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The connection between the modulational instability (MI) and the evolution of a higher-order sol-
iton is described. The amplitude ripples that appear on the higher-order soliton can be regarded as
a MI. A perturbation theory for higher-order solitons is developed to show differences between the
cw MI and the pulsed MI. Initiation of the MI ripples on the soliton pulse is produced by MI
amplification of the Fourier components of maximum gain. This phenomenon is corroborated by
the study of the breakup of super-Gaussian pulses. Higher-order effects such as the third-order
dispersion, shock, and the self-induced Raman effect in a nonlinear Schrédinger equation (NLS) are
studied from the point of view of the MI process. It is shown that the Raman effect can enhance
generation of the ripple because the parametric noise can build up faster than by MI alone as de-

scribed by the NLS without perturbations.

I. INTRODUCTION

The modulational instability (MI) in optical fibers is of
great interest for the generation of pulse trains with a
THz repetition rate.! We recently succeeded in achieving
a modulation instability laser (MIL).> The MIL is
pumped by mode-locked pulses of which the wavelength
is in the negative group-velocity dispersion (GVD) regime
(negative GVD).

Since the pump pulse is of relatively high peak intensi-
ty, the pump-pulse area corresponds to a very-high-order
soliton. When the pump pulse is represented by a secant
hyperbolic of area N times (N integer) the area of a funda-
mental soliton, the time evolution of this high-order soli-
ton must be describable as a MI, at least before large-
signal set in. The MI consists of three waves.! One is the
pump wave, which is much larger than the Stokes wave
(the second wave) and the anti-Stokes (the third wave).
The theory of MI is only valid under the condition that
the Stokes and the anti-Stokes amplitudes are much
smaller than that of the pump.

In the present paper, we study numerically and analyti-
cally how the nonlinear Schrodinger equation (NLS) pre-
dicts the growth of the amplitude ripples in one pass
along the fiber. With an excitation by a high-order soli-
ton (N =40-300), it is shown that the ripples on the
pump soliton can be well explained with MI for a certain
propagation distance and pump power. A perturbation
theory for higher-order solitons is developed and
differences between the higher-order solitons and the MI
are discussed. In the next step, we show how the ripples
grow up from the initial pump pulse. It is important to
know how the ripples can be initiated without the input
Stokes component. To investigate this, a super-Gaussian
pulse (m =2) is utilized in the computation because it has

39

a flat top and fall offs on both wings of the pulse. It is
shown in Sec. V that there is no ripple generation initially
on the flat top because the self-phase-modulation excita-
tion is much smaller. Higher-order effects on the solition
such as third-order dispersion, shock, and the self-
induced Raman effect are described in Sec. V1.

II. EXCITATION OF HIGH-ORDER SOLITONS

We described experiments on the MIL pumped by
mode-locked pulses from a color-center laser, the wave-
length of which was set in the negative dispersion re-
gime.? The pump power of 20-40 W for the MIL is
much larger than the N =1 soliton power of 10-20 mW,
corresponding to a pulse width of 13 ps and a GVD of
1 ps/kmnm. It can be expected that the MIL on the
pump pulse is equivalent to the initial evolution of a
very-high-order soliton.

The nonlinear Schrodinger equation is

L Ou _ 1 du )

( l)aé_ 287_2+|u|u, (1)
where the first term on the rhs (right-hand side) of Eq. (1)
is due to GVD and the second term is due to the self-
phase-modulation (SPM). The solution of the lowest-
order soliton (V=1 soliton) is

u(E,7)=2nsech(2yr)e 7% | )

The initial value problem has been solved by Satsuma and
Yajima,® and it has been shown that N soliton exists
which satisfies

A+i>N (3)
for an input pulse u(0,7)= A4 sech(r). Here, 7 is set
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equal to 1 as a standard soliton. The Nth-order solition
power Py, is related to the N=1 soliton power Py

Py=NP,_,. 4)

