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Molecular-dynamics simulation results on soft-sphere fluids are presented that show the systemat-
ic changes in the equation of state, pair distribution function, self-diffusion coefficient, and various
time-correlation functions with density at constant temperature in the metastable density region
beyond the normal liquid range. At a characteristic density in this region, a decrease in the
compressibility is observed along with a change in the density variation of the self-diffusion
coefficient and the onset of a slowly decaying component in the density-correlation function. We in-
terpret these behaviors as manifestations of a transition in which the particle dynamics changes its
basic character, from collisions among particles undergoing continuous fluidlike displacements to
barrier hopping of individual particles trapped in local-potential-energy minima. It is also conclud-
ed that this transition is distinct from the glass transition that occurs at a higher density.

I. INTRODUCTION

When fluids are rapidly cooled or compressed beyond
the freezing point, the system can go into a metastable
state characterized by long structural relaxation times.
Information about atomic motions in such states on the
molecular length and frequency scales is of interest in the
study of supercooled liquids and glassy systems. In par-
ticular, detailed knowledge of how these motions affect
the kinetics of relaxation and transport phenomena is
essential to understanding the nature of the fluid-to-glass
transition.'~*

Molecular-dynamics simulation is a well-established
method of studying the details of atomic motions in
fluids.>® Using various model potentials for the intera-
tomic interactions, simulations of supercooled and
compressed fluids have provided information about ther-
modynamic and structural properties, transport
coefficient data, and behavior of time-correlation func-
tions in metastable systems.””!” Further interest has
stemmed from recent theoretical developments in self-
consistent mode-coupling approximations, which ap-
peared to have uncovered a mechanism for an ergodic-
nonergodic transition which in turn may serve as a model
for the liquid-to-glass transition.>*'8-2% Since simulation
can be performed using the potential function for which
the mode-coupling calculations are tractable, a test of the
theory in this respect is more direct by simulation than
by experiments.

In this paper we describe a molecular-dynamics study
in which a fluid system of particles interacting through
purely repulsive forces described by a truncated
Lennard-Jones potential is compressed to various densi-
ties at constant temperature. The purpose of our work is
to determine the systematic variations in the structural
and dynamical properties with density in the metastable
region of density characteristic of supercooled liquids.
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We believe that the present results, in contrast to simula-
tions of quenching at constant pressure, are more amen-
able to physical interpretation and theoretical analysis
since the effects observed can be attributed entirely to
density changes.

When the fluid is compressed into the metastable den-
sity region, we observe from the variation of pressure a
decrease in the compressibility factor which suggests the
presense of a structural transition. Around the transition
density the pair distribution function shows no significant
changes and the self-diffusion coefficient is found to be
still quite appreciable. In terms of time-correlation func-
tions, there is the appearance of a slowly decaying mode
in the density-correlation function and similarly in the
Van Hove self-correlation function; on the other hand,
the transverse-current correlation and the velocity-
autocorrelation functions show the expected behavior of
shear wave and damped vibrational modes, respectively,
that are characteristic of dense fluids.

We regard the present results on equation of state,
diffusion coefficient, and density-correlation functions as
direct evidence of a transition which is dynamical in ori-
gin. Our interpretation is that the observed behaviors are
manifestations of a change in the basic character of the
many-body dynamics, from continuous collisions between
particles with reduced but still liquid-like mobility to
hopping motions of individual particles confined by local
potential barriers. This change occurs in the metastable
density region where the system properties are clearly
distinct from those characteristic of glassy states. Its ex-
istence has implications concerning the feedback mecha-
nism for particle localization treated in recent mode-
coupling theory analyses.?6~28

In Sec. II we describe the simulation model which is
based on the Lennard-Jones interaction truncated at its
minimum and the computational details of the simulation
at constant volume and temperature. In Sec. III the re-
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sults obtained at various densities along two isotherms
are discussed in order: equation of state, radial distribu-
tion functions, mean-squared displacements and self-
diffusion coefficients, density-and Van Hove self-
correlation functions, velocity-autocorrelation functions,
and the transverse-current correlations. In Sec. IV we
conclude that our results provide evidence of a dynamical
transition which, in the view of other recent finding, ap-
pears to be a general phenomenon of supercooled liquids,
and we also discuss its implications concerning the self-
consistent mode-coupling theories of dense fluids.

