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It is generally recognized that a single Rayleigh-Taylor unstable mode grows exponentially, pro-
portional to the initial amplitude, until the amplitude is about ]p to —,

' of the wavelength. The

growth then becomes nonlinear, and the mode evolves into spikes and bubbles. This paper consid-
ers how this picture of the transition to nonlinearity changes when, instead of there being a single
mode, there is a full spectrum of modes. We argue that nonlinear behavior begins whenever the
sum of modes over a specified small region of k space becomes comparable to the wavelength. In
the case of a single mode, this reduces to the usual comparison of the mode's amplitude with its
wavelength A, . But if the modal amplitudes are smooth functions of k, the modes begin to saturate
when their amplitude is comparable to A, /R times a dimensionless scale factor; here, 8 is the radius
in spherical geometry, or the length of the surface in planar geometry. Given this new notion of the
amplitude at which nonlinear saturation begins, we construct a simple model to estimate the net
perturbation resulting from a broadband initial spectrum. We assume that modes grow exponen-
tially until saturation occurs, and then the growth of the individual modes becomes linear in time.
The model predictions in two and three dimensions are compared with Read and Young's experi-
ments [Atomic Weapons Research Establishment Report No. 011/83, Aldermasten, 1983 (unpub-

lished)], and to Youngs's calculations [Physica 12D, 32 (1984)]. The experimental results are used to
set the single parameter characterizing the onset of nonlinearity. The model provides a complete
description of a weak dependence on initial amplitude. The model can be easily extended to any sit-
uation for which one can estimate single-mode growths; results are presented regarding effects on
multirnode growth of spherical geometry, ablation stabilization, and interface coupling.

I. INTRODUCTION

An interface between two fluids is unstable when a
lower-density fluid pushes against and accelerates anoth-
er fluid of higher density. This perturbation growth is
known as the Rayleigh-Taylor instability. ' Estimating
its effect is important for inertial confinement fusion
(ICF) because imploding targets generally have interfaces
that are unstable during part of the implosion. These in-
stabilities can reduce the target yield. References 3 and 4
summarize and discuss much of the work in this area. It
is generally recognized that a mode with wavelength A.

grows exponentially, proportional to its initial amplitude,
until it reaches an amplitude of about 0. 1X. Various fac-
tors are known to influence the growth during this phase,
such as ablative effects, spherical convergence, and inter-
face coupling. The other extreme —very later-time be-
havior arising from an initial condition with multiple
modes —is also becoming better characterized, mostly as
a result of the important work of Youngs and co-
workers. At this time it is not clear how the various
other influences just mentioned affect this late-time be-
havior, which has been characterized mostly for constant
acceleration, incompressible fluids, and planar geometry.

In this article, we consider the amplitude at which the
growth of a mode begins to be nonlinear, in the presence
of a full spectrum of modes. A group of modes with
nearly equal wave vectors can combine constructively

over a region of the surface, producing a net amplitude
much larger than the modes' individual amplitudes.
Thus, nonlinear saturation can begin well before the am-
plitude of the individual modes reaches 0. 1A, . In Secs. II
and III we consider arguments regarding the amplitude
at which the saturation begins in the multimode situa-
tion.

The other basic point emphasized in this article is that
the net perturbation in the multimode situation must be
estimated by summing the modes. Perhaps this is obvi-
ous, but there is a tendency among workers in the field (as
reviewed in Refs. 3 and 4) to relate the net amplitude to
the amplitude of the dominant mode. Using sums over
modes, as we do here, can give a quite different under-
standing of the relationships between modal amplitudes
and net perturbation amplitudes.

In Sec. IV we define a simple model based on these
considerations. The onset of saturation is determined
from the arguments of Sec. III. Then, once a mode
reaches saturated amplitude, it is assumed to grow linear-
ly in time. (Actually we will borrow from Crowley, a
generalized way to realize this, which can then be used
for situations other than constant acceleration. ) The net
perturbation is determined by summing over all modes.
No nonlinear mode coupling is included, except that, as
mentioned above, the onset of saturation is influenced by
the constructive interference of modes with similar wave
vectors. The model allows one to estimate the multimode
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perturbation growth for any situation in which one can
estimate the single-mode growths and initial amplitudes.

Section V presents the application of the model to vari-
ous situations of interest. First, we consider constant ac-
celeration in planar geometry. The resulting net bubble
amplitude is nearly proportional to gt times the Atwood
number, with a weak dependence on initial amplitude.
Comparison with the experiments of Read and Youngs
allows us to set the single parameter characterizing the
model. Then, we consider planar geometry in two dimen-
sions, and the effects on the multimode growth of spheri-
cal geometry, ablative stabilization, and interface cou-
pling.

Section VI contains a discussion of the model and its
limitations. In summary, the conclusion is that the mod-
el gives results close to what one would like to see for the
various situations considered. Whether the results are in
fact correct will await detailed comparison with experi-
ments or code calculations. It is clear that the model has
limitations, both in terms of the physics that has been
neglected, and in terms of its practica1 applicability, and
we discuss circumstances for which it is not expected to
be useful.

(3)

where

RI = f dQYi' (Q)R(Q) . (4)

This deviation is also determined by the quadrature sum
of all the modal amplitudes:

' 1/2

&[&1i m

Similarly, for plane geometry the interface is z(x, t),
where x is a two-dimensional vector (x,y). The variables
x and y range over (O, L). The perturbation is expanded
as

The center can be chosen to make the I = 1 modes vanish.
A useful quantity for estimating the net perturbation is
the rms deviation of R from its average R0:

1/2

f dQ[R (Q) —Ro]'

II. BASIC DEFINITIONS
z (x, t) =g zz(t)e'"

k

(7)

We are concerned with perturbations on an interface
between two materials in an imploding ICF capsule. The
most commonly considered situation is a Rayleigh-Taylor
unstable interface: a Quid of density PL pushes against
and accelerates or decelerates another fluid of higher den-
sity pH. A perturbation of wavelength A. on the interface
is unstable and, for a small amplitude perturbation with
constant acceleration, grows exponentially with growth
rate

The deviation is

f dx[z(x, t) —zo]'
L 2

' 1/2

where k has discrete allowed values (2mnIL, 2n.mIL ) for.
integers n, m. The inverse transform is

zz(t)= dxe '""z(x,t) .1

y=&gka . 2 2 1/2

k(&0)
(10)

Here, k is the wave number 2m /A, , g is the acceleration,
and cz is the Atwood number,

pa pr.a=
PH+PL

The growth of a single mode of wavelength A, is known to
slow down when the amplitude becomes comparable to
the wavelength. ' We will say that the growth begins to
slow when the amplitude is gA, , where g is in the range
0.05 —0.15. Eventually, a single mode evolves into "bub-
bles" of low-density fluid moving with constant velocity
U~ into the high-density fluid, and "spikes" of high-
density fluid moving into the low-density fluid. Even for
the multimode case, it is common to refer to the penetra-
tion of low-density fluid into the high-density fluid as the
"bubble amplitude, "and of the high-density fluid into the
low-density fluid as the "spike amplitude. " We will em-
ploy the same usage.

For a slightly perturbed spherical system, we can iden-
tify the interface at time t with a function R(Q, t),
representing the radius of the interface (from an ap-
propriate defined center) in direction Q. We will often
leave the time dependence implicit. R can be expanded
in spherical harmonics as

It is necessary to compare briefly the formalisms for
spherical and planar geometries. For ICF applications
we are interested in the former, and the applications here
will use primarily the spherical harmonic decomposition
rather than the Fourier decomposition appropriate to
planar geometry. But there are several points at which a
connection must be made.