Figures 1(a)-1(c), corresponding to N=55, 58, and 61,
respectively, show the computed evolutions of higher-
order solitons for different N numbers. The fiber length is
fixed at 330 m. The nonlinear index n, of the fiber was
taken to 3.2X 10”2 m?/W. In Fig. 1, upper, center, and
lower traces show field amplitude E, chirp, and phase
change with time. A dashed curve shows the input pulse
waveform. To fit our experimental results, the full width
at half maximum (FWHM) of the input sech pulse
Tewnm» Of 13 ps, and GVD of 1 ps/km nm were utilized.
It is seen in Fig. 1 that the wings of the field waveform
become steeper as it propagates down the fiber, and the
chirp in the wings is rather smooth. With N=58, small
ripples appear on the top of the output pulse, resulting in
small changes in the chirped spectrum. With an increase
of the pump power to N=61, we can clearly observe rip-
ples like those of the MI and the chirp and the phase
change accordingly.

The ripples are generated through the following pro-
cess. When the self-phase modulation results in a chirp,
the leading part of the pulse has a lower frequency and
moves more slowly than the lagging part of the pulse at a
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FIG. 1. Waveform changes of the higher-order solitons for
different N number at /=330 m. Traces (a), (b), and (c) corre-
spond to N=55, 58, and 61. Upper, center, and lower traces
show field amplitudes |E|, chirps, and phase changes with time
in each N number, respectively. Dashed curve shows the input
pulse waveform.

higher frequency. The two components meet at the
center and produce a ripple. This ripple grows most rap-
idly for the synchronous Stokes and anti-Stokes frequen-
Cy components.

The solition period Z, is related to the normalized dis-
tance Z, via

TFWHM
bl

(5)

where A is the wavelength, Tpwyy is the full width at half
maximum of the input pulse, and D is GVD. Thus, Zgis
calculated to be 67.1 km. Therefore, a typical fiber
length for a MIL is much shorter than Z_,. For example,
the fiber length of 330 m corresponds to 4.9 X 10‘3ZSP.
Figures 2(a)-2(c) correspond to spectra for Figs.
1(a)-1(c), respectively. In Figs. 2(a) and 2(b), although
the spectrum of the pump soliton pulse is broadened
through SPM, no significant sideband signal appears in
the spectrum. In Fig. 2(c), there appear small sidebands
and the spectral width of the pump pulse is further
broadened. The vertical axis of the figure is 100 times ex-
panded in Fig. 2(d), where two sidebands are clearly seen.
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FIG. 2. Spectra for Figs. 1(a)—1(c). The vertical axis of (c) is
100 times expanded in (d).
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In the next step, we show how the ripples grow along
the fiber under a fixed pump power of N=61. Figures
3(a)-3(c) correspond to solition waveforms at fiber
lengths of 270, 300, and 330 m. Spectra for Figs. 3(a) and
3(b) are shown in Figs. 4(a) and 4(b). From Figs. 3 and 4,
it is seen that ripples gradually build up along the fiber
entirely due to the spectral components of the high-order
solition without an addition of any noise components.
From the sideband spectral amplitude at /=330 m in Fig.
2(d) and that at /=300 m in Fig. 4(b), the amplitude gain
of the ripple is numerically estimated to be about g=0.1
m~!. When one attributes this to the MI process, the
amplitude gain of the MI is given by"?

[4] NZPN:I

gmax=7n2 7TW(2) > (6)

where W, is mode size and Py, is the N=1 soliton
power given by*

A |D|
mien) Thwhm

Py_,=0.776 TW3 . @)
Here the Py, is calculated to be 14 mW and therefore
N2Py_, is 52.1 W. For W,=5 um, g, is calculated as
0.09 m ! and is in good agreement with the above value.

T~

FIG. 3. Waveform changes for the higher-order solitons at
different fiber lengths. (a), (b), and (c) correspond to fiber
lengths of 270, and 300, and 330 m, respectively. N is kept at
61. Upper, center, and lower traces show field amplitudes E,
chirps, and phase changes with time for each fiber length, re-
spectively. Dashed curve shows the input pulse waveform.
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FIG. 4. Spectra for Figs. 3(a) and 3(b).