II. ISOTHERMAL COMPRESSION

We employed a standard molecular-dynamics tech-
nique for simulating fluid systems in the (N, V,E) ensem-
ble. A system of N=500 particles interacting through
the Lennard-Jones potential

V(r)=4e[(a /r)2— (o /r)°] (1

is used with periodic boundary conditions. For computa-
tional savings the potential is truncated at r=2'"%c, so
the particles interact only through purely repulsive
forces. The particle trajectories are calculated using the
Gear fifth-order predictor-corrector algorithm. To
equilibrate at a given density-temperature state, the sys-
tem volume is kept constant and the temperature is con-
trolled by rescaling the particle velocities at every time
step. Equilibrium is considered to be achieved if the tem-
perature does not drift when rescaling is turned off. Typ-
ically, a run extends over 10* time steps for equilibration,
followed by 2X 10* steps for generating the trajectories
for property calculations. All the simulation results will
be reported in dimensionless units, energy is measured in
¢ length in o, and time in 7=(mo?/¢)!’%. The time-step
in this unit is Az =0.0057. We also define the dimension-
less density n*=no?, pressure p* =po3 /g, and tempera-
ture T*=kyT /€.

We have carried out two series of simulations, one at

*=1.3 and the other at 7* =0.6, with densities varying
from n*=0.884 (triple point density of a Lennard-Jones
fluid) and below, up to n *=1.24, which is 0.806 of hexag-
onal close packing. The higher temperature was initially
chosen for the sake of comparison with mode-coupling-
theory results appropriate to a hard-sphere system.
However, it was found that the thermal motions contrib-
uted significantly to the onset of crystallization as the
fluid was compressed; consequently a lowered tempera-
ture was chosen and most of the data reported here were
obtained at T*=0.6.

At each temperature the series was initiated at the
lowest density and compression was carried out by scal-
ing all the particle positions by an appropriate factor.?
Normally the system configuration obtained at the end of
a previous run was used for the next-higher-density run;
however, at high compression, nucleation set in frequent-
ly and to avoid this it was necessary to use as a starting
configuration that which was obtained at a density
several steps lower. The criterion used for detecting nu-
cleation was the presence of the second-nearest-neighbor
peak in the radial distribution function g(r). Recently,
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Honeycutt and Anderson® have found that the critical
nucleus may be already formed before the second-
neighbor peak appears in g (7). It is possible that some of
the runs reported here would show crystallization behav-
ior if the simulations had continued further. At least for
the duration of the simulation we believe the fluids were
in metastable states. At T*=0.6 a few runs also were
made by expanding the fluid. These results help to estab-
lish the reproducibility of the compression runs.

III. SIMULATION RESULTS

We begin with the equation-of-state results to delineate
the density region where a transition appears to take
place. Figure 1 shows the variation of pressure, calculat-
ed without the long-range correction, with density at the
two temperatures. It can be seen that p* is essentially
piece-wise linear in n*; with increasing n * there is a gra-
dual transition to a larger value of dp* /dn*. At T*=0.6
[Fig. 1(b)] this decrease in compressibility occurs at
n*=1.02, the intersection of the two asymptotes. We
will refer to this density as n.*, the subscript x denoting a
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FIG. 1. Pressure-density variation along an isotherm; (a)

*=1.3 and (b) T*=0.6. Intersection of asymptotes can be
used to define a transition density. Closed circles in (a) are ob-
tained from simulations where nucleation is believed to have set
in.
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crossover transition.® For T*=1.3, n* ~1.01 [Fig. 1(a)].
In a simulation study of isobarically supercooled
Lennard-Jones fluids, Fox and Anderson!! found linear
variation of n* with T* in two temperature regions, and
a “glass transition” point was defined as the intersection
of extrapolations from the linear regimes. Among the
transition points thus obtained, a value of n*=1.03 was
found at T*=0.6 and p*=10. Although our equation-
of-state data indicate a transition around n*=1.02, we
will refrain from calling it a glass transition. As we will
see below, the diffusivity and various time-correlation
functions are not what one would expect of a glass.

It should be noted that the system pressure is a sensi-
tive indicator of crystallization during the simulation.
The onset of nucleation gives rise to a significant drop in
pressure, as can be seen in Fig. 1.