The modes in planar and spherical geometry are best
related via the eigenvalue of the two-dimensional part of
the Laplacian operator, that is, k in planar geometry
and 1(1+1)/Ro in spherical geometry. The spherical
harmonic modes are not simple waves, and so one cannot
really define a wavelength for them. Nevertheless, we
will use the connection defined by the Laplacian eigenval-
ues to refer to the "wavelength" of the modes:

k =(2n/X) =1(1.+1)/Ro .

It is true that for I »1 and at positions on the sphere not
too near the pole, a given Y& can be approximately
represented as a superposition of planar modes whose
wave vectors point in different directions but are of mag-
nitude k. We will not have to utilize the details of this
correspondence. Furthermore, since we are concerned
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with an approximate analysis depending on l ~ 10, we
will set 1 + 1 to I in Eq. (11).

The relative normalization of the zk and R& can be as-
certained by writing o. in the same form using the two
formalisms. Assuming azimuthal symmetry and taking
into account the density of states, we can write Eq. (10) as

0~= dkk zk 2. (12)

Similarly, we rewrite Eq. (6) (for situations where 1))I)
as an integral over k =1/R, giving

cr = J dk k~R( (13)

III. ONSET OF NONLINEARITY

Given the notion of utilizing Eqs. (6) or (10) in the non-
linear regime, it is immediately apparent that we must re-
vise the conventional prescription for the amplitude at
which the growth of a mode saturates. If all modes were
allowed to become comparable to their wavelengths (or to
their wavelengths times any constant), the sum defining o.

Therefore, if we take L =R, the zk and R& have the
same effective normalization, including the density-of-
states factors.

Regarding the time evolution for a given 1 value, the
equivalent of Eq. (1) in spherical geometry is well known
for incompressible fluids and is discussed in Ref. 3. How-
ever, compressibility effects generally play an important
role in ICF implosions, and the applicability of in-
compressible theory is questionable. Determining the ac-
tual growth of individual modes for compressible fluids in
spherical geometry is nontrivial. Such calculations will
be discussed below as relevant to the model presented
here. In general, the linear growth rate for spherical
modes depends on the value bf I, and not on m, because
of spherical symmetry. For l sufficiently large, we expect
the solutions in spherical geometry to reduce to the pla-
nar limit according to the correspondence given in Eq.
(11). This is the case for the exact solution for in-
compressible fluids.

Another issue is the saturation of growth, beginning at
gA, for a planar mode. For a pure spherical harmonic
mode of amplitude R&, the deviation from sphericity is
generally R& times some fraction less than but of order
unity. The rms amplitude is R& /'t/4'. We might ac-
cordingly expect that the onset of saturation for a spheri-
cal harmonic mode would occur at some amplitude
differing from gA. by a factor of order unity. There are
additional complications that could occur in spherical
geometry. First, the saturation of a spherical harmonic
mode probably does not occur simultaneously over the
entire sphere, since the "typical" amplitude depends
somewhat on latitude. Also, the saturation probably de-
pends on m, whereas A. (as taken from the eigenvalue of
the Laplacian, and which characterizes the linear growth)
depends only on 1. Fortunately, it is not necessary to ana-
lyze these issues in detail for the development carried out
below. The required saturation modeling can be normal-
ized directly in a manner independent of these details.

r)k, =&2(2m.(ek) [L /(2m. ) ]S (k)]'

Solving for S(k) gives

S(k) =2rrV rrrj/(Lok )

(14)

for the amplitude of the individual modes when the re-
sulting net perturbation is marginally saturated.

Now consider the more general case with a full spec-
trum of modes. As these modes grow there is the possi-
bility for a wide variety of nonlinear effects. Modes of
quite different wavelength can interact via nonlinear pro-
cesses, which we are not concerned with here. The point
we do emphasize is that modes of very similar wave vec-
tors interact in the same way as was considered above in
the special case where there was only one band of modes.

diverges. A cutoff could enter because the initial ampli-
tudes would eventually fall off with increasing k, but it
does not seem reasonable for the late-time net bubble
penetration to be determined by a cutoff in initial value.
A cutoff could also occur because of ablative stabilization
or viscosity. But, in general, it is evident that nonlinear
effects are likely to occur at an amplitude smaller than
gX, in the case of interest where there are a large number
of modes.

There are various nonlinear effects that could play a
role in preventing growth to gA, , but there is also a basic
conceptual error one makes in comparing a single-mode
amplitude to gA. . The nature of that error is best under-
stood by looking at a specific case. Consider a surface
(say, in planar geometry as defined above) that is covered
with growing Rayleigh-Taylor ripples of wavelength A,

and typical peak-to-peak amplitude of 2gk. This would
be generally recognized as marginally saturated. Howev-
er, there are two ways one could mathematically con-
struct such a perturbed surface. One, of course, is to
have a single (real) Fourier mode of wave vector k and
amplitude gk. The other is to have a sum of modes, of
various wave vectors all close to k and —k, with rms am-
plitude o of rlk/&2. Locally the perturbation with
nonzero bandwidth would look just like the pure mode.
If all modes k' contributing to the sum have ~k —k'~ & ek
or ~k+k'~ & ek, where e is some fraction less than 1, the
finite bandwidth could be distinguished from a pure mode
only with measurements extending over a distance large
enough to see the phase differences arising from the
different elements in the superposition —i.e., over dis-
tances of order A, /e. So if e is less than, say, —,', the per-
turbation with the finite bandwidth should behave quali-
tatively the same as the pure mode, saturating when its
net real amplitude is about gA, . But the amplitude of the
individual modes is completely different from gA, . Let
S(k) denote the amplitude of these marginally saturated
modes. We can write an expression for this amplitude by
equating gX to &2 times the rms amplitude of the pertur-
bation. (The factor &2 relates the rms amplitude of the
sinusoidal perturbation to the peak amplitude. ) The rms
sum is given by the product of three factors: the area in k
space over which we are summing, the density of states,
and the square amplitude of the individual modes. That
1S,
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Any modes whose wave vectors are close enough that
their perturbations can stay in phase for a wavelength or
two affect each other's saturation, in that whether or not
saturation occurs is determined by their sum rather than
by their individual amplitudes. Thus, we must use Eq.
(15) in this situation as well, in order to determine the
amplitude at which modes are large enough to be non-
linear. In this context, the parameter e defines how close
the wave vectors of two modes must be in order for them
to interfere constructively over a suSciently large area to
influence each other's saturation. Of course, other non-
linear effects could influence modal growth long before
this amplitude is reached, but if the amplitudes get to
S(k) they themselves become nonlinear, in exactly the
same sense that a single mode becomes nonlinear at gk.