III. MODULATIONAL INSTABILITY
AND HIGHER-ORDER SOLITONS

In this section, we investigate how the ripples on the
higher-order solitons are related to MI. The modulation
frequency f in the MI process is given by!2

1/2
ny NZPN:1

kll 7TW(2)

=1
2

(9]

S - (8)

The ripple frequencies on the higher-order solitons and
the theoretical fit of MI are shown in Figs. 5(a) and 5(b)
as functions of |D|. The solid lines are theoretical f
from Eq. (8). Here N is set at N=55 with |D|=1
ps/km nm, corresponding to a pump power of 42.9 W in
Fig. 5(a) for Tewym of 13 ps and W, of 5 um. Open and
closed circles refer to fiber lengths of 300 and 350 m,
where it is clearly seen that those results agree well with
the MI frequency f),. Strictly speaking, there is a
difference between f ;. and fyy in that the ripple fre-
quency changes along the fiber, while f) is fixed. At
shorter fiber lengths, the f;,,. is close to fy;. These
features are discussed theoretically in Sec. IV. It is also
seen that the ripple frequency starts to deviate from the
MI frequency around |D|=1 ps/km nm.

These results demonstrate a relationship between the
ripple duration and Tgwyym- The following condition is
required, in order that the ripples be interpretable in
terms of MI:

S eipple <<1/Trwum - 9)
Then, one has
fMl :fripple for I <<Zsp . . (10)

Closer agreement between f;,. and fyy is obtained in
Fig. 5(b) when N is set at 70 at |D|=1 ps/km nm corre-
sponding to Py =67.4 W and the fiber length is 223 m.
The fiber length is shorter than those in Fig. 5(a).

Figure 6(a) shows the dependence of f,;,,. on soliton
number N, where ®, O, A, and O correspond to fiber
lengths of 200, 300, 330, and 360 m, respectively. The
very-high-order solition case at shorter propagation dis-
tances is given in Fig. 6(b). Theoretical curves for [
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FIG. 5. Relationship between f ;. on the higher-order soli-
tons and the theoretical MI frequency as a function of |D|. For
5(a), N is kept at 55, with [D|=1 ps/kmnm. Open and closed
circles refer to fiber lengths of 300 and 350 m. For (b), Nis 70 at
|D|=1 ps/km nm and the fiber length is 223 m.

are also given in the figures. It is clearly seen that f
depends on fiber length and it becomes closer to fy
when the fiber length is short and N is large. In other
words, fipe i a function of fiber length for a fixed N,
which is quite reasonable because interaction forces
among the N =1 solitons forming out of this ripple
changes along the fiber. Although there are weak second
sidebands at different frequencies, they were neglected.
In the region 1<<Z, f,. increases with increasing
length of the fiber.

For comparison consider the case of infinite Tpwims
i.e., the cw case, which corresponds to a pure MI condi-
tion. Then, the N=1 soliton goes to zero and, therefore,
N becomes infinite for a fixed pump power. Z,, also goes
to infinity. These conditions can be approximated by
higher-order solitions of very large N and by evaluating
Sripple at relatively short fiber lengths. This result is
shown in Fig. 6(b), in which f,;,,. agrees well with the
theoretical f ;.
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FIG. 6. Dependence of f;,, on soliton number N. In (a), @,
O, A, and O correspond to fiber lengths of 200, 300, 330, and
360 m, respectively. In (b), fi,p. for higher N numbers
(50-300) at shorter fiber lengths are given. Solid lines in (a) and
(b) show theoretical fy;.

IV. PERTURBATION THEORY
ON HIGHER-ORDER SOLITONS

We develop here a perturbation theory of higher-order
solitons and discuss how the excitation of the solitons re-
lates to MI. A difference between the cw MI and the
pulsed MI is also discussed.