Figure 2 shows the g(r) results for several densities.
One sees the expected evolution from a typical liquid
structure at the triple-point density n*=0.884 to a distri-
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FIG. 2. Change in the radial distribution function with increasing density along an isotherm, (a)
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bution with a double peak at the position of second-
nearest neighbor in the liquid, the characteristic signa-
ture of dense random packing.’! In Fig. 2(b) the g(r) a
n*=1.02 shows only a gradual flattening at the top of the
second peak, otherwise there is nothing to correlate with
the compressibility change in Fig. 1. In our g(r) results
the absence of a peak at r*~2, the position of second-
nearest neighbor in an fcc lattice, is taken to be evidence
that nucleation has not intervened. This criterion corre-
lates quite well with the pressure drop. Thus, when the
g (r) shows this characteristic feature [n*=1.17 and 1.18
in Fig. 2(a)], one finds also a pressure decrease in Fig. 1.
Figure 3 shows the mean-squared displacement func-
tion
(Ar¥(e) ——-Z[r (£)—r;(0) 1%, (2)

where r;(¢) is the position of particle j at time ¢ If

n (b)

3.0 T*=0.6

n*=0.884

=1.3 and (b) T*=0.6. In (a)

nucleation is believed to have set in at the two highest densities. The arrows indicate the positions of the first five nearest neighbors

in a fcc lattice.
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diffusive motion is occuring on the time scale of simula-
tion, (Ar?) will exhibit a linear time variation with a
slope equal to 6D, D being the self-diffusion coefficient.
This behavior is commonly observed in simulations of
simple liquids where D typically has a value of 1077
cm?/s. Using the potential parameters appropriate to ar-
gon this would correspond to the dimensionless
diffusivity D*=D7/02=0.0164. In the present highly
compressed fluids, atomic mobility is expected to be
greatly restricted. As can be seen in Fig. 3, within the in-
terval of simulation, a linear temporal variation charac-
teristic of diffusion is quite clearly obtained for n* <0.98.
For the next group densities [Fig. 3(b)] the temporal be-
havior is seen to be increasingly erratic. Also the ob-
served magnitude of the root-mean-squared displacement
becomes only comparable or less than the interatomic
separation at these densities. One may regard these as in-
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dicators of the onset of metastability. Although we will
continue to extract a value for the self-diffusion
coefficient for these densities, we should keep in mind
that the results are less well determined. At n*=1.24
[Fig. 3(c)] (Ar?) is reduced by another order of magni-
tude. One can still observe an increase, but it is no longer
justified to derive D from this behavior.

Figure 4 shows how the diffusion coefficients obtained
from Fig. 3 vary with density. The data follow an essen-
tially linear variation up to about n*=0.98, then gradu-
ally change over to a much slower decrease. If one extra-
polates linearly to zero diffusivity in the low-compression
region one obtains a value of n*=1.01, about the same
density where a change in compressibility is observed (cf.
Fig. 1). The value of D at n* =1.02 makes it seem unlike-
ly that the fluid is in any state of significant structural
arrest. Previous results obtained for hard-sphere fluids*?
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FIG. 3. Time variation of mean-squared displacement at various densities with 7*=0.6: (a) n*=0.884 (open circles), 0.92
(squares), 0.95 (diamonds), 0.98 (closed circles); (b) n*=1.02 (open circles), 1.06 (squares), 1.10 (diamonds); and (c) n*=1.24.
Straight lines indicate an attempt to extract a self-diffusion coefficient D from the slope.
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FIG. 4. Variation of diffusivity D*=Dr/0? with density n*
at T*=0.6.

in a similar density region are found to follow an ex-
ponential behavior such as that prescribed by the Doolit-
tle expression D*(V)=Dgexp[—A/(V —V,)]. It ap-
pears that a similar fit could also describe our data, al-
though we feel that there are not enough points here to
justify such a fit. Notice that according to the Doolittle
expression, the diffusivity vanishes at a volume ¥, and
the fit to the hard-sphere data gave a density n* ~1.24
corresponding to V.

On the basis of the diffusion data one can say that in
the crossover region around n, atomic diffusivity in the
compressed fluid is sufficiently appreciable that it is inap-
propriate to associate the changes that occur with a glass
transition. The fact that D* goes over to an exponential
type of volume variation does suggest the onset of a
different type of dynamical process, possibly jump
motions in the presence of an activation barrier as op-
posed to continuous displacements mixed with collisions
with near neighbors.

