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We describe a method suitable for the design of broadband propagators in two-level or pseudo-

two-level systems via amplitude-modulated irradiation. Irradiation sequences are described in

terms of a Fourier expansion. The Fourier coefficients of the expansion are used to calculate the

time-independent Floquet Hamiltonian which represents the time-dependent Hamiltonian. This
transformation removes the difficulty of integrating the time-dependent equations of motion. The
infinite Floquet matrix is approximately diagonalized by an application of perturbation theory. A

set of infinite matrix operators is introduced which assists in the diagonalization. The
perturbation-theory expressions are used to derive approximate expressions for the propagator.
Successive terms in the perturbation expansion can be nulled by considering additional Fourier
coefficients. Broadband-irradiation sequences with low mean power or low peak power are de-

scribed corresponding to coherent excitation in two-level systems through the Aip angles 45', 90',
135', and 180' ~

I. INTRODUCTION

In this paper we present a general technique for the
design of arbitrary broadband propagators in two-level
systems with amplitude-modulated pulses. By broadband
it is implied that over some range of offset values from
the resonance condition the propagator behaves (to
within some specified, if necessarily arbitrary, criterion)
independently of offset. The excitation sequences we de-
scribe are of finite extent in time and constructed, be-
cause of their theoretical derivation, by adding together
an on-resonance irradiation field (which guarantees that
for offset values of zero the two-level system undergoes
the desired evolution) with a series of sinusoidal modula-
tion sidebands. Thus the irradiation schemes correspond
to a very special set of amplitude-modulated pulses. The
heart of the theoretical problem which we address in this
paper is how to efficiently analyze the effect of a time-
dependent irradiation sequence so as to be able to make
predictions about which modulation schemes will be in-
teresting or effective.

Our motivation in this work, and the inspiration for
our efforts, has been the introduction in recent years of a
variety of composite pulse sequences for use in nuclear
magnetic resonance (NMR). ' Such composite pulses
have been suggested and implemented for a number of
special cases; in particular, for use either where broad-
band excitation is desired (i.e., where the propagator is
independent of resonance offset) ' or in situations where
narrow-band excitation is required (i.e., where the
propagator is designed so that its dependence on offset
near the resonance condition is strong). These pulses are,
of course, only special cases of the more general and
difficult case of describing a desired response and then
designing the pulse sequence which will result in that
response curve. No general solution is known to the
latter problem.

Most of the previous work is derived from the field of

NMR, which is also our field of specialization. The
theoretical background most often assumes that the sys-
tem can be described by a pair of interacting energy levels

only, and therefore all of the results are largely transport-
able to coherent optical spectroscopy even if our treat-
ment is presented in the language more familiar to mag-
netic resonance. In addition, while the vast majority of
composite pulses have been designed for the important
case of 180' pulses, which are particularly useful for pop-
ulation inversion and in heteronuclear decoupling, ' in
the work we present in this paper such pulses are derived
as only a special case of a much more general theoretical
presentation. To the best of our knowledge, there exists
only one other similarly general treatment in the litera-
ture. " Furthermore, because of the relative under-
development of efficient theoretical methods for the cal-
culation of the effect of continuously time-dependent
fields, there are relatively few composite pulses designed
where the intensity as well as phase of the irradiation are
allowed to vary with time. ' ' ' Nonetheless, the poten-
tial of amplitude-modulated pulses has been amply
demonstrated even though only a small number of such
pulse sequences have been introduced. Our expectation is
that because constant-amplitude pulses are only a special
case of the time-dependent pulses we discuss in this pa-
per, the methods we present here should prove more
efficient; i.e., provide equivalent excitation behavior with
a smaller investment of irradiation power. We have pre-
viously presented some of the preliminary results of this
investigation elsewhere. '

A. Background from nuclear magnetic resonance

For both theoretical and technical reasons, most pulses
discussed in the literature and implemented in the labora-
tory are of constant intensity and vary only in phase.
Nonetheless, even those few compensated pulses which
exploit the additional parameter of amplitude modulation
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have been demonstrated to be very powerful, and many
are routinely implemented in magnetic resonance imag-
ing' (MRI), where optimum performance is directly re-
lated to commercial profitability.

The realization that a sequential application of a set of
rf pulses can generate responses inaccessible from simple
strong or weak irradiation is not new. The idea of selec-
tive and narrow-band excitation, for example, is already
more than ten years old. Redfield, Kunz, and Ralph'
developed pu1se sequences which allow for presaturation
of the solvent line which may interfere with the interpre-
tation of high-resolution NMR spectra. More recently
these ideas were extended by Hore' and by Turner, '

who developed new narrow-band solvent-suppression
pulse cycles, and by Morris and Freeman's DANTE cy-
cle."

Broadband sequences, and in particular broadband
spin-inversion pulse sequences, have also found wide ap-
plicability because of their relevance to the important
problem of efficient heteronuclear decoupling in high-
resolution NMR. '' Levitt and Freeman designed the
first very important composite ~ pulses used in decou-
pling schemes, which provide compensation for the un-
desirable effects of off-resonance irradiation and rf inho-
mogeneity. ' Further developments in decoupling
schemes based on the theoretical approach introduced by
Waugh led to the very efficient wALTz sequences derived
by Shaka, Keeler, Frenkiel, and Freeman.

The demand for compensated pulse sequences is not
limited to the problems of solvent suppression or decou-
pling; interest in such schemes is far more general. Thus,
in parallel to developments in decoupling schemes, a
variety of composite pulses have been presented which
provide compensation for finite Rip angles other than
180. ' (By finite we imply also that the pulse is limit-
ed in extent in time and requires only finite-irradiation
fields. )

The subset of compensated pulse sequences where am-
plitude modulation is also exploited is significantly more
limited. Amplitude- and phase-modulated excitation
pulses based on principles related to self-induced tran-
sparency were demonstrated to invert spin-magnetization
vectors over a range of off-resonance values. ' ' Slice-
selective narrow-band pulses for spatial localization in
MRI are routinely amplitude modulated. ' The Hermite
pulses introduced by Warren have been used for accurate
narrow-band inversion of inhomogeneously broadened
lines.