Putting the soliton waveform u as

u=U(&,1)elED (an

and inserting into Eq. (1), one obtains the following two
equations: From the real part,
2

f 19U _1,13f 3
s 202 29 % +U (12)
and from the imaginary part
_3U_1,8f 33U a3
o 2 372 dr 97
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By expanding U as a power of &, U(&,7) is written as
ugn=73 0,n¢"
n=0

=01+ 0,(nE+ Oy(r)E+ -+ . (14)

Noting that derivatives of U and f with respect to 7 in
higher-order solitons are smaller than those in lower-
order solitons, we neglect the first two terms on the rhs of
Eq. (12) and approximate the equation by

Sf 2
ae =V (15)

thus,
— [ Srr2 e ,
fien= [ Uk, nde
=03+0,0,8+10,+20,0,)¢
+40,0,+0,0,)¢

+ L 03420,0,+20,0,)6+ --- . (16)
Putting Eqgs. (14) and (16) into Eq. (13), we obtain the fol-
lowing relationship for each coefficient of §&”"
(n=0,1,2,...):
U,=0 for &, (17a)
O,=—HOyO3+10,0%] for &', (17b)
0,=0 for £, (17¢)
U0,=12040,0,r+ 0503y +10,0,0,)
+10,(02)"] for & . (17d)

It is obvious that ﬁn for n odd is always zero because am-
plitude effects are even, phase effects are odd, in an ex-
pression in terms of &.

With
U,(7)=N sech(r) , (18)

we have

U,(1)=N3sech’(7)[ —2 tanh?(7)+ L sech?(r)] , (19)

o

U4(m)=N7sech®(7)[ ] — 42 tanh®(r)+ 1% tanh*(7)] .

(20)

Setting 7=0, we can estimate how the peak amplitude
changes along the fiber. Hence

U, 7=0)=N+INE+UNE+ - | 21
For the phase factor f(§,7)
fEN=03+20,0,82+103+20,0,)&+ - -

(22)
Similarly, f(&§,7=0) is given by
fUET)=NYEFLINEHINSE+ - (23)

The amplitude change U(§,7=0) and phase change
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f(&,7=0) thus obtained are shown in Figs. 7 and 8, re-
spectively, where the N numbers are 50, 70, 100, and 200.
The solid lines show the exact evolution of U(£,7=0)
and f(§,7=0) calculated by NLS. Dotted lines are due
to the perturbation theory and dash-dotted lines are the
case when df/36=U? and 98U /3E=0, resulting in
U(§)=const and f=UZ?E. According to these figures,
the present perturbation agrees well with the direct calcu-
lation from the NLS. Higher N numbers lead to closer
agreement, as expected. The amplitude and the phase
change moderately at an early stage of the soliton propa-
gation. However, the solitons start to have rapid changes
at a certain distance, at which the coherent MI process
disappears. We conclude that MIL can be achieved when
the change of U(,7) as a function of £ is small and
Sf(&,7) follows approximately U2€.

When the second and the third terms of Eq. (21) are
smaller than N, one may put Eq. (21) into Eq. (8). Thus
we obtain a modified MI frequency f;(£), which varies
along the fiber

&) =(1+LIN2E)f oy (24)

This means that f(£) increases by a factor of 1+ 1N2£?
as a function of distance. Figure 6(a) can be explained by
the present results. Let us consider how the MI gain
changes along the fiber. From Egs. (6) and (8), we have
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FIG. 7. Amplitude changes of the higher-order solitons as a
function of £. N numbers are 50, 70, 100, and 200. The solid,
dotted, and dash-dotted lines show the exact calculation of
NLS, the perturbation theory, and the case of no group-velocity
dispersion, respectively.
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FIG. 8. Phase changes of the higher-order solitons as a func-
tion of £. The conditions are the same as in Fig. 7.

— k"0 25)

gmax

Putting Eq. (24) into Eq. (26), g,,...(&) can be given as
Gmax(£)=(1+LIN2E2? k" |Q}y
=(14+N2E)g nax » (26)
and hence a total gain G, is given by
Gonan = [ 8man (£)dE
=(1+1IN2E)(gmaxk) - 27

There are many combinations between N and & to keep
the gain constant in Eq. (27)

N E(1+1NE)=C, (28)
where C is constant. Thus N2£% can be approximated as
N2E= — 34 (34 3£C)172
=1£C . (29)
Putting Eq. (28) into Eq. (24), we have
SmiE)=0+LCE fyy - (30)

Accordingly, when the MI gain is kept constant, f (&)
linearly deviates from f);;. This has been shown in Fig.
6(b), in which f (&) for shorter length agrees well with
theoretical fyy. However, fy (&) deviates from [y
when £ is long.