The argument above was made for planar geometry.
In spherical geometry it is more difficult to envision the
various interference effects, the definitions of "similar"
modes, and so on. So it is not trivial to modify the above
arguments to spherical geometry. Nevertheless, simply
from the parallels between the two formalisms, it is clear
that the spherical analogue to Eq. (15) must be

S(l,RO ) = vRO/1 (16)

where S(l,Ro) is defined to be the saturation level of
mode I, m, in the presence of a dense spectrum of modes,
at average radius Ro. Using the planar to spherical
equivalence represented by Eqs. (12) and (13), we can
determine that the quantity v is approximately given by

for the special case of a pure mode). Consider a sphere of
radius Ro on which there are ripples of typical wave-
length k and amplitude ao (where A. and ao are fixed as
we consider various sphere radii). We are concerned with
the situation where Ro is much larger than A, and ao. If
these ripples originate from a pure mode, the spherical
harmonic amplitude of this mode is ao times a factor of
order unity and is independent of Ro. But for this pure
mode, the phase of the ripples is exactly specified over the
entire sphere. In general, we would expect there to be
some smaller area over which the phase of the ripples is
correlated, which does not scale with Ro. (Equivalently,
we could hypothesize an uncertainty in the wavelength. )

Assume that the phase is correlated over area Xk, i.e.,
over solid angle

b, Q =NX /(4vrR o ) . (19)

Now consider the integral defining R &, Eq. (4), for
values of I and m that correspond approximately to the
characteristics of the ripples of interest. This integral can
be thought of as a sum of random terms, each one
representing the integral over a patch of area NA, . In
each such area the ripples have a particular phase rela-
tionship with Y&, and the integral over that area is
aohA times a random phase factor. The total integral,
then, is a sum of 47r/b. A random terms, each of order
aoAA. So

(20)

S(l,RO) =Ros, (l), (18)

where s
&
(I) is an unspecified function of 1 alone.

For the second scaling rule, we consider what happens
at large Ro if the rms perturbation amplitude is fixed.
We will argue that in this case the amplitude of any one
of the contributing modes should scale as 1/Ro (except

(17)

Note that e and g have combined multiplicatively, leav-
ing only the one parameter v. If g is given a traditional
value of I/(2~r), and e is —„' (so that the saturation of a
mode is influenced by modes whose wavelengths are simi-
lar enough that they can stay in phase for somewhat
more than one wavelength), then v is 7. We will normal-
ize v below directly to the experiments of Read and
Youngs; from first principles we might expect it to be in
the range 1 —10.

Our confidence in this result is enhanced considerably
by examining how the saturation modeling in spherical
geometry should scale with radius. In fact, the functional
form for S(l,RO) is determined within a multiplicative
constant by two scaling principles. The first scaling prin-
ciple is that the amplitude at which saturation sets in, for
a given l, should be proportional to the overall radius.
The wavelength is proportional to radius, and this is the
sort of scaling one sees if all amplitudes are scaled with
radius to give various similar configurations, with the
only difference being the overall scale. It is intuitively
obvious that the saturation should share this overall scal-
ing. This scaling principle can be written as

S (1,R0 ) =s~(k)/Ro, (21)

where s2 is some unspecified function of k =I/Ro.
These two scaling rules could merely represent the be-

havior of S (I,R o ) in the appropriate limits. If we assume
that they hold exactly, they uniquely determine the func-
tional form of S(l,Ro ). That is, Eqs. (18) and (21) require
that the amplitude at which saturation begins in the pres-
ence of a full spectrum of modes is of the form given by
Eq. (16).

This completes our estimate of the amplitude at which
saturation occurs. The remainder of this article is con-
cerned with a simple model based on this result.

If the correlation area Nk is fixed as Ro varies (or if the
uncertainty in wavelength is fixed as Ro varies), then b, Q
is proportional to 1/Ro and R& as given by Eq. (20) is
proportional to 1/Ro. There are various other ways one
can understand this result: it is related to the fact, evi-
dent in Eq. (13), that the "density of states" at given k is
proportiona1 to Ro. That is, if one wants the rms ampli-
tude to be independent of Ro, the individual modes must
scale with 1/Ro. Planar Fourier modes scale similarly as
one varies the size of the area, as is evident in Eq. (12).

Thus these ripples are represented by a sum of modes
whose individual amplitudes scale like 1/Ro. If the rip-
ples represent just-saturated growth, the individual
modes that are combining to form the ripples accordingly
experience this saturation at an amplitude proportional
to 1/Ro. Thus the onset of saturation S(l,Ro) must have
the scaling property
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IV. MODEL BASED ON EXTENSION
OF LINEAR ANALYSIS

The objective here is to formulate a procedure that can
be used to estimate the net perturbation amplitude for
multimode Rayleigh-Taylor growth. First, we will dis-
cuss the linear analysis. Then, we will apply the above
result to determine when nonlinearity begins and present
a model that seems to us to be the simplest plausible ex-
tension into the nonlinear regime.

It is common in Rayleigh-Taylor analysis to estimate
net perturbation amplitude by examining the amplitude
of the largest mode. As we have already discussed, that
can be misleading. Instead, one must use sums of modes.

The quantity we will calculate is the bubble amplitude,
which we will denote as B. If the perturbed interface
R(Q) has variations about its mean with peak-to-peak
magnitude approximately 2B, then [R ( Q )

—R p ) will

vary between zero and about B . The mean o of
[R (Q) —Rp] will be approximately the mid-range of
these variations, i.e., about one-half of B . So we will
define the bubble amplitude to be &2o, where o is given
by Eqs. (5), (6), (9), or (10) as appropriate. This is exact
for single-mode sinusoidal perturbations.

In order to calculate the net perturbation in the linear
regime, one would determine the initial amplitudes of all
modes, determine how they grow (independently, and
linearly with their initial amplitudes) to the time of in-
terest, and then use the sum defining o. to determine the
net bubble amplitude. If there are multiple seeds, these
are presumably randomly phased so that their final am-
plitudes could be added in quadrature. One necessary
condition for applicability of the linear analysis is that all
modes be smaller than S(/, Rp) determined above. There
is, of course, also the possibility of nonlinear effects, other
than simple saturation, that could affect the evolution
even before any modes reach S(/, R p). We will ignore the
possibility of these other nonlinear efFects.

Now, if some modes have grown past S(/, Rp), how do
we estimate the growth? It is generally recognized that
single modes, upon reaching saturation, switch from ex-
ponential growth to constant velocity bubbles. If the sat-
uration parameter g is chosen appropriately, this transi-
tion can be done instantaneously, i.e., the mode ampli-
tude and velocity are continuous across the transfer, and
g is chosen so that the velocity at and after the transfer is
equal to the known bubble velocity. This approach, attri-
buted to Fermi in Ref. 9, gives results that differ from the
best available calculations and measurements by a small
factor. We will adopt it for our model, with the generali-
zation that the switch from exponential to linear growth
occurs in the multimode environment at S(/, Rp) rather
than at gA, . If we knew e and were attempting a first-
principles calculation of the net perturbation, the error
made in Fermi's approximation might be unacceptable.
However, we will normalize v directly to experiment and,
therefore, this error will to some degree be normalized
out.

A further generalization allows us to easily extend the
model to situations where the small-amplitude growth is
not necessarily exponential. A way to do this for a fully

general situation was suggested by Crowley. One defines
an "unsaturated amplitude" Ri" (t) as being the ampli-
tude a mode would have grown to if saturation were not
an issue. By assumption, this is proportional to the initial
amplitude. If Ri" (t) is greater than the saturation onset
function S (/, R p ), then the amplitude is taken to be

Ri" (i)
Ri (t)=S(/, Rp) 1+in

S /, Rp
(22)

This logarithmic construction gives growth linear in time
for constant acceleration, with the same velocity the
mode had when it saturated at amplitude S. In general,
the construction gives

Ri =Sy(t),d
dt

where

(23)

1 dR1m

R" (24)

is the growth rate the mode would experience if there
were no saturation.