Almost all composite pulse sequences are developed
based on some theoretical approach to the correction of
imperfections in or undesirable aspects of normal pulse
performance. Some sources of imperfections are in-
herent; no technical improvements can guarantee irradia-
tion on resonance at several frequencies simultaneously in
samples characterized by a range of chemical shifts.
Compensation for inevitable imperfections of whatever
source can be at least partially achieved by combining
small pulse units intelligently so that errors tend to can-
cel rather than propagate. The fundamental difficulty in
designing compensated sequences is that, because almost
all interesting experiments are performed using pulses

equal to or greater than 90, linear-response theory can-
not reliably be applied. Furthermore, because of the non-
commutativity of rotations about several directions, na-
tive intuition tends to be misleading. Therefore, in most
cases of broadband excitation, average Hamiltonian
theory has been applied both to uncover the basic build-
ing blocks of composite pulses, and to achieve proper
compensation for undesired effects. (Notable exceptions
to this statement are Waugh's exact theory of decou-
pling, sequences derived from self-induced transparen-
cy, where the irradiation sequence is given as an exact
solution to the Bloch differential equations, ' ' and to
the slice-selective MRI sequences where the approach ap-
pears to be entirely a numerical optimization. '

)

Application of average Hamiltonian theory (AHT) re-
quires the evaluation of successive terms in the Magnus
expansion. For sequences where the field amplitude is
fixed and only the phase varies in time, AHT seems a
convenient if often times tedious method for calculating
the effective Hamiltonian which describes the evolution
of the spin system. However, we have found that this
analysis scheme may prove cumbersome when
amplitude-modulated irradiation fields are introduced
into the Hamiltonian. That most of the other schemes
which utilize or analyze the impact of amplitude-
modulated fields are derived without reference to AHT
seems to confirm our view. It is therefore desirable to de-
velop a different theoretical approach more appropriate
to the analysis of such pulse sequences. Such a theory
should provide a convenient way of expressing the effects
of the rf-irradiation fields on the spin system. It should
make it also possible to design new and more efficient
composite pulses exploiting modulation of its amplitudes.

In this paper, it will be shown how the Floquet formal-
ism satisfies many of these requirements for the two-level
system which we will represent as a spin- —,

' interacting
with rf irradiation. Previously, Maricq has demonstrat-
ed that the Floquet formalism provides an alternative
method equivalent to average Hamiltonian theory for the
calculation of effective Hamiltonians of pulse cycles. Our
version of the Floquet treatment, which is based on
Shirley's perturbative approach, ' is fundamentally
different in its expression, and it is far from clear that a
similar proof of its equivalence to either Maricq s treat-
ment or AHT exists.

While the Floquet theory, like linear-response theory,
is predicated on an initial step which expresses A(t), the
time-dependent Hamiltonian, as a Fourier expansion, it
makes no call to linear response and is more generally
correct. We have previously demonstrated the use of
Floquet theory in the prediction and explanation of a
variety of nonlinear effects in NMR spectroscopy, includ-
ing N-photon pulses. Because the Floquet theory is
designed explicitly for the analysis of periodic Hamiltoni-
ans, it is also ideally suited for the description of various
magic-angle sample spinning (MASS) experiments. In
this paper we extend the application of the Floquet ap-
proach in order to treat arbitrary (but finite in time) irra-
diation sequences on two-level systems, and we apply that
extension of the theory to the search for efficient broad-
band sequences where compensation for resonance offset
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is accomplished by amplitude modulation of the irradia-
tion. The same basic theory can also be applied to the
problem of narrow-band excitation, and to broadband
decoupling.

Much of this work has been influenced by an important
recent paper of Shaka and Pines, " where they demon-
strated a general approach to the design of broadband-
excitation pulses using the machinery of average Hamil-
tonian theory. Their composite pulses are restricted to
single-phase irradiation of constant strength (while alter-
nating in amplitude between plus and minus). One ques-
tion which one might ask is whether the restriction that
the strength of the irradiation field is fixed unnecessarily
increases the required irradiation power. On the face of
it, it seems reasonable to expect that allowing amplitude
modulation should reduce the required power, and
perhaps significantly (as we have previously demonstrat-
ed elsewhere). ' The Floquet approach provides the tools
to find these phase- and amplitude-modulated pulses, and
to optimize the efficiency of such pulses.

This is in itself a formidable task with no general solu-

tion. A computational approach may always be adopted;
however, this severely restricts the opportunity to utilize
theoretical insights. It is therefore of great importance to
be able to perform at least part of the diagonalization
procedure analytically.

In this paper we demonstrate how far in the analysis of
amplitude-modulated irradiation sequences it appears
possible to perform such a diagonalization. To do so, we

introduce a set of infinite-matrix operators which simplify
some subsequent mathematical manipulations. Using
these operators we demonstrate the complete diagonali-
zation of the Floquet Hamiltonian for linearly polarized
irradiation sequences on resonance. In the more interest-

ing case of off-resonance irradiation, preapplication of
this diagonalizing transformation creates a new infinite

matrix which is more readily suited to a treatment based
on perturbation theory.