In view of the foregoing data, it is interesting to see if
the density-correlation function

1 .
F(k,t)=7v—2(exp[zk-[r,-(t)—rj(O)]}) A3)
LJ
reveals any further information about the region of meta-
stable states. Since F(k,t) should depend only on the
magnitude of k, it is necessary to evaluate Eq. (3) for a
particular k vector and then average the result over a
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FIG. 5. Temporal decay of density fluctuations at wave num-

ber k=2 A ~! obtained from simulations at various densities
and T*=0.6. Time unit 7 is defined as (mo?/¢)'"2.

number of equivalent k vectors. We have used k vectors
in different directions having the same magnitude, and to
enhance the statistics we also take other k vectors with
approximately the same (to within about 10%) magni-
tude. The results for 7*=0.6 and k=2 A~ ! are shown
in Fig. 5. In the interval in which we are able to observe
the fluctuations, the decay of the density-correlation
function extends to longer times as compression is in-
creased. Around n*~1.02 there is the appearance of a
slowly decaying component, possibly a behavior signify-
ing the onset of structural arrest. At high compressions
such as n* >1.10 the decomposition of F(k,?) into a fast
decaying and a slow decaying component becomes quite
evident; also the former appears to be insensitive to densi-
ty changes. Given the limited time interval of the present
simulations, one can only speculate about the behavior of
F(k,t) at longer times. In particular, we cannot say
whether F(k,t) follows a stretched exponential decay, as
has been predicted by mode-coupling theory?’ and ob-

F(k.1)

0 12 24 36 48
T

FIG. 6. Temporal decay of density fluctuations at reduced
wave number ko =7.0 calculated by the self-consistent mode-
coupling approximation for T7*=0.6 at densities n*=1.099
(A4), 1.094 (B), 1.088 (C), 1.072 (D), 1.043 (E) (Ref. 24). Curve
F is for the triple point, n*=0.884 and T*=0.722.
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served by neutron scattering.?

Since the density-correlation function is the central
quantity in the formulation of self-consistent mode-
coupling theory,'®!? a direct comparison of calculation
and simulation results on F(k,t) is clearly desirable. The
numerical calculations of Bengtzelius** are shown in Fig.
6, which is in the same form as Fig. 5. Although the den-
sity values are not the same from one figure to another,
one should make note of the similarity between the
theory and the simulation; in particular, the separation of
the fast and slowly decaying components is seen to occur
at about the same time and the same value of the correla-
tion function. The main discrepancy revealed in this
comparison lies in the high-compression regime. The
highest density curve in Fig. 5 is at n* =1.24, yet its time
decay is intermediate to the behavior of the mode-
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coupling results at n*=1.094 and 1.099. We interpret
the discrepancy to arise at least partly from the neglect of
the coupling to current modes in the original version of
the formulation.?* Based on a simplified calculation?® one
knows that the time decay of F(k,t) is more rapid when
the current coupling is taken into account; this is also
physically reasonable since additional coupling should re-
sult in greater dissipation. Thus we conclude that mode-
coupling calculations with only coupling to density
modes will overestimate the effect of structural arrest,
and that numerical results derived from a more extended
treatment?®?’ will be in closer agreement with simula-
tion.

Since freezing affects both collective and single-particle
modes of motion, it is of interest to see how the Van
Hove self-correlation function
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FIG. 7. Comparison of the temporal decays of the self-correlation function F,(k,?) (solid curves) and the density-correlation func-

tion F(k,t) (circles) at k =2 A ~'and T*=0.6. (a) n*=0.92, (b) n

*=0.98,(c) n*=1.02, (d) n*=1.06, and (e) n *=1.10.
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F (k)= 5 (explik-[r,()—1,(0)]}) )
J

behaves. Figure 7 shows a comparison of F(k,t) and
F.(k,t). So far as the slowly decaying component is con-
cerned, there is not much difference between the two
correlation functions. The most striking difference is
seen in the intermediate time region where the fluctua-
tions involving the collective modes decay at a slower
rate compared to fluctuations involving only single-
particle motions. This difference will show up in the dy-
namic structure factors S(k,w) and S,(k,w) in the fre-
quency domain accessible by neutron scattering. Based
on our results one would expect that the width of the
quasielastic peak would be greater for incoherent scatter-
ing than for coherent scattering.

Thus far we have considered only density fluctuations
at wavelengths corresponding to the diffraction max-
imum. This choice of k value is not meant to imply that
the effects of freezing or structural arrest can be observed
only at certain wavelengths. In Fig. 8 we show the self-
correlation function at three different k values. One sees
that the intensity of fluctuations is more strongly at-
tenuated the higher the k value, otherwise there is noth-
ing special in the k dependence of the self-correlation
function. In F(k,t) one can expect the onset of hydro-
dynamic behavior at k£ =1 A"’; this should manifest it-
self mostly in the intermediate time region 7<207. We
show in Fig. 9 a few typical S(k,w) at longer wave-
lengths. A heavily damped collective mode (sound
waves) can be seen in these spectra.