One could argue that the small bubbles should not rise
with constant velocity when mix has produced a density
gradient that reduces the buoyant force. Another effect
generally believed to be important is coupling of short-
wavelength modes to seed long-wavelength modes. We
are neglecting both these effects, as will be discussed
below.

In the nonlinear regime the growth on the spike side
becomes difFerent from that on the bubble side. The
constant-velocity growth of the R I quantities is intended
to represent the bubble side, so that the reconstructed
surface R (Q) would only be correct on the bubble side of
the mean Ro.

In fact, for a large, fully nonlinear perturbation, the in-
terface is not a unique surface, and there are various ways
we could define R (Q). Our objective is to estimate the
size of the net perturbation, and we do not need to be
specific about how R (Q) is defined in this case. We will
calculate the modal amplitudes RI as a function of time,
and, for such a highly nonlinearly situation, normalize
the modeling of the late time Ri (t) so that &2o can still
be taken to the bubble amplitude.

Give a value of v, which will be determined below by
comparison to Youngs' value of 0.07agt, the model for
bubble growth is now completely defined. A detailed pro-
cedure for application to a general case will be laid out
just below, after we first consider the spike amplitude.
This is known to be somewhat larger than the bubble am-
plitude, both for single modes and for the multimode
case, and is slightly dependent on the value of the At-
wood number. ' ' It is possible that this model could be
extended to the spikes by using single-mode, late-time
spike amplitudes such as those suggested by Crowley.
However, ultimately it would be necessary to compare
the result with the phenomenological results of Youngs,
and it seems more straightforward simply to use the phe-
nomenology. Accordingly, we will assume that the spike
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amplitude is proportional to the bubble amplitude, with a
proportionality constant that depends on the density ra-
tio per Youngs's results.

The procedure to calculate the bubble and spike ampli-
tudes in general for a spherical implosion is the following.

(i) Estimate the perturbation seeds, as a function of I
and m, for all nonuniformities in surface finish, opacity,
illumination, and whatever else may be relevant. Of
course, one only needs an estimate of the mean value of
~RI (0)~ as a smooth function of t and m. The precision
with which the initial value must be known can be found
by iterating the model as discussed below.

(ii) Using linear analytical modeling or a two-
dimensional hydrodynamics code, estimate all the modal
amplitudes at the time of interest (not including satura-
tion effects —the amplitudes at this point are strictly pro-
portional to the initial amplitudes, and code calculations
should be run with initial amplitudes small enough to
guarantee this). If there are multiple seeds, their ampli-
tudes are added in quadrature before considering the sat-
uration modeling. This quadrature sum is the unsaturat-
ed amplitude RI" discussed above.

(iii) If a mode amplitude is greater than vR /1, it is re-
placed with the "saturated" amplitude given by Eq. (22).
Strictly speaking, this formula is to be used only in the
case where there is a large number of modes present, with
random phases, and whose mean amplitudes are smooth
functions of l and m. If there are pure modes —i.e.,
modes with amplitudes much larger than those of their
neighbors —or if other phase correlations are present, the
saturation must be specified by comparing gA. to a sum of
modes with similar wave vectors, in the spirit of the argu-
ment above. We will consider this situation further in
Sec. V.

(iv) The bubble amplitude is taken to be &2o. with cr

given by Eq. (6).
(v) The spike amplitude is taken to be &2o.(l+a),

where e is the Atwood number. This is simply a rough
fit to Youngs's results for the spike to bubble ratio. The
fit is very approximate but is adequate for our present
purposes.

(vi) This procedure can be carried out at various times
of interest during the target implosion. Then, given the
spike and bubble amplitudes as a function of time, we can
attempt to estimate the effect on the observables of in-
terest. This will be nontrivial if amplitudes are
significant.

Typically, steps (i)—(iv) are iterated. Upon doing the
sum to determine cr in step (iv), we can see which modes
and sources are important contributors to the final net
amplitude. We then recheck whether these important
modes and/or sources have been calculated with
sufhcient accuracy, and if not we repeat the procedure.
As we shall see, how accurately a given mode or source
must be calculated varies from problem to problem. In
some cases a factor of 2 is significant, while in other
cases, where the contributing modes are more heavily
saturated or are combined with a large number of other
contributing modes and/or sources, changes by orders of
magnitude can make little difference in the final net am-
plitude. It is clear that in some cases this iteration can be

a fairly cumbersome procedure, and in the concluding
discussion we will cite this as a principal disadvantage of
the model. It is also quite possible that we will be unable
to obtain the relevant information regarding single-mode
initial amplitudes and growth factors. This completes the
description of the procedure. In Sec. V we will apply it
to several situations of interest.

V. APPLICATIONS OF THE MODEL
FOR ESTIMATING NET PERTURBATIONS

A. Constant acceleration in planar geometry

Obviously, the first thing to check is the experiment of
Read and Youngs. In fact, the usual interpretation of
this experiment —that short wavelengths in their non-
linear growth seed, via bubble coalescence, the long
wavelength modes —stands in fairly clear contradiction
to the model we are considering. But while the model
disagrees with this interpretation, we will see that it does
not disagree with the actual experimental result. (This is
not to say that the bubble coalescence phenomenon is
never important; a detailed discussion of this issue is
presented in Sec. VI, where we review the results of our
model. )

In the experiments of interest no initial condition was
explicitly set, so we will consider initial values spanning
several decades. A lower estimate of the initial value is
the perturbation arising from thermal fluctuations.
Thermal fluctuations have been observed in light scatter-
ing experiments used to measure surface properties, and
in our notation have mean-square amplitudes'

(Iz, f'&=
L gp+y, k

(25)

where y, is the surface tension, g is the acceleration of
gravity (in the stable direction before the experiment, in
this equation only), k~ is the Boltzmann constant, and T
is the temperature. This expression can be obtained by
equating the potential energy in the mode at peak ampli-
tude to k~ T. For y, we take the value for water of' 72
dyn/cm.

Note that, if we were to calculate o. for these modes,
the sum over k would diverge logarithmically. In fact,
the sum is cut off at large k by quantum effects. Such
large-k values have no effect on any calculations we will
do at nonzero time.

Given the initial spectrum, the only other independent
parameter is agt, where g is now the unstable rocket ac-
celeration and a is the Atwood number. The spectrum at
any given time is determined by taking the initial ampli-
tude, multiplying each mode by e~', with y from Eq. (1),
and then implementing the saturation modeling described
in Sec. IV. (Purists might argue, here and in the follow-
ing examples, that we should use the hyperbolic cosine
rather than the exponential. This is equivalent to a factor
of 2 in initial amplitude, which is inconsequential to the
applications considered here. Also, we are neglecting the
effect of surface tension on the single-mode growth rate. )

The spectrum calculated by this prescription for various
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times is shown in Fig. 1, where we have used the nominal
initial spectrum given by Eq. (25) and set the saturation
parameter v to 4 (this choice will be discussed in the fol-
lowing paragraph). Note that the dominant wave vector
decreases with time, and that the spectrum is only weakly
dependent on the initial spectrum. The bubble amplitude
is easily obtained numerically by integrating over k. (The
bubble amplitude could also probably be obtained analyt-
ically. We will do an example of an analytical calculation
in Sec. VB.) The net amplitude is plotted versus agt in
Fig. 2. It is quite linear in time and only very weakly
dependent on initial amplitude.