C. Outline

B. Background to the Floquet formalism

This equation has the formal solution

p(t)=U(O, t)p(0)U '(O, t), (1.2)

where U(O, t), which is the propagator for p, satisfies the
equation

U(0, t) = —i&(t) U(0, t),G

dt

with formal solution

U(O, t) = T exp i I &(—t')dt'
0

(1.4)

T represents the Dyson time-ordering operator.
Translating the rather simple formal solution represented
by Eq. (1.4) into a useful solution is, however, a fairly
difficult problem which has been extensively treated else-
where in a variety of contexts. In NMR the treatment
which is best known is average Hamiltonian theory.
The Floquet formalism provides an alternative approach
to providing a useful solution. The heart of the formal-
ism is a transformation which takes the time-dependent
Hamiltonian &(t) into the time-independent Floquet
Hamiltonian H~. The operator HF has as its basis set all
direct products of spin-state operators and Fourier-mode
numbers. Because the Fourier-mode numbers can take
on all possible values —~ ~n ~ ~, H~ is of infinite
dimensionality. The evolution operator U(O, t) is then
given by

U (O, t)= g (pnme ~qO)e'""'

Evaluation of Eq. (1.5) requires that H~ be diagonalized.

The equation of motion for the density matrix p which
describes a time-dependent Hamiltonian & is given for-

mally by

dp(t)
di

= —t [&(t),p(t)] .

The rest of this paper is organized as follows. In Sec.
II we derive the Floquet approach to the description of
two-level system evolution under time-dependent irradia-
tion fields. Here we specialize to linearly polarized irradi-
ation, although the more general case of arbitrary irradia-
tion might also be treated (at the expense of considerable
complication of some of the transformation expressions).
In Sec. III the theory is applied to the problem of broad-
band excitation, and we derive a number of highly
efficient sequences. A combination of the Floquet theory
and perturbation theory is used to guide the numerica1
search which ultimately optimizes the detailed perfor-
mance of the sequence. Methods of calculation of broad-
band pulse sequences are demonstrated, and evolution

pathways during the irradiation sequence are shown. We
comment on constraints on the design of low-power com-
posite pulses using the Floquet formalism. Finally, some
extensions of the theoretical approach are discussed. Ex-
perimental examples which verify the theoretical predic-
tions as to efficiency and degree of compensation have al-

ready appeared elsewhere, ' and although additional
measurements where these results are exploited are in

progress they will not be presented here.

II. THE FLOQUET FORMALISM

In this section we describe the application of the Flo-
quet formalism to the evaluation of the response of a spin

system with spin I =
—,
' to an arbitrarily shaped rf-

irradiation sequence. To describe our theoretical ap-
proach, we first reintroduce the Floquet theory in a form
convenient for the description of the spin I =

—,
' sys-

tem. ' Then the elements of the evolution operator
during rf irradiation can be reexpressed in terms of the
Fourier components of the irradiation field and its off-

resonance value. Finally, in Sec. III simple shapes will be
deduced for pulses with broadband-excitation character.
While the initial Fourier analysis of the pulse might sug-

gest that the theory is a variation on the linear-response



5728 G. GOELMAN, S. VEGA, AND D. B. ZAX 39

approach, our treatment preserves the coherent nature of
the problem and treats the interaction of the spin systems
with all applied rf fields simultaneously and completely.

A. The F1oquet Hami1tonian

A spin system with an arbitrarily applied irradiation
field can be represented by its spin Hamiltonian in the ro-
tating frame (in frequency units) as
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where ~ (t) and co (t) are the time-dependent x and y
components, respectively, of the irradiation sequence,
and A~ is the resonance oftset of the irradiation. Where
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(2.3)

(While a number of rotating frames and thus resonance
o6'sets may be defined, in this paper there will always be a
"natural" rotating-frame representation where co„=~*„,
and thus there will be no ambiguity. ) The set of Fourier
coefficients I

co"„ I and I co„ I contains all available informa-
tion about the time-dependence of the irradiation se-
quence, and determines the elements of matrix represen-
tation of the Floquet Hamiltonian HF. Its nonvanishing
matrix elements are

(anlHF Ian &
= ,'b, co+nco, ——

&anlH~IPm & =+—,'(co' „—iaP „),
& P„ I HF I Pn ) = + ,' hen+ n—co,

(PnlHFlam ) =&amlHFIPn )* .

(2.4)

&aklNlak & =k, &pklNIpk & =k,
(aklZ lak +m ) =

—,', (pklZ lpk +m ) = —
—,
'

&«IX lpk+m &= —,', &pklX lak+m &=-,', (2.5)

To simplify some important mathematical manipulations
of this matrix which will allow us to evaluate the expres-
sion given in Eq. (1.5) for the evolution-operator matrix
U(0, r), we introduce here a set of new infinite matrix
operators. Examples of these non-Hermitian operators
are illustrated in Fig. 1, and have nonvanishing elements

FIG. 1. Matrix representations of some of the infinite matrix
operators X, Z;, X;, and P; defined in Eq. (2.5). (a) The diagonal
matrix N, where (anlN Ian ) = (pnINeslpn ) =n. (b) The
block-diagonal matrix Z, , with ( an —1 I Z, I

an )
= —(pn —1IZsi~lpn ) = z. (c) The block off-diagonal matrix

X„with (an —1IX,~Ipn ) =(pn —1IX~i Ian ) =
—,
'. (d) The

block off-diagonal matrix Y, , with ( an —1
I Y, s

I pn )
= —(pn —1

I
Y~~

I an ) = i /2—
HF =cuN —bcoZo+ g co"„X„+g co„Y„, (2.6)

where the sums run over all values of n.