In addition, we can speculate from Eq. (27) that a com-
bination of smaller N and larger £ gives larger MI gain
than that of larger N and smaller £ when N2&, which
gives MI gain at cw pump wave, is kept constant. We
have investigated two cases to verify this result. One is
N=50 and /=400 m, and the other is N=300 and /=12
m. They are shown in Figs. 9(a) and 9(b), respectively. It
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(b) 3.7 ps/DIV

FIG. 9. Comparison of the buildup distances of the MI for
N=50 and the N=300 solitons. (a) N=50; (b) N=300.

is seen that both pulses have MI ripples. To investigate
detailed growth of the ripples, Fourier spectral changes
of the Stokes waves corresponding to Figs. 9(a) and 9(b)
are given in Figs. 10(a) and 10(b), respectively. Here, we
find that the gain of the case (a) builds up faster than the
case (b). The buildup of the Stokes for N=300 soliton
starts at 12 m, which corresponds to /=432 m for N=50
soliton when keeping N2& constant. However, the Stokes
builds up in shorter distance around 400 m. This result
agrees with our prediction. The physical interpretation is
that the amplitude change of the lower-order solition is
larger than that of the higher-order soliton, so that the
MI gain for the lower N and longer £ becomes larger.

V. INITIATION OF THE MI RIPPLES
IN HIGHER-ORDER SOLITONS

The MI under pulsed operation is initiated by the
Fourier components of the pulse, so that the shape of the
pump pulse plays an important role in generation of the
modulation ripples. Figures 11(a)-11(c) show how the
MI ripples grow when the pump pulse is a super-
Gaussian (m =2) which has a relatively flat plateau at
the center of the pump pulse. Traces (a), (b), and (c) are
for fiber lengths of 280, 320, and 350 m, respectively.
The amplitude of the pulse is chosen to correspond to
N=60. The dashed curve shows the original waveform,
where TpwpmMm 1S set to 14.8 ps. The initial envelope grad-
ually changes in Fig. 11(a), and both sides get sharpened.



5774

f 2.2 THz/DIV
(a)

14
13
12
J— 11 o
| 10
9 ,,’39
8 5
— 7 m

f 4.3 THz/DIV
(b)

FIG. 10. Comparison of the Stokes spectra for N=50 and
N=300 solitons along the fiber. (a) N=50, (b) N=300. MI for
N=50 builds up faster than that for N=300 when N2¢ is kept
constant.
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FIG. 11. MI ripple growth for a super-Gaussian input. The
peak power corresponds to N=60. Traces (a), (b), and (c) refer
lengths of 280, 320, and 350 m, respectively.
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When the pump pulse propagates further, small ripples
rapidly appear on the steeper parts of the envelope. Here
it should be noted that no ripples are observed at the
center of the pump because there exists no SPM at the
center (the center is flat at first). With further propaga-
tion along the fiber as shown in (c), the modulation rip-
ples build up over the entire pump pulse.

VI. PERTURBATIONS ON MI RIPPLES
IN HIGHER-ORDER SOLITONS

To achieve pure MI ripples on a higher-order soliton,
it is important to increase f ;.. by decreasing the GVD
value, which results in decreasing the N=1 soliton ener-
gy. This is equivalent to increasing the N number. When
the soliton energies are small, they are likely to be dis-
turbed by perturbations such as third-order dispersion
k', shock-term, and the self-induced Raman effect.’
When these perturbations are incorporated in NLS, Eq.
(1) is modified as

du 1 d%u
(=) ——=———|ul?u
ot 202 ¥
_ . k" §3_u . 2 3 2
l6'k”|7'0 87'3 1(007'0 aT(Iu' u)
_Tn 8, n
TouaTlul , (31)
|E|
(d)
4 - (c)
/. .j\. (b)
) (a)
.4 ps/DIV
CHIRP
© 64[
s 0
|3—64l
PHASE
> UANAN
¥4
8