Recall that the saturation parameter ~ was estimated
from our basic argument to be in the range of 1 —10. The
bubble amplitude predicted by the model is almost linear
in v. This can be seen numerically in this example by
simply varying the parameter; a more detailed descrip-
tion of the dependence on v for a similar situation is
worked out analytically in Sec. VB. At any rate, given
that the bubble amplitudes plotted in Fig. 2 are nearly
linear with v, it is evident that v should be in the range of
3 —5 in order to fit the experiments of Read and Youngs.
We will take v=4 as defining our nominal model.

Read and Youngs also considered situations where
they imposed a nonzero initial value on an individual
mode. In our model, the saturation of a mode is deter-
mined by comparing the sum over a band of modes sur-
rounding it with gA, . If an individual mode is present
with amplitude much larger than that of its neighbors, it
will dominate this sum. Thus the saturation of this band
will be determined by the individual mode: it will grow
until it is itself of amplitude gA, and then saturate, while
the growth of the other modes in the band will be
suppressed. The nature of this suppression can be
clarified somewhat by considering what the surface
should look like after the relevant wavelengths have

evolved far into the saturated regime. With respect to lo-
cal measurements on the perturbed surface, the situation
with the saturated pure mode will look the same as that
with saturated growth of a broader spectrum. But the
phase of the saturated ripples will be correlated over the
entire surface in the case initiated by the pure mode; in
contrast, growth from a broad spectrum would have
about the same net amplitude but would lack these long-
range phase correlations. The net physical effect will be
close to that noted by Read and Youngs: the single mode
will grow in approximate correspondence to the usual
description, with simultaneous growth of the broadband
spectrum whose net perturbation is about 0.07agt . This
is the scenario sometimes loosely described as implying
that imposed perturbations influence the growth only if
their initial amplitude is greater than about A, /100.

B. Formalism for deceleration in spherical geometry

In the first example, the model was implemented nu-
merically. It is also possible in some situations to do
most of the implementation analytically. This can reveal
scaling principles that may not be evident from numerical
applications. Here we will present an example of a more
analytical application.

Consider a perturbed spherical interface, the interior of
which is filled with low-density fluid and outside of which
is another fluid at higher density. We will take the time
of peak velocity as t =0, at which time the interface is
moving inward with velocity U. The interface subse-
quently decelerates at constant rate g for a time t in the
Rayleigh-Taylor unstable direction. (We will use U )0,
even though the velocity is inward. ) The single-mode
growths could be calculated for a given specific situation
by various codes and will depend on the details of the tra-
jectory, the convergence, the compressibility, and so on.
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FIG. 1. Perturbation spectra for constant acceleration in pla-
nar geometry. Curves (a), (b), and (c) are spectra at agt =0, 5,
and 50 cm for a room-temperature initial spectrum. Curves (d),
(e), and (f) (dashed lines) are spectra at the same three times as
(a), (b), and (c) but with an initial spectrum 100 times as large.
Curve (g) is the saturation level 4/k'.

FICx. 2. Calculated bubble amplitude vs agt-' for constant ac-
celeration in planar geometry. The initial spectrum is room-
temperature thermal (a), thermal X 100 (b), or thermal X 10 (c).
Curve (d) is 0.07egt . The maximum agt is comparable to that
in the experiments in Ref. 6. The model parameter v was set to
4 to fit the experimental results.



39 ONSET OF NONLINEAR SATURATION FOR RAYLEIGH-. . . 5819

=f, (t)exp j dt'[agl/Ro(t')]'
0

(26)

We have replaced [1(l + I )]'~ from Ref. 11 with I, and

f, (r) =f (r) =Ro(t)/Ro(0) . (27)

The factor f, (t) in Eq. (26) is slightly unusual, and below
we will examine its effect on the predicted net perturba-
tion. Other factors of Ro(t)/Ro(0) will arise in the
analysis below. These factors will be written as f (t) and
will be kept separate from the factor f, (r) that originates
explicitly in Eq. (26). Later, we can examine the conse-
quences of setting f, to 1. Note that the growth de-
scribed here clearly reduces to the growth described by
Eq. (1) if Ro is much greater than all other length scales
at all times.

The other basic ingredient we need is the set of initial
amplitudes of the modes. For simplicity, we will assume
that the initial amplitudes are independent of 1 and nz, up
to a cutoff l „corresponding to a minimum wavelength

The significance of this choice will be considered
below. The initial phase of the modes does not enter the
formalism directly, although the modeling implicitly as-
sumes random phases. The initial rms surface perturba-
tion o.(0) is then related to Ri (0) by Eq. (6) above,
which for this case, with / „))1, becomes

(28)

We will see that the initial value will enter our results pri-
marily in the form of a length scale

d =+A. ;„o.(0)/v=m' QRO(0)Ri (0)/v . (29)

If a and g are constant in time, Ro(t) is quadratic in
time and the integral in Eq. (26) is standard. ' The form
of the result depends on the direction of g; here we are as-
suming R )0. It is convenient to change the mode index
from I to k =1/Ro(0). Note that this is the initial wave
number and is not time dependent. We will also use
k,„=l,„/Ro(0). Evaluating the integral and making
these changes, we can write the modal amplitudes as

(k )~
— f ()k,„RO(0)

(30)

where u (k, t) is the unsaturated amplitude R," (r), and
D (t), which is independent of k, is given by

2

+2gRO(t)+gt —
U

D (t) =2aRo(0) ln
+2gR o(0) —

U

(31)

In the limit of large Ro, D approaches agt . We will see
that D is a useful length scale in general.

Now consider the nonlinear saturation. Let k, (t) be

Our objective is to get an idea of how things scale and not
to do a detailed calculation for a specific capsule. There-
fore we will use the approximate formula recently cited
by Hattori et al.:" the growth factor for mode I is given
by

Ri" (r)/Ri (0)

1/Ro(0) for the mode which is marginally saturated at
time t, that is, the mode whose amplitude is just equal to
S[I,Ro(t)]. The saturation-onset function is, in the for-
malism being used here,

S (k ) =vR o(t) /[kR o(0) ] (32)

To find k, we equate this function to u as given by Eq.
(30), and with some algebra we can write

D k, e '=V rr(D/d) f(t)/f, (r) . (33)

Since D, d, and f (t) are all known, this defines k, (t) as
the solution to this transcendental equation. Both sides
have been multiplied by D to show that Dk, is deter-
mined by D/d and f(t) [If. k„as determined by Eq.
(33), is greater than k,„, then no modes are saturated.
The formalism below can be used for this case by setting
all occurrences of k, to k,„. This eliminates the second
term in Eqs. (34) and (35).] We can find k, numerically
from Eq. (33) for any particular situation; the predicted
bubble penetration is proportional to o., which is deter-
mined by modeling the saturation according to Eq. (22},
and then summing per Eq. (6),

k

4~o (t)=2RO(0) J dk k ~u (k, t)i

max

'2

+2RO(0) dk kS (k) 1+in '

S(k)

(34)

Here,

F(x)=e"(x —3x +6x —6)+6, (36)

and

I =[(Dk) (P +1)/2+(Dk) i (4P/3+ —")+(Dk)

+(Dk) (lnDk)2P+(Dk) (lnDk)( —')

+(Dk) (lnDk) ]ik' (37)

where

f d2
P=2+ln f ~D

(38)

These expressions can now be used to obtain the net per-
turbation o(t) for any set of parameters specifying an
outgoing acceleration.