B. The infinite operators

H~ = coN —AcoZo+ g Re(co"„ice„)P„—

Simple commutation laws exist for these operators.
They will prove of great assistance subsequently in the
derivation of the expressions for U(0, r), and therefore
are provided here:

[X„,X ]=0, [X„,Y ]=iZ„+, [X„,N]= nX„,

[Y„,Y ]=0, [Y„,Z ]=iX„+, [Y„,N]=nY„, (2.7)

[Z„,Z ]=0, [Z„,X ]=iY„+, [Z„,N] =nZ„.
These operators are not Hermitian; to write HF as a sum
of Hermitian operators we use the facts that co" „=(co"„)
and ar" „=(ar„")*. Then an equivalent form for Hz would
be

(akl Y Ipk +m ) = —— &pkl Y lak +m ) =— —g Im(co„i co„)Q„, — (2.8)

for integer values of k. Reexpressing the Floquet Hamil-
tonian in terms of these parameters, HF takes on the sim-

ple form
where the Hermitian operators P„and Q„have matrix
elements
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&akl1' Ipk+m &=&pk+ml~ lak&=-,',
(2.9)

(aklQ lpk+m }=(pk+mlg lak)*= ——
e ' AN+ +co„Y„e ' =coN+ +co„Z„.

(2.13b)

——[A, [A, [A,B]]]+ (2.10)

For A =aXo and B = Y„,Eq. (2.10) simplifies to

In most of our applications, it seems preferable to work
instead with the non-Hermitian operators X„, Y„,and Z„
described above.

The commutation relations provided above enable us
to evaluate some useful transformations. Given the cy-
clic commutation relations [Xo, Y„]=iZ„and
[Xo,Z„]= iY—„, it is relatively simple to derive the
transformation of Y„by exp(iaXo). Using the Taylor-
series expansion for exponential operators, and for arbi-
trary operators A and 8, we have

e'"Be '"=8+i [A,B] —,'[A, [A—,BJ]

i aZn —i aZn
e "Zme m (2.14)

This transformation enables us to diagonalize the block-
diagram matrices generated by the transformations de-
scribed in Eq. (2.13). The simple commutation relations
between the N and Z„operators, and Eq. (2.12b) allow us
to write

Hd=exp i ga Z AN+ +co„Z„

As a result of this transformation HF is block diagonal.
(When neither Ice„=Oj nor Ice"„=0},a similar result
might be achieved, but in this more general case the
description of the transformation operator is significantly
more complicated. We leave this possibility for later dis-
cussion elsewhere. } For concreteness we choose I aP„=O].
Since all Z„operators commute, we have further that

i aXo —i aXO
e ' Y„e =cosa Y„+sinaZ„.

Similarly,

iaYo —iaYO
e X„e =cosaX„—sinaZ„.

(2.11a)

(2.11b)

X exp i g—a Z

=coN+ g (ia„neo+co„)Z„, (2.15)

and

s aX —i aX„
e n¹ "=N+ianX„ (2.12a)

Other useful transformations that follow from Eq. (2.10)
include

where Hd is the matrix resulting from this second trans-
formation. The a„coefficients are free parameters.
Where Aco=O, we can choose the a„coefficients such
that

iaZ —iaZ
e nNe "=N+ianZ„. (2.12b)

CO~a„= i
n

n&0 (2.16)

We shall see how combinations of these transformations
[Eqs. (2.11) and (2.12)] allow us to diagonalize H~ in
some simple cases.

C. Diagonalization of H+

In this section we specialize to HF where hco=O and
the irradiation is linearly polarized. HF is then diagonal-
ized by pretransforming, using Eqs. (2.11) and (2.12), via

—i m. YO I2 i n. YO/2
coN + g co„X„e AN+ g ci)„Z„—

(2.13a)

or

and Hd is diagonal. It takes on the particularly simple
form

Hd=coN+cooZo . (2.17)

This further proves the important result that the infinite
diagonal matrix derived from a block-diagonal matrix
whose diagonal elements are given by coN has elements
equal to the diagonal elements of the original matrix.
The eigenvalues of a block-diagonal matrix of the form
coN + g„co„Z„are therefore neo+ —,'coo.

Summarizing these results, for Aco=O the Floquet ma-
trix for an arbitrary linearly polarized irradiation se-
quence can be diagonalized by applying the transforma-
tions of Eqs. (2.13)—(2.15), with values for a as given from
Eq. (2.16) and

exp i g a Z exp —i Yo co—N+ g co„X„exp i Yo exp g—a Z =coN+cooZo .
m n

2 m

(2.18)

The matrix which diagonalizes HF at the resonance con-
dition 6~=0 can therefore be determined by substituting
the values —i (co„/nco) for a„ in the exponential opera-

tors of Eq. (2.20}. The elements of this matrix can be ex-
pressed compactly in terms of the Bessel functions. (We
defer the derivation of this fact to Appendix A ) At t»s
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point we continue our discussion with a derivation of the
matrix elements of the propagator matrix, U(O, r), in
terms of the elements of the Floquet matrix.

D. The evolution operator

For convenience we rewrite Eq. (1.5) which expresses
the matrix elements of the 2 X 2 evolution matrix U(0, r),
and

U (O, r)= g (pnle IqO)e'" ', (2.19)

where p, q =a,P are the states of the two-level system,
and n is the Fourier mode index. The calculation of these
matrix elements requires that HF be diagonalized.

We define a diagonalization matrix T. For hco=O we
know that the eigenvalues of HF are X„=n~+X/2. Thus
the elements of the evolution operator are

U (O, r)= g (pnlT 'Iam )(amlTlqO)e ' ' e ' "' '+ g &pnlT 'IPm &&PmlTlqO&e' ' (2.20)
n, m n, m

with THFT =A. The matrix A is diagonal with ele-
ments

(anlAlan ) =n~+ —,
2 '

&PnlAIPn & =neo
2

for all k. Furthermore, T is unitary and therefore

g (pnl Tlqm )'(pnl Tlqm +k ) =5ko .

We define pulse parameters t, and t2 such that

t, =T~ = g (Pn TlaO) g (PmITaO)*

(2.25)

(2.26)

For times neo~=2m~ this expression can be simplified,
and

U(0, r) = T~~ T~p T T
i A, ~/2+ —i A. 7/2

Tp~ Tpp P~ PP .

