moreover, if a~0 also, then the same
statement applies with a =0 in (7.3).

Using the parameter et, =g we rewrite (2. 1) and (2.2)
as

l
u( +u„rt + u st + ( gt +g„r( +g st )s t an't A =et btp+f (tp)+2uet, , (7.5)

=K(u„„+u„IVsI +u„Ar+u, hs) . (6.27)

From the information [(6.20) and (6.24)) about the
inner solution, we know that

5
lim u(r, s, t)=0, lim f Iu, (r, s, t)Idt =0

r ~0+ 5~0 —6

c 2
2

y, =Au (7.6)

with f =g. Using the same formalism as in Sec. IV, we
have the outer expansion: For O(1),

and similarly for the s derivatives. If we let 6=K~ for any

p H (0,1) then integrating (6.27) in r one obtains

f(g )=0, (7.7)

Kf u„„dr= r, f P„dr . —
—5 2 —5

Note that (6.27) also implies directly that

Ku „„= r, g„+O(—1 ) = r, —+0 ( 1 ),I 0 l, c'
E'

(6.29)

(6.30)

C
2
2

u, + (p,'=Au',

f'(cp )y'+2u =0,
and for 0 (et, ),

(7.&)

(7.9)

for some cpER+, i.e. , that u, must have a jump in the
limit as F approaches zero. From (6.29) and the antisym-
metry of ij'j one has

c 2

u, + y-, —~u

f '(qP)qr +2u ' = —
—,
' f-"(qP)(g')

(7.10)

Ku„I s=lr g(5)+o(1)=—lv +o(1) . (6.31) +ay, —
Ac@ (7.1 1)

Ku I+= —lv on I, i e. , r=0.
This completes the analysis of the Stefan limit.

(6.32)

In terms of the outer expansion, then, one has the latent
heat condition,

Equations (7.4) and (7.5) can be rewritten in the (z, s)
[z:—r let, analogously with (4.9)] moving coordinate sys-
tem and inner variables as

U„+eh( c2r, g, +KbrU, )—

—eq rt U, + P, + P, s, +(U„IVsI + U, bs)h t z 2 ~ 2 s

VII. HELE-SHAW —TYPE PROBLEMS +eq(U, +U, s, )=0, (7.12)

In studying equations that approximate the pressure in
a system containing two immiscible fluids, one may use
the following system of equations:

P„+f (P)+2eU char, P,

+Fang,

br—
+et, (Q„ I

Vs
I +P, h, —aP, aP, s, ) =0 . —(7.13)
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U =0
zz (7.14)

Matching formal orders in (7.12) and (7.13) we have the
inner expansion: For O(1),

The role of anisotropy has also been discussed in other
approaches to solidification and pattern development (see
Refs. 24 —26).

P,,+f(P )=0,
and for 0 (et, ),

C
2

U,', — r, P, +br U, =0,

P,', +f'(P )P'+2U ar, (g—+dr P, =0 .

(7.15)

(7.16)

(7.17)
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APPENDIX: MATCHING RELATIONS FOR INTERNAL
LAYERS OF THICKNESS E"

hu =0 (r&0) . (7.18)

The inner balance has the same terms as in the modified
Stefan model (Sec. IV) and so

The O(1) outer expansion has solutions qP=+I or 0
and

We apply standard asymptotic theory to an expansion
of an arbitrary function w (t,x, e) in powers of e but with
layers of width e" (k )2). This is a minor generalization
of the case' in which the layers are also of width e. We
let Y(t, e) represent the value of x for which w =0, and
set

x —Y
[defined by (4.25)],

U = b (independent of z) .

The 0 (ei, ) inner balance can then be written as

(7.19)
In addition to the outer expansion

w(x, t, e)=w (x, t)+ew'(x, t)+e w (x, t)+-
2

C2
U 1 oqzz (7.20) one defines the inner variable Wby

(A2)

Since (7.20) is identical to (4.26) and the first matching re-
lation (4.22) also applies, one obtains (4.30) in an identical
way, i.e.,

(7.21)

The temperature at the interface u ir is derived from

the second matching relation and (7.15) and (7.17) in the
same manner as in Sec. IV so that

W(z, t, e) —= w(x, t, e),
and assume the expansions

W(z, t, e) = W'(z, t)+eW'(z, t)+
Y(t, e)= Y (t)+eY'(t)+

Using (Al) and (A3) one has the basic relation

W(z, t, e) =w( Y(t, e)+ e "z, t, e) .

(A3)

(A4)

(A5)

u'i„= 0 0

f [g'(z)] dz
N

W(z, t, e)= g e"P„(z,t)+e 'R~, (A7)

Expanding the right-hand side in a series in e as in Ref.
17 but noting the e rather than e in (A6), one obtains

AV K0 0
(7.22)

Hence, (7.18), (7.21), and (7.22) complete the verification
of Proposition 7.1 for a) 0. In order to obtain (7.3) in
the more common form with a=0, one can implement
the same idea as in Sec. V combined with the scaling of g
and a as above.

For simplicity, we have considered the phase-field
equations without anisotropy. As discussed in Ref. 11,
microscopic anisotropy modifies the phase-field equa-
tions. In particular, the temperature relation at the inter-
face is diA'erent. The methods of this paper can be ap-
plied in the same way. For x -y anisotropy in two dimen-
sions, for example, the result of Proposition 4.1 is then
valid with

n=0

P„(z,t)= w(Y(t, e)+e z, t, e)~,
1

n ~ —
n/ g n

(A8)

=w (Y+(t),t), (A9)

where + denoted the approach from either side.
The first two matching conditions are then

where RN is identical to PN except that n is replaced by
N + 1 and R~ is evaluated at some e H [0,e].

The matching is accomplished in the usual way by let-
ting t. ~0 and z ~0 in an arbitrary way provided
ez'"+" ~0. Since it follows that e z ~0 one has, e.g. ,

Po(t, z)=w ( Y (t)+eY (t)+e Y-(t)+ . e z, t)~, 0

bs [u (t, x) ]= —(cr+ tr" )tt(t, x), (7.23)
lim W (z, t)=w (Y+,t), (A10)

where the primes denote derivatives with respect to
orientation angle. The velocity terms in Secs. IV and VII
are also altered with an angle-dependent term.

lim W'(z, t)=w (Y+(t), t)Y'(t)+w'(Y+(t), t) .
z~+ oo

(A 1 1)
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Hence, the first matching condition is unchanged for
k & 1, while the higher orders diA'er. The second match-
ing condition for k = 1 was derived' as

lim
W'(z, t) —

{w '( Y+, t)+ [z + Y'(t) ]w„( Yo+, t) I

=0. (A12)
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