If we reduce the generality of these expressions slight-
ly, we can get o into a particularly revealing form. To

Here we have replaced sums over I by integrals over k.
This is correct only if all the significantly contributing
modes have 1))1. The first term in Eq. (34} represents
unsaturated modes, and the second the saturated modes.
The modal amplitudes u (k, t) are given by Eq. (30). The
integrals found by expanding Eq. (34) are standard, ' and
o. can be written as

f,F(2+Dk, )
cr (t)=D v (d/D) +D v f I/2~ . (35)

16m
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get this form we need to use f, =f [i.e., leave f,AI in

Eq. (26)] and take k,„~oo. Addressing the validity of
setting f, =f beyond the scope of the present paper. As-
suming k,„~~ is reasonable for most situations. Ex-
cept for very small initial amplitudes or very small times,
a cutoff is imposed by the saturation modeling and the
value obtained for I with finite k,„ is very close to the
~ limit. Given these assumptions, the right-hand side of
Eq. (35) takes the form of D v f times functions of D/d
and Dk, . The latter is in turn a function only of D/d ac-
cording to Eq. (33) with f, set to f. Thus Eq. (35) takes
the form

o (t) =vD (r)f (r)G (D/d) . (39)

Recall that D(t) is agt in the planar limit. Thus o is
nearly proportional to the saturation parameter v, to
f =Ro(t)/R~(0), and to D-agt . The proportionality
"constant" 6 is a universal transcendental function of the
ratio of the two scale lengths D and d (recall that the
latter represents the initial condition, as well as depend-
ing on v). 6 is defined conceptually, for given D/d, by
solving Eq. (33) for k, D and substituting the result into
the above formulas for F and I (with k,„=~ ). It is easy
to plot G by expressing D/d and 6 as functions of k, D
and then plotting G versus D/d while varying k, D. 6 is
plotted in Fig. 3. If the bubble amplitude, as predicted by
the model, was independent of initial amplitude at late
time, 6 would be a constant at large D/d. This is not the
case, at least for meaningful values of D/d On the .other
hand, the dependence of 6 on D/d is extremely weak.
Note that the ordinate in Fig. 3 has been normalized so
that the quantity plotted would be constant at 0.07 if the
bubble amplitude were simply 0.07agt .

Figure 3 can be used to estimate quickly how the
dependence on initial amplitude scales in different situa-

d,s(l) =m' [Ro(0)u (1,0)/v]'~ (40)

Since o(t) in Eq. (39) is only weakly dependent on d, the
dependence on the initial spectrum is similarly weak. Of
course, if this effective d changes by many decades in the
course of time, and especially if D/d is smaller than
about 10, the effective 6 (D/d) could change by a factor
of a few as different portions of the spectrum determine
d,~. Note that in many cases the initial spectrum would
be a decreasing function of l. In such cases, as time in-
creases, the initial amplitude d,z in the band determining
o increases so that D/d may be less time dependent than
in the case of a Bat initial spectrum. Then o would be
closer to a constant times agt .

It is straightforward to take the large-Ro limit (i.e.,
planar geometry) of the above formalism. The only limit
that cannot be done by inspection is D, which becomes

tions. For the Read and Youngs experiments, D is of the
order 10 cm and d is of order 10 cm, so D/d is about
10 . We have normalized the model, as discussed above,
so that 4&2 G is about 0.07 at this point. A decade of
change in either direction changes G by about 25%.
[Note that a decade of change in d corresponds to two
decades in o(0) since d is proportional to cr(0)'~ .] On
the other hand, an ICF capsule might have a D of a few
microns, so D/d could be of order 10 to 1000. In that
case, the bubble amplitude is a much larger fraction of
agt, and is much more sensitive to the initial amplitude.

If we consider spectra that are not Rat, the form ex-
pressed in Eq. (39) is approximately obtained under
many, but not all, circumstances. The integral giving o
is usually determined by a band of wavelengths, about a
decade wide just above k, . The integrand in that range is
determined by the initial amplitude u (k, 0) in that de-
cade, as if d were

D =agt +O(RO '
) . (41)
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Equations (33) and (35)—(38) can be obtained in the
large-Ro limit by taking f =f, =1. None of the other
terms in these equations approaches simple limits for pla-
nar geometry in general. Note that o(0), d, k,„,and k,
are all Anite. These quantities retain the same interpreta-
tion as they had for finite Ro. Several related quantities,
such as S(k) and 1,„,scale with powers of Ro in the lim-
it of large Ro. The length scale d is about 10 cm for
the initial thermal noise spectrum considered above.

C. Kff'ect of spherical geometry

0.02—

0.04 I, i i, I

1IP 10 10 10 10
D/0

FIG. 3. Bubble amplitude, divided by D, vs D (which is agt
in planar geometry) for a "white" initial spectrum. The quanti-
ty d defining the abscissa is proportional to the square root of
the initial amplitude. The flat line represents bubble amplitude
0.07agt .

Now we will utilize the formalism from Sec. V B in the
extreme where the radius is comparable to the net pertur-
bation. We will consider the final perturbation at
minimum radius for a target of dimensions taken from
Ref. 4, i.e., a shell initially at an inner radius of 150 pm.
The inner interface is at peak velocity at a time which we
call t =0. This interface then decelerates, at a rate which
we will assume to be constant. It finally reaches a
minimum radius Ro(t;„), for which we will consider
various values of order 10 pm. To use the above formal-
ism to calculate the perturbation at minimum radius, we
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do not need to specify values for all the parameters (i.e.,
for u, g, etc.). We do need to specify gt, R o(t;„), v, a,
the initial value d (actually representing the surface at
peak velocity), and A, ;„(although the dependence on A, ;„
for a given d is very weak). Of particular interest are the
consequences of having the radius comparable to gt, so
we consider a family of situations that would be identical
in the planar limit —that is, we vary Ro(t,„)while keep-

ing gt fixed. This implies that the radius at peak veloci-
ty is Ro(t;„)+gt /2. We will take gt /2=30 pm, v=4,
a=0. 5, A, ;„=0.01 p,m (at peak velocity), and consider
various values for d.

Figure 4 shows the calculated bubble penetration as a
function of Ro(t;„). Note that for large Ro the bubble
penetration approaches the planar limit, but as Ro(t;„)
decreases the penetration also decreases. This scaling of
the bubble amplitude in spherical geometry is a new pre-
diction of the model. It could, in principal, be checked
with multimode numerical simulations similar to those
done by Youngs in planar geometry, although these
would be constrained to thy two-dimensional case dis-
cussed in Sec. V E. Figure 4 also shows a curve in which
the term f, in Eq. (26) has been set to unity. Evidently,
this is a much less important effect than the scaling of the
saturation modeling with Ro(t;„). Note that, for a given
value of Ro(t;„), including the f, factor has the same
effect as reducing the initial value by f, (i.e., as reducing
d by Qf, ).

10.0

Bad

0.0? agt

~E ~0
CO

40

Ch

Cl

I I I I I I I I I I I I I I I
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R/agt2

FIG. 4. Calculated bubble amplitude, showing the e8'ect of
spherical geometry with final radius R. All curves have
0.5gt =30 pm and a=0.5, with other parameters as described
in the text. Curves {a), {b), and (c) represent growth from white
initial spectra characterized by d =10 ', 10, and 10 ' pm,
respectively. Dotted line (d) is the same as (b), except that the
term f, from Eq. (26) has been set to unity. Dotted line (e) is
the same as (c), except that A, ;„has been changed from 10 pm
to 10 pm, at fixed d of 10 IMm.