(2.22)

where

T,",= y &pnlT 'IrO& y &rmlTlqO&

= g (rn TlpO)* g (rmlTlqO) . (2.23)

(pnl Tlqm ) = (pn +kl Tlqm +k ) (2.24)
I

Equation (2.23) holds because the elements of the T ma-
trix are correlated, and

and

r, =T~&= g &pnlTlpO& & &PmlTlao)* . (2.27)

For our two-level system U(O, r) corresponds to a rota-
tion of a magnetization vector. Evolution during a pulse
of duration ~ can always be expressed as an overall rota-
tion through an angle y proportional to an effective field
H, & and the time ~ about an axis of rotation defined by
two polar angles 8 and P. As 8 is conventionally defined
as the rotation away from the z axis, while most of our
work is more naturally defined with respect to rotations
away from the x-y plane, we will use instead the angles
8=~/2 9and P=P.—Figure 2 represents this rotation
schematically. The evolution operator can then be ex-
pressed in terms of these rotation parameters and takes
on the form

U(0, r)=
cos (9/2)

——' sinOe
2

—,'(sin9)e'~

sin (8/2)

sin (9/2)
e i(r/2)+

—' sinOe
2

—
—,'(sin8)e'~

e
—i (r/2)

cos (8/2)

1+sin8 (cos8)e'~
e ri( /2)—(cos8)e '~ 1 —sin8 2 (cos8)e

—(cos8)e'~

1+sinO
e

—i (r/2) (2.28)

(2.29)

Comparing this result with Eq. (2.22) it becomes possible
to express the elements t, and t2 of the matrix which di-

agonalizes HF in terms of the rotation parameters which
characterize the pulse, and

r
7

t, =cos (8/2) =
—,'(1+sin8),

t~ =
—,'(sin8)e'~= —,'(cos8)e'~ .

Our procedure, which can be expressed in a few formal
steps, leads to a calculation of the effective rotation pa-
rameters (which is equivalent to calculating the effective
Hamiltonian) for a two-level system during application of
a time-dependent field. First, we calculate the Floquet
Hamiltonian and diagonalize it. The eigenvalues of HF
determine the rotation angle y, while the eigenvectors
determine the axis of rotation and thus the angles 0 and

The object of the rest of this paper is therefore to ex-
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FIG. 2. Schematic representation of the effective field H,z in
the rotating frame corresponding to a finite-irradiation field of
effective flip angle y= ~H, ~~a The .direction of this field is
defined by the polar angles 8=sr!2 Hand P—=P.

plore strategies of achieving this diagonalization. As we
are specifically interested in broadband-excitation pulses,
we aim to generate sets of coefficients Ico„) where the
propagator U(0, r) is independent of offset over a wide
range of values b,co. Before continuing our derivation of
the dependence of U(0, r) on the coefficients I co„ I, we di-
gress briefly and discuss some general features of rf pulses
which will be important for our future discussion.

E. rf pulses

The overall effect of any finite pulse can always be de-
scribed via its propagator U (0,r). For a two-level system
it can also be visualized as the rotation of a vector on a
globe about a second vector representing the effective
field, as in Fig. 2. The interaction between the field arid
the system that this rotation represents is characterized
both by parameters of the field, including the length, the
intensity(ies) and the phase(s) of the components of the ir-
radiation, and further by the offset from resonance Am

characteristic of the system. A composite pulse with
broadband-excitation character corresponds to a very
special set Ice„ I, such that the dependence of y, 8, and i))

is largely independent of A~. In contrast, in narrow-
band pulses one attempts to ensure that the dependence
of U(0, r) on b,oi is so strong that the propagator differs
from the unit matrix for only some small range of offset
values (narrow-band excitation), or else so that it is the
unit matrix for some fixed value of offset only (solvent
suppression). For most composite pulse sequences, nu-
merical methods ultimately must be exploited to optimize
behavior for the desired dependences. "

In many practical cases the pulse intensities are kept
constant while the desired improvement is obtained by
increasing the total length of the pulse sequence, perhaps
by repeating the same pulse sequence with the phases
changed so that errors in the supercycle cancel rather
than propagate. Very generally, as the pulse sequence in-
creases in length the degree of compensation can be made
higher and thus the results appear more satisfactory.
Similarly, superficially superior results are trivially
achieved by simply increasing the strength of a given ir-

F. On-resonance irradiation

The response of a two-level system is to a linearly po-
larized irradiation field of time-dependent intensity to (t)
Where the resonance offset b co =0, the Dyson time-
ordering operator T = 1. Then U(0, ~) can easily be eval-
uated by direct integration of Eq. (1.4) and

U(0, r) =exp i I A'(t')d—t'
0

—iyI=e

1 1l COpT

1 +21e
1 CO 7

e
1

(2.30)

where the pulse parameters are

y= j to(t)dt, 8=0, /=0
0

(2.31)

The root-mean-square power in the pulse is given by
1/2

co= — ro t dt
1

7 0
(2.32)

and its maximum intensity by

co,„=max[to(t)Io . (2.33)

radiation field without similarly increasing the scale of
offsets Aco. So as to place all pulse sequences on an
equivalent quality scale, the results of compensated pulse
sequences are generally described in terms of a dimen-
sionless bandwidth unit b, co, /tot (for compensation of rf
inhomogeneity) or b,co/co, (for compensation of resonance
offset). Where the field amplitude is not fixed in time, it is
more correct to consider the parameter bee/to where co

corresponds to the root-mean-square field intensity.
Where no amplitude modulation is allowed, B= co &.