FIG. 12. MI ripple growths for perturbed higher-order soli-
tons. Traces (a), (b), (c), and (d) correspond to the cases without
perturbation, with k’’ (k"'/6|k"|7,=1.5X10"?), with shock
term (2/woro=2.2X107%), and with self-induced Raman effect
(1, /To=8X107*), respectively.
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where , is angular carrier frequency of the pulse
10=(k"|/20)""? (=Tgwum) Which satisfies 7=t /7, and
£=z/z,, and 7, is a relaxation time of the nonlinear in-
dex which satisfies

dAn(t) _ An(t) "2

=200

ar . |E(1)]?. (32)

n Tn

In our experiments, D (=2mck” /A?) is —1 ps/kmnm
and

2
oD | _ 2. |27 -
an |~ AP | |k
is —0.052 ps/km nm?. Then we have k"’ =—1.3X 10

s2/m, k"' =8.7X10"*! §3/m, and 7,=7.4 ps (Tpwpm =13
ps). Thus k' /6|k" |7yis 1.5X 1073, For the shock term,
2/wyrg is 2.2X 1074 for 7,=7.4 ps and A=1.55 um. The
Raman term 7, /7, is 8 X 10~ * by using 7, of 5.3 fs.®

Figure 12(a) shows MI-like ripples when no perturba-
tions are applied, where N=60 and 1=340 m. At the top
of the waveform, clear ripples are observed. With an ad-
dition of k'’, the waveform with the same N and !
changes to that of Fig. 12(b), in which the ripple becomes
four times as large, and asymmetry is also observed.
When the shock term is added [Fig. 12(c)], the waveform
has changes similarly, where the asymmetry is smaller
than that in Fig. 12(b) although the ripple amplitude is
larger. When the Raman term is added [Fig. 12(d)], the
ripples are considerably amplified [seven times larger
than that in (a)]. These results mean that one of the most
effective perturbation terms for the ripple generation is
the Raman term. As pointed out by Tai ez al.,” the Ra-
man term is the most crucial for soliton fission. This has
also been proven from the present results.

It is also found from Fig. 12 that the MI-like ripples
are enhanced when the perturbations are added. This is
due to the fact that zero crossing point of the nonlinear
frequency shift is moved to the slope of the soliton pulse,
while it occurs at the center of the pulse when no pertur-
bation is applied. Accordingly, the amplitude modula-
tion due to an optical wave breaking® is strongly
enhanced because the phase changes rapidly with time
when the zero frequency shift occurs on the slope of the
pulse. Hence, the Stokes and anti-Stokes build up faster
than in the case of no perturbation.

The spectral changes corresponding to Figs.
12(a)-12(d) are shown in Figs. 13(a)-13(d). A small
asymmetry between the Stokes and the anti-Stokes spec-
tra is observed in (b) and (c). In the case of the Raman
effect shown in (d), the asymmetry between the Stokes
and the anti-Stokes amplitudes is further enhanced and
the Stokes signal builds up strongly. For the self-induced
Raman effect, caused by a noninstantaneous response of
the nonlinear index, the Stokes amplitude is amplified
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FIG. 13. Frequency spectra of Figs. 12(a)-12(d). Vertical
axis of (a) is 100 times extended and that of (c) is + reduced for
convenience.

and the anti-Stokes amplitude is absorbed. Nevertheless,
the anti-Stokes component is amplified somewhat in (d)
compared with (a). Because it is amplified through the
MI process and absorbed by the Raman effect.

VII. CONCLUSION

It has been shown that the amplitude ripple which ap-
pears on a higher-order soliton can be regarded as a MI
process, provided that the ripple duration is much short-
er than the pulse duration of the pump. The ripple fre-
quency generated in a higher-order soliton at shorter
propagation distances agree well with the MI frequency.
This has also been proven by a simple perturbation
theory. The initiation of the MI ripple on the pump is
achieved by spectral components of the pulse and do not
require any spontaneous emission. It has been shown
that the self-induced Raman effect can enhance the
growth rate of the MI ripples, because an asymmetric
amplitude change occurs on the wing of the pump pulse
and resultant phase change initiates the MI ripple.
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