D. A full target implosion with ablation stabilization

y=[(ku„/2) +gk]' —ku„/2, (42)

where U~ is the ablation velocity. We will extend this to
spherical geometry by replacing the integrand in Eq. (26)
with Eq. (42). We will include the f, factor from Eq.
(26), and we will consider a range of values for u„. Equa-
tion (26) is then numerically integrated for each 1 to give
growth factors as plotted in Fig. 5. These growth factors
determine the perturbation amplitude at the ablation
front after acceleration inward at g& for t&. The initial
perturbation values can be multiplied by these growth
factors, saturation modeling can be applied, and the
squared modes can be summed to determine the bubble
amplitude at the ablation front at peak velocity. The
resultant amplitudes are shown in Fig. 6. Clearly the ab-

Now we consider both the inside and the outside of a
single-shell target, and we examine the combined effects
of instabilities on both surfaces, along with convergence,
ablative stabilization, and interface coupling.

The target dimensions are taken from Ref. 4. The shell
is 10 pm thick, initially at an inner radius of 150 pm. We
will use a very simple schematic for the dynamics of the
implosion. Assume that the ablation surface defining the
outside of the shell is accelerated at a constant rate g, for
time t, to a peak velocity of 10 cm/s at radius 35 )Mm.

Take the (unperturbed) shell thickness at peak velocity to
be 5 pm. The inner surface is subsequently decelerated
from 10 cm/s at rate g2 for a time t2 as it moves from 30
pm to a minimum radius of 10 pm. These parameters are
chosen arbitrarily to illustrate the model. For a detailed
application to a real target one would use features from a
code simulation. Similarly, one would want to use code
calculations of single-mode growths as much as possible,
rather than the simple analytical formulas used below.
The parameters given determine that t, =2. 5 ns,

g, =4.0X 10' cm/s, t2 =0.4 ns, and g2=2. 5 X 10'
cm/s . The Atwood number for the deceleration is as-
sumed to be 0.5.

For an initial condition, suppose for this example that
~R& (0)~ is proportional to l ' up to I,„. We will con-
sider various values of o. , but we will fix A, ;„at
1.0X10 cm (i.e., l,„=9425). Of course, r =0 now
corresponds to the beginning of the implosion rather than
to the peak velocity as in the earlier example. We assume
that the initial values are the same on both sides of the
shell (in modulus, not necessarily in phase).

First, we consider the ablation front. If the growth
rate were classical, i.e., &gk, we might expect bubble
penetration of order 0.07 gI, , i.e., 0.14 times the distance
moved. These bubbles would penetrate the shell. How
might ablation stabilization change this?

The ablation front is stabilized by convection of the
perturbed material out through the interface. There does
not appear to be a widespread consensus regarding a
quantitative description of this effect. Our purpose is to
illustrate how the effect can be included in our multimode
model, and to do so we will consider a typical formula
discussed in Refs. 13 and 14. There, the growth rate y is
reduced from &gk to
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illustrate that, given a description of the single-mode sta-
bilization, one can use this model to estimate the mul-
timode bubble penetration.

Similarly, we can estimate the interface coupling and
deceleration phase growth. Recall that the unperturbed
shell thickness at peak velocity was assumed to be
TO=5. 0 pm. The perturbed shell thickness is estimated
as

TI, =max(0, To B)—, (43)

R outel
( )

h t

where 8 is the bubble amplitude from Fig. 6. Assume
that each mode couples classically through this thinned
shell. Then, an amplitude RP""'(t, ), on the outside of
the shell at peak velocity, produces, on the inside of the
shell, an amplitude

FIG. 5. Linear growth factors at the ablation front for the
implosion described in the text. Growth is given by Eq. (42),
modified for spherical geometry. Various possible ablation ve-
locities v~ are as indicated.
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lation velocity is much more important than the initial
value of the perturbation.

If the bubble amplitude as calculated here is greater
than the shell thickness at peak velocity, which we have
assumed to be 5 pm, then the shell is destroyed by the
bubble penetration. This is the case for most initial am-
plitudes for U„& 10 cm/s. However, a sufficiently large
v„will prevent bubble penetration.

It should be emphasized that we are not claiming to
have established that ablation velocities greater than 10
cm/s will stabilize an implosion. That would require
validating Eq. (42), as well as more specific attention to
an actual acceleration history. Our purpose is merely to

where R (t, } is the average of the inner and outer radii at
t, . In addition to this coupling from the ablation front
instability, perturbations on the inside can also be seeded
by the initial amplitude on the inside surface itself. This
is important for short wavelengths that are stabilized on
the outside or do not couple through the shell. Assume
for our illustrative purpose that, up until peak velocity,
there has been negligible growth (or shrinkage) of these
modes from their initial values R&'""'"(0). Since perturba-
tions originally on the inside and outside will have ran-
dom phase, the typical combined amplitude at peak ve-
locity on the inside will be the quadrature sum

~R inner(
)

~ ~R inner(0)2+R outer( )2 Te ~~ t
t tetr'2

(44)

These amplitudes now grow in time according to the
above deceleration analysis. We can use Eqs. (30) and
(31), except that the factor in large parentheses in Eq.
(30}, representing the initial amplitude, must be replaced
with the numerical amplitudes R &"""(t i ) calculated
above.

Now these final amplitudes on the inside can be
summed numerically to give the spike penetration shown
in Fig. 7. The lower envelope of those curves shows the
e6'ect of the perturbations seeded by initial values on the
inside alone. Recall that the imploded radius was 10 pm,
so that the predicted spike amplitude is typically a fairly
large fraction of this radius unless the ablation velocity is
too small. Of course, the predicted spike amplitude de-
pends on the parameters and the other assumptions that
describe the target implosion.

10-7
10-' 10 10

Initial a (cm)

FIG. 6. Calculated net bubble amplitude at the ablation front
at peak velocity using growth factors from Fig. 5 for different
ablation velocities. The dotted line is o.&2, representing no am-
plitude change.

E. Extension of the model to
two-dimensional perturbations

The model as defined so far has been appropriate for
three-dimensional (3D) perturbations on a sphere or
plane. Most numerical simulations are run in two dimen-
sions (2D), i.e., they are azimuthally symmetric about
some axis in spherical geometry or, in planar geometry,
are translationally symmetric in the direction perpendic-
ular to the wave vectors of the perturbations. In order to
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compare with these calculations, it is necessary to consid-
er how the model is modified for such a situation.

It is straightforward to modify the arguments used
above. Once again, it is easier to visualize the physics us-
ing planar geometry and Fourier modes. Let gzA, be the
amplitude at which a single mode saturates. For a full
spectrum of modes, we assume that saturation begins for
mode k when the rms sum of all modes k ' with
~k+k'~ (ke become equal to r)zA, . Let Sz(k) denote the
amplitude at which this occurs. Then we have

1/2

lnltlal a (pm)

FIG. 7. Calculated penetration of spikes into imploded gas at
minimum radius of 10 pm. Curves (al —(f) represent the same
six values of U~ indicated in Figs. 5 and 6. For the larger values
of U„, the curves have converged to a limit representing the per-
turbation resulting only from the inner surface knish, with no
contribution from growth at the ablation front. At very small
initial amplitudes these approach (1++)(0.07agt') =2. 1 pm.

Given g3 and v we determine that @=0.4. Now we use
Eq. (46) in 2D, assuming that we can use the same value
of 6.