While from a theoretical perspective the power required
to achieve a given bandwidth is irrelevant, it is nonethe-
less of considerable importance at a practical level to
design pulses with broad bandwidths at low powers. Be-
cause the maximum field is limited in any laboratory situ-
ation, in any amplitude modulated pulse we will also take
note of co,„, the maximum rf field required in any pulse
cycle. If we fix the pulse sequence length ~, then co, is the
only free parameter and 6 becomes a further measure of
the relative qualities of broadband-pulse sequences with
equivalent bandwidth. Long composite pulses composed
of n subcycles have values of co which are n times as large
as that of the subcycle itself. Our goal is to design se-
quences with small values of B which nonetheless are
compensated to large values of hem/to. Where the max-
imum offset at which satisfactory compensation is
achieved is b co,„, the bandwidth is given by
~~max ~~max ~~'

The restriction in this paper to linearly polarized fields
is made so as to simplify the mathematical treatment.
We have previously discussed 1V-photon pulses, which are
one special case of pulses where irradiation is simultane-
ously applied along both x and y axes. A more general
treatment of such irradiation sequences will follow in a
later publication.
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This simple solution for U(o, r) for a linearly polarized
irradiation sequence should, of course, also be obtained
from the Floquet formalism we have presented above.
For this simple case it may appear that the derivation of
the elements of U(o, r) using the Floquet formalism is, in
fact, unnecessary. Nonetheless, we present this deriva-
tion in order to establish the theoretical framework for
the treatment of the more interesting case of off-
resonance irradiation.

The Floquet Hamiltonian HF is

HF=coN+ g co„X„, (2.34)

where, as previously, we have reexpressed

cu( t) = g co„e'" ' . (2.35)

An alternative expression for Eq. (2.32) is
1/2

co — ci)o+ T g co„
l-2 ) 2-

n&0
(2.36)

Using the results of Sec. II D, HF can be immediately di-
agonalized and

DHF D =co% +co0Z0

where

(2.37)

Ct) n ~ ~D =exp g Z„exp —i Yo—
~0 nCO

(2.38)

The elements of the unitary matrix D depend on one
another, and

(anlDlam ) =(anlDIPm ),
—&PnlDlam &=&PnlDIPm &, (2.39)

which we derive from the fact that exp[+„(co„/ neo)Z„]
is block diagonal, and exp( i ~YO/2) i—s a simple infinite
matrix with values I/&2 at the diagonal elements of
three of its four subblock matrices, and —

—,', at the diago-
nal of the fourth. Furthermore, it is shown in Appendix
B that

y (anlDlaO) = y (anlDIPO) = — . (2.40)
1

v'2

Combining these results with the results of Eq. (2.29), and
where D =T, the evolution matrix U(o, r) for hcg=o is
identical to that of Eq. (2.31). The diagonalization matrix
of Eq. (2.38) will prove of much importance in our subse-
quent discussion of the case of ofF-resonance irradiation.
Where the elements of D are needed they can be calculat-
ed using the definitions of the Z„operators and the
Taylor-series expansion for the exponentials of operators.
Somewhat later in our discussion, an example of a calcu-
lation of these elements will be performed. Instead, here
we continue our discussion of how one extends the Flo-
quet formalism so as to obtain the pulse parameters y, 8,
and P in the more general case of off-resonance irradia-
tion. Here we restrict ourselves to broadband-excitation
pulses only; in subsequent publications we will treat the
possibility of other types of excitation. Again, our goal is

to diagonalize the Floquet matrix and then use the ex-
pression Eqs. (2.29) and (2.31) so as to solve for the pulse
parameters which provide us with the effective Hamil-
tonian. In the absence of a general analytic diagonaliza-
tion procedure, the application of perturbation theory
will be explored.

G. DB'-resonance irradiation

Irradiation pulses of finite length ~ and intensity on
resonance of co0 can be modified so as to become
broadband-excitation pulses by changing the shape of the
pulse or by applying phase shifts to the pulse. We focus
on the former possibility, and aim to choose amplitudes
co„such that y =coos, 6)=0', and /=0' for b,co&0. In
language more adapted to the Floquet formalism, a
broadband-irradiation sequence is found when the eigen-
values of the HF matrix A,„=n ~+—,'k are approximately
constant independent of bee, and therefore neither the t,
nor t2 parameters depend strongly on offset. Such pulses
are broadband in the sense that U(o, r) is independent of
b, co over some range of off'sets. [Special broadband pulses
also exist which, despite the fact that the propagator may
depend on offset, transform particular initial states of the
density operator p(0) into particular final states p(t) in-
dependent of Ace. While certain of these pulses have been
derived from our efForts, ' "' ' ' the Floquet formalism,
which operates on the propagator without reference to
the initial and/or final states, provides little guidance in
discovering such sequences. We therefore confine our
discussion here to such sequences where the propagator
itself is broadband. ]

Where irradiation is applied only along the x axis in
the rotating frame, the Floquet Hamiltonian can be writ-
ten

HF = —b,coZO+coN+ g co„X„. (2.41)

Hd =DHFD =coN +co0Zo+ ~

where 6 is a matrix given by

6 =DZ0D

(2.42)

(2.43)

The 6 matrix has the same general form as all other Her-
mitian matrices in the Floquet manifold with nonzero ele-
ments

& aoI aI pn &
=

& akI aI pn +k ) =6„,
& po I

L
I
an &

=
& pk I

6
I an +k ) =g* „.

(2.44a)

(2.44b)

The set of coefficients [5„I
defines the matrix elements of

the off-diagonal block h. The expression for the
transformed Hamiltonian Hd is conveniently designed for
the application of perturbation theory at small offsets,
he@. At small-enough off'sets, Eq. (2.42) is nearly diagonal

We divide the diagonalization procedure which will lead
to the eigenvalues and eigenvectors of HF into two dis-
tinct steps. First, we transform HF via the D operator of
Eq. (2.38). This results in
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with eigenvalues given by Eq. (2.21). Where a pulse is
broadband the eigenvalues of HF vary little from these
values, even where Aco may be significantly different from
zero. To accomplish this, perturbation theory suggests
that it is necessary to find some combination of co„, such
that the elements of 5 are uniformly smaller than the
differences between their corresponding diagonal values,
~5„~ &&(neo —coo). Satisfying this condition in a systemat-
ic way requires that we first derive the dependence of the
values 5„on co„.