We next consider another single-particle property, the
velocity-autocorrelation function

<2vj(z)-vj(0)>
vi)=——u-— (5)
<2V,(O)‘V1(O)>
!

The behavior of ¥(t) for a Lennard-Jones fluid at the tri-
ple point is well known.>* Here we are interested mainly

K
O T T T
0 20 40 60
T
FIG. 8. Temporal decay of the self-correlation function

F,(k,t)at n*=1.10, T*=0.6, and different wave numbers.

in how this function varies with increasing density. At
the triple point, () decays to a negative value quite
quickly, at about ¢ =0. 17, and with a few damped oscilla-
tions it goes to zero while remaining negative. This nega-
tive correlation reflects a strong cage effect provided by
the neighboring atoms. However, the motion is not just
one of simple rattling in a fixed cavity because ¥(¢) never
becomes positive again. Figure 10(a) shows that the neg-
ative correlation is not seen at n* =0.76 because the den-
sity is not high enough. At n*=0.84 one has the typical
behavior just described. The negative value of ¥(¢) is not
as large as the full Lennard-Jones system because there
are no attractive forces in the present simulation. With
each density increase, y(t) crosses zero at slightly earlier
time and becomes more negative. The pattern holds even
at n*=1.10. It is also interesting to note that ¥(t) decays
to zero in about the same time for all the densities shown.

1.5 (6)
1.0
Sk, ®) A
0.5
0 T T T T T T T
0 5 10 15 20
T

FIG. 9. Frequency spectrum of density fluctuations S (k,w)
at k =0.3 A "', T*=0.6: (a) n*=0.95 (dashed curve) and 0.98
(solid curve) and (b) n*=1.02.
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The frequency spectrum .
flo)= fo'”cos(wt)w(t)dt (6) 067 :
shown in Fig. 10(b) reveals the distribution of vibrational ]
frequencies at each density, with the zero-frequency value )
f(w=0) being proportional to the self-diffusion
coefficient. One sees that the presence of a negative re- 4
gion in ¥(t) gives rise to a resonant mode at finite fre-
quency in f(w). At n*=1.10 the value of f(w=0) is
just about at the limit of the statistical uncertainty of the
data. It is doubtful that one can reliably extract D* from
the velocity-autocorrelation function data at densities
beyond this [It is possible that the method of measuring Tt ]
the slope of (Ar%(¢)) may be used to somewhat higher
density.] It is also of interest to comment on the shape of )
f(w) at low frequencies. The slightly “convex” appear- 0.2
ance of the distribution seems to be characteristic of an ’
amorphous structure, in contrast to the »? -like shape of J .
a typical vibrational frequency distribution of an atomic d / SNV
lattice. This feature of f(w) is discernible in neutron in- - /l N
. AN
N

elastic scattering data on metallic glasses.*’
Finally we consider the transverse-current correlation -

k=0.3A"

function
-
J(k,n=73 ([a-v,(1)][a-v;(0)] 0 4 8 12 16
~
Jj ot
Xexp{ik-[r,(t)—rj(O)]I> , (7)
where d is a unit vector perpendicular to k. It is known FIG. 11. Frequency spectrum of the transverse-current
that near the triple-point density J,(k,¢) can decay to a correlation function J,(k,w) at k =0.3 A ~!, T*=0.6, and vari-
negative value at short times, somewhat similar to the ous densities, n*=0.98 (dotted curve), 1.02 (solid curve), 1.06
velocity-autocorrelation function. Physically this reflects (dashed curve), and 1.10 (dash-dotted curve).
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FIG. 10. Velocity-autocorrelation function #(z) (a) and its frequency spectrum f(w) (b) at T*=0.6 and various densities,
n*=0.76 (dotted curve), 0.84 (solid curve), 0.95 (dashed curve), and 1.10 (dash-dotted curve).
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the propagation of shear waves at finite wavelength in a
fluid which exhibits viscoelastic behavior. Since a liquid
cannot sustain any shear deformation, there is always a
minimum value of k below which J,(k, ) will not become
negative. Figure 11 shows the frequency spectra, the
Fourier transform of Eq. (7), at k=0.3 A~!, the smallest
k value that we can reach with the present size of simula-
tion cell. The resonant mode, indicative of shear-wave
excitation, is evident at all the densities shown; its peak
position, which should be proportional to the high-
frequency shear modulus, is seen to increase slightly with
density. In the hydrodynamic limit, the zero-frequency
value of J,(k,w) is proportional to the inverse viscosity.
Thus at increasing compression, J,(k,ow=0) should show
a rapid decrease. Our data are not precise enough to en-
able a value of 7 to be extracted for n* > 1.02. This is be-
cause J,(k,t) is sufficiently noisy at long times to require
a cutoff before taking the Fourier transform, and statisti-
cal uncertainty associated with the cutoff makes it
difficult to determine J,(k,w=0) with any accuracy when
its intrinsic value is small. Another possible problem is
that our k value may not be small enough for the full be-
havior of the hydrodynamic limit to set in. In any event
we consider that the behavior of J,(k,t) is that of a visoe-
lastic fluid with nothing unusual occuring around
n*=1.02.