The two scaling rules considered in Sec. III also have
their 2D analogues, and the form given by Eq. (46)
satisfies them uniquely just as we found in 3D. To calcu-
late the bubble growth with constant acceleration, we
could probably do an analytical development parallel to
that above. But for our present purposes it is just as use-
ful to do one case numerically. Figure 8 shows the bub-
ble amplitude versus gt in 2D. Note that the initial am-
plitude in 2D must be considerably larger than that in 3D
in order to produce the bubble growth of 0.04egt to
0.06agt described in Refs. 5 and 6. In 3D the model
clearly indicates that 0.07ngt is close to the lower limit
of the bubble amplitudes one can expect to observe (see
Fig. 2, where the smallest credible initial amplitudes lead
to approximately 0.07agt ). In 2D, this lower limit am-
plitude from the model is closer to 0.025agt than to
0.04agt, as is evident in Fig. 8.

It appears that the model gives growth in 20 slightly
smaller than our current understanding of what it should
be. That is unfortunate, because it would be easier to
compare the model with 2D code calculations than with
3D experiments. There are several possible explanations
for why the model predicts too little net growth in 2D.
The argument represented by Eq. (45), using the 3D value
of e, could be too simple an estimate. Even in 3D, the de-
tails of determining whether a band of modes is reaching
net amplitude g3A, must be considerably more complicat-
ed than we have assumed. For example, we have as-
sumed that whether or not modes affect each other's sat-
uration is determined only by ~

k —k'~, but it seems quite
plausible that modes with k and k' parallel, as in 2D,
would maintain constructive interference differently than
modes with k —k' perpendicular to k. If we conclude

r)zX= 4ek Sz(k)
L
2~

(45)

where, just as in Eq. (14), we have made explicit the three
factors of the area over which we are summing, the densi-
ty of states, and the summand. Equation (45) implies that
Sz is given by

Sz(k) =tlz[2vr /(ELk )]' (46)

The dimensionless multiplier rlz(2m. /e)' is different
from the analogous quantity in 3D, i.e., the quantity v
which is proportional to rje according to Eq. (17). In
three dimensions ge was normalized directly, without
independently evaluating g and e. To extend the model
to 2D we need to determine them separately. Since our
saturation model ties exponential growth immediately to
linear growth, r) and rjz are set by the bubble velocity (so
that saturation occurs at the level at which the velocity of
the growing exponential is equal to the desired asymptot-
ic bubble velocity). Using the bubble-velocity values de-
rived by gazer and discussed in Ref. 6, we get
gz =0.23/&2m =0.092 and F3 =0.36/&2m=0. 14.
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FIG. 8. Calculated bubble growth in two dimensions. The
initial spectrum for (a) assumes that L ( ~Z„~') in 2D is equal to
L ( ~ZI, ~') in the 3D thermal spectrum used in Figs. 1 and 2.
The initial spectra for (b) and (d) are 100 and 10 times thermal.
Curve (c) is 0.04agt'.
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that there must be a new parameter ez that represents in-
terference of strictly parallel modes, as in 2D, we could of
course normalize the model independently to 2D growth.
Finally, it is also possible that the bubble-coalescence
phenomenon that is not included in our model is more
important in 2D.

VI. CONCLUDING DISCUSSION

There is a fairly widely held opinion that late-time
Rayleigh-Taylor growth is nearly independent of initial
amplitude, with long-wavelength modes being seeded by
nonlinear interactions from the short-wavelength modes.
That may indeed be the case, but the results presented
here suggest that we must be careful about how strong
the case for this scenario has been made. Our simple
model, which does not include any bubble coalescence or
other nonlinear mode coupling, nevertheless gives very
reasonable looking results for a wide variety of situations.
Perhaps nonlinear mode coupling is not as important as
many have come to believe.

Long-wavelength modes can be seeded in various ways.
Of course, they can be seeded by the actual initial pertur-
bation, as we have considered here. They can also be
seeded by nonlinear coupling from short-wavelength
modes in the manner generally thought to be important.
The question opened up by this work is the relative im-
portance of these two seeds. Clearly, in a situation where
the initial amplitudes of all long-wavelength modes are
orders of magnitude less than the initial amplitudes of
short wavelength modes, the nonlinear coupling is the
only seed for these modes and must dominate. However,
in most physical situations the initial spectrum is a de-
creasing function of k (or I), and it is not obvious that the
seeding by nonlinear effects dominates the growth that
arises from what perturbation was there initially.

It would be convenient if growing multimode perturba-
tions were in fact independent of initial amplitude, since
we could then attempt to calculate final perturbations
without detailed knowledge of the initial spectrum. Such
a situation could also relax considerably the requirements
of target fabrication technology. Unfortunately, it is not
clear that nature has been so kind. The criterion that the
initial amplitude matters if it is larger than about 0.01K,

appears to be correct for a single mode. However, the
criterion should be phrased more precisely: i.e., one cal-
culates the growth of the single mode, including satura-
tion, and compares that amplitude to 0.07agt . It is very
unlikely, however, that this criterion can be sensibly ap-
plied to a broadband initial spectrum of long-wavelength
modes.

It should be noted that, although the model appears to
give sensible results for the net perturbation amplitude,
we have not checked whether the calculated spectrum is
at all in accord with experiment or with simulation. It is
possible that the actual spectrum is more heavily dom-
inated by the longer wavelengths, these having been seed-
ed in their growth by the prior growth of the shorter
wavelengths. It may be that our model takes into ac-
count the contribution of the short wavelengths, which in
reality could contribute by seeding the growth of long
wavelengths, by letting them grow somewhat more than

they should. (Note that we have neglected at least one
physical effect that could slow the growth of short-
wavelength modes: the density gradient introduced by
the growing mixed region. ) The model has been normal-
ized to give the sum over modes correctly for one situa-
tion (constant acceleration and planar geometry). If it is
getting the spectrum wrong, our hope is that this approx-
imate way of taking into account the contribution of the
short wavelengths can be extended to other situations as
well. We conclude with some comments regarding the
applicability of the model proposed here.

First, the model cannot be meaningfully applied if the
perturbation growth significantly changes the zeroth-
order physics. In that case, the notion of calculating the
growth of individual modes with linear analysis is clearly
wrong. Equation (43) represents one attempt to compen-
sate for such an effect, but such ad hoc fixes are of limited
generality.

Second, we are assuming that the long-wavelength
modes are predominantly seeded by the physical initial
amplitudes rather than by nonlinear mode coupling. Of
course, it is difficult to ascertain the validity of this in any
particular situation (if it is ever valid). But one would ex-
pect the model to give incorrect results for situations
where the long-wavelength modes have very small initial
amplitudes —i.e., decades smaller than the initial ampli-
tudes of a broadband of short-wavelength modes.

The third qualification regarding the applicability of
the model is a practical one. We are limited in our ability
to calculate the growth of single modes and to determine
their initial conditions. Precise calculations are not
necessarily needed. In the above examples we saw cir-
cumstances where multiple orders of magnitude in initial
condition or growth factor only changed the bubble am-
plitude slightly. Nevertheless, there may be cir-
cumstances where one is unable to obtain sufficiently ac-
curate single-mode characteristics.

In general, the model appears to be most useful for
making estimates of multimode perturbation growth in
circumstances in which (i) there is not too much growth,
so that the model is only a small extension of linear
analysis and (ii) the growth which does occur is dominat-
ed by low I modes, because these are easier to simulate
with existing codes. Thus the model is especially well
suited for projecting performance of high gain future ICF
capsules, in which ablative stabilization plays a more im-
portant role than in many current targets. This applica-
tion alone is of considerable importance.
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