H. The h, matrix

As defined in Eq. (2.43) the b, matrix is given by

Cc)n ~ ~&=exp g Z„exp i —Y—o Zo exp i Ya-
nce 2 2

where H(t), the time-dependent portion of&, is

H ( t ) = [coo+0, cos( cot + itj, ) +02 cos( 2cot + t/i2 )

+03 cos(3cot +$3)]I„, (2.46b)

and coo~ is the Rip angle on resonance. The 6 matrix de-
pends explicitly on only H ( t). For Q2 =03=0,

Ai5„=—
—,
' J„

CO

in/i
e (2.47)

The expressions for two and/or three modulation fields
are somewhat more complicated, and for two fields

0, 2 i [{n—2k)gl+ k/2]5.= —
—,
' g J.—2k

k Q) 2'
(2.48a)

COn

X exp —g Z„
neo

(2.45)

Nonzero elements of b exist only between the a and P
manifolds of states.

A schematic representation of the matrix 6 is given in
Fig. 3. The elements 5„can be derived from the
definitions of X„, Y„, and Z„operators given in Eq. (2.8).
Using these definitions, and that the exponential
coefficients [(co„/neo)Z„] commute with one another, the
5„values may be obtained by a straightforward multipli-
cation of the matrices corresponding to the individual ex-
ponents. A derivation for a general expression useful for
calculating the 5„ is given in Appendix A.

Here we provide an explicit example for the case of ir-
radition with one, two, and three modulation frequencies
only, say, cot, 2cot, and 3cot The ful.l Hamiltonian &(t) is
given by

&(t)= bcoI, +H (t)—, (2.46a)