IV. DISCUSSION

We have studied in this paper the systematic variation
with density of equilibrium and time-correlation function
properties of fluids in the metastable region. Although a
truncated Lennard-Jones potential has been used, we be-
lieve that at these densities the results are not sensitive to
the details of the potential. Therefore, our system can be
regarded as a generic atomic field.

From the simulation results on the self-diffusion
coefficient and the long-time decay of the density-
correlation functions we conclude that a transition of
dynamical origin occurs around a density which we
called n}. Our interpretation is that these results signal a
gradual change in the fundamental character of the
dynamical interactions, from continuous collisions
among particles which still retain a certain degree of mo-
bility to hopping over barriers by particles which find
themselves being increasingly trapped in positions of lo-
cal potential minima. It is also clear from the simulation
results that this transition is distinct from the glass tran-
sition where the fluid is in a state of structural arrest with
diffusivity still many orders of magnitude lower than
those observed here.

While we have studied fluids only under compression,
the results imply that for supercooled liquids there exists
a corresponding transition at a characteristic tempera-
ture T, which is distinctly above the glass transition tem-
perature Tg.3 It is perhaps not surprising that among the
many models and data interpretations of viscous liquids
and the glass transition one finds arguments and discus-
sions which contribute to the plausibility of such a transi-
tion; for example, from the point of view’® that at low
temperatures viscous flow is dominated by potential bar-
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riers up to the point where significant fluidity sets in, a
crossover transition® would seen to be a natural conse-
quence. There now exists experimental evidence to sup-
port this picture, as well as recent simulation and theoret-
ical findings, to suggest that the crossover transition is a
general phenomenon. From an analysis of shear viscosity
data for a class of glass-forming liquids,” it is observed
that upon supercooling the temperature variation of the
viscosity above a characteristic temperature T, is notice-
ably different from its behavior at lower temperatures,
and moreover, T, is considerably greater than Tg. From
a molecular-dynamics study of local stress fluctuations in
quenched liquids, it is found that below a characteristic
temperature T, which is well above T, the shear stresses
become spatially correlated. From an analysis of spin-
glass models,* it is shown that in such systems one can
identify two transition temperatures, T, and Ty, with
T ,>Tg. At the former one has a dynamical transition
which involves the onset of barriers in the local energy
surface, and at the latter there is an equilibrium transi-
tion associated with the vanishing of the configurational
entropy.

From the standpoint of dynamical descriptions of the
liquid-to-glass transition, the extensions of the fluctuation
hydrodynamics approach?®?® and the self-consistent
mode-coupling approach?’ have both revealed a cutoff of
the mechanism underlying the ergodic-to-nonergodic
transition. As a result of including the coupling to
current fluctuations, the density-correlation function is
found to always decay to zero, although the decay rate is
greatly reduced, and in the time region accessible to
simulation there appears to be no qualitative difference in
the behavior of F(k,t).2¢

Based on our results we believe that the cutoff mecha-
nism is, in fact, an important effect, and the numerical
calculations taking this into account*® will bring the
mode-coupling theory for the density-correlation func-
tion into closer agreement with simulation results such as
those presented here. It appears that the ideal glass tran-
sition predicted by the original version of the theory'®1°
is not observed in the present study. We may also con-
clude that, since none of the mode-coupling formulations
thus far take into account dynamical processes of activat-
ed states, the transition temperature T, represents the
lower limit of applicability of these analyses. In view of
the fact that the mode-coupling-theory approach is the
only tractable quantitative description of time-correlation
functions that can be used to analyze neutron*!' and
light*? scattering experiments, further investigations of
this issue would of considerable interest.
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