o is~
———I- ——
a' 'o

" --lp 2&lp ~&lp o&Ip-I&lp-~&---

BD 4 B2 B-. B.4 4 4
la2)(B, BD B, B, B, B~ B,

B, B, B, B, B, B, B,
I

ta 0&

~~~&~S, S, 8, S, 8, 8,
l~-~&

) 8, 84 8, 82 8, 80 8,
~ 8, S, . S, S, S, S, S,
I

6 5 4 '5 2 I 0

FIG. 3. Matrix representation of the Hermitian operator 6
with elements 5„as defined in Eq. (2.45). The elements of the
two submatrices 5 ~ and h~ are correlated such that
(Pm —n[d! [am ) =(am[dP~[Pm —n )"=5*„.

while adding a third field at frequency 3cot,

0, 02 Q3
5n 2 QJn —2k —3! k 2

~l
k 1

co 2' 3'
Xe

i [(n —2k —31)g +kg +lf ]l 2 3 (2.48b)

(2.49a)

g 5„5„*+k=0, k&0
k

and, using the arguments of Appendix B,

(2.49b)

(2.49c)

These three conditions greatly restrict the possible values
of the 5„. While it might appear logical to design pulse

The 5„elements are relatively simple functions of the
Fourier components of the irradiation. Products of the
Bessel functions are easily calculated, and the values of
5„provide a complete and exact representation of the
time dependence of the irradiation in the Floquet formal-
ism. Several interesting aspects of Eqs. (2.47) and (2.48)
(and the more general equations of Appendix A) should
be pointed out. The sensitivity of 5„ to Qk decreases for
increasing k because the argument of the Bessel function
is (Qk/ken). This suggests that while each of the nonzero
Qk coefficients contributes to every one of the 5„matrix
elements, the values of the 5„depend most critically on
the lowest-order coefficients, say, 0, and Q2. The 5„are
less sensitive to the precise value of higher-order
coefficients. Furthermore, the 6 matrix is independent of
mo, and thus characteristic exclusively of the details of
the modulation scheme; coo appears only in the diagonal
blocks of HF.

Before leaving our description of HF, we mention some
further properties of the 6 matrix which severely con-
strain the allowed values of the 5, . These properties are
derived in Appendix B, and because they have important
consequences for the derivation of specialized irradiation
schemes, they are presented here. Constraints on the 5„
include
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sequences by building up a matrix 6 with appropriate
properties, the constraints represented by Eq. (2.49) and
the practical difficulty involved in inverting Eqs. (2.47) or
(2.48) make this method less attractive. We instead em-
phasize the role of the ~„or the Q„, which are uncon-
strained.

In this section we have demonstrated the procedure by
which the matrix elements of the Floquet Hamiltonian
are derived. Given a set of Fourier coeKcients
describing the time dependence of a linearly polarized ir-
radiation sequence, we can calculate the 6„values which
characterize the 6 submatrix. These values can then be
used with Eq. (2.39) to form the transformed Hamiltoni-
an Hd. Diagonalization of this Hamiltonian will provide
the eigenvalues A. , and from the elements of the diago-
nalization matrix we can evaluate t, and t2 and thus
derive the angular factors 9 and P which complete the
description of U(0, r).

Having completed our description of the Floquet Ham-
iltonian and demonstrated the calculation of its matrix
elements, in Sec. III we address the central question of di-
agonalizing HF and designing irradiation sequences that
satisfy particular properties. Where an analytic diagonal-
ization is not possible, approximate methods must be
developed. For broadband excitation, the off-diagonal
elements Aco6„can always be made small enough so that
the diagonalization of HF can be addressed by a pertur-
bation treatment. This is particularly so because in the
case of broadband-excitation pulses the eigenvalues of the
transformed matrix DHFD ' are independent of Ace and
approximately equal to the original values neo+ —,'coo over
a wide range of offsets. This suggests that the matrix
which diagonalizes Hd =DHFD ' for a broadband-pulse
sequence should differ only slightly from the unity ma-
trix, and therefore justifies the use of perturbation theory.
For other classes of pulses (e.g., narrow-band or selective
irradiation) other approaches will certainly be required.

D iHdD i:D i (cooZO +co% + Acok )D i cvoZo + AN

T=D]D . (3.2)

Perturbation theory should be applicable to the calcula-
tion of D ] if we expect that the eigenvalues A,„of
D, HdD, ' are nearly constant over some large range of
offsets Aco. First we derive an expression for the evolu-
tion frequencies k. Subsequently, we consider the minim-
ization of the deviations in the angles 0 and P.

1. Approximate expressions for the evolution frequency

As the elements of 6 are all off diagonal and, for
0&coo&co, i.e., for 0&@&2~, the diagonal elements of
Hd are nondegenerate, at small values of bco~b,

~
we can

apply standard nondegenerate perturbation theory to the
calculation of k„. Realizing that the elements 6„of 6
couple diagonal elements whose differences are neo+coo,
we find

A„=n tv+ =n co+—,' [coo+ c~—(b co) + c4 ( b co ) + ' ' ],2

(3.3a)

with

5„5„*
Cp=

n co+coo
(3.3b)

and

6k 61 6m 6k —1+m

q i (kcv+cvo)[(k —l)to][(k —I +m)tv+coo]
k&1

(3.1)

where D, represents the transformation matrix which di-
agonalizes Hd. This matrix is related to the T and D ma-
trices of Eqs. (2.20) and (2.38), and

III. BROADBAND EXCITATION

A. Design considerations
C2

6„6„*

(neo+coo)
(3.3c)

We henceforth model our two-level system as a magne-
tization vector precessing about a near-resonant rf field.
A broadband-excitation pulse is defined by the property
that at the end of the broadband pulse and for some
range of offsets Ace & Ace,„such a magnetization vector
is rotated a fixed angle y about a constant rotation axis
given by 0 and P. Note that the broadband character is
defined without reference to the details of the pathway
traversed during the pulse. For a finite pulse with on-
resonance rotation angle yo and where the direction an-
gles go= $0=0 describe H, tt for Aco =0, our goal is to find
Fourier coefficients [cv„J such that the values of y, 8, and

P are independent of b, co. In the language of the Floquet
theory, the eigenvalues of the Floquet Hamiltonian
should be given by A=coo/2, while t& =t2 =

—,
' for Am&0.

We seek some set of values 6„ in the transformed Hamil-
tonian Hd of Eq. (2.39), which leave its diagonal part un-
changed for Ace&0; that is,

These are the standard expressions for the second- and
fourth-order energy corrections from perturbation
theory. We expect no odd-order corrections because
where only linearly polarized irradiation is allowed, sym-
metry demands that X is independent of the sign of Ace.
The expressions for c2 and c4 can be evaluated numeri-
cally starting from the cv„or Q„values and Eq. (A9) of
Appendix A, which allows us to calculate the 6„. As we
do not know the precise values of 6„, it may be impossi-
ble to predict a priori the range of convergence over Ace
of any perturbation expansion. Nonetheless, it seems
reasonable to assume that as long as k„=neo+coo/2 and
D, =1 this theory is valid. These are precisely the condi-
tions which guarantee broadband excitation.

2. Approximate expression for the rotation axis

The procedure described above, which guarantees that
deviations from A, „are minimized for small offsets, is still
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not a sufficient condition to guarantee that we have
designed an acceptable broadband sequence. Minimiza-
tion of c2 and c4 minimizes only the deviations in the ei-
genvalues, and thus y, from the ideal values. In our
broadband sequences we further require that the rotation
direction varies only slowly with Ace, and thus that
D& =1. To satisfy this condition, we need also develop an
approximate expression for D, .

The diagonalization matrix D
&

represents the deviation
of the matrix T which diagonalizes HF from the transfor-
mation matrix D which diagonalizes HF for hcu=0. For
D itself t, =t2= —,', and therefore 8=0' and /=0' [see
Eqs. (2.27) and (2.28)]. Any deviation of T from D,
represented by the D, operator, modifies these values of
t, and t2, and therefore of 8 and P. D, represents a tilt in
the direction of the effective irradiation field out of the
x-y plane, and a rotation of the effective irradiation field
away from the x axis. This further constrains acceptable
values of Q„and l(„ to those which satisfy D, =1. We
can guarantee that the polar angle P is independent of b, co

is by choosing to work exclusively with pulses which are
symmetric in time with respect to their centers, i.e.,
$„=0or m. . ' "' Then only the tilt angle 8 is relevant.
While the theory is independent of this simplification, we
have usually chosen to explore only such pulses.

Generally, we can again use an approximate calcula-
tion to estimate the elements of D, . We define a Her-
mitian matrix S such that

{(an&} {(pm&}

)a 2&

]a I&

Ia 0)

)a-I &

I po&

FIG. 4. Energy-level diagram representation of the
transformed matrix Hd=DHFD '. The diagonal matrix ele-
ments corresponding to the states lan ) are separated from
those of the states lPn ) by coo=co/2 for a pulse of length
yo=180'. The off-diagonal elements 5„ofHd couple the states
lam ) with lcm —n ). Diagonalization of Hd results in a set of
mixed states which are linear combinations of the lan ) and
lPn ) states, with mixing coefficients dependent on the values of
the 6„coefficients. Broadband pulses are achieved when the
mixing coefficients are all nearly 0 or 1 for large values of Ace.

D]=e ' =1—iS . (3.4)
of our theory requires extensive computer assistance.

For a broadband 180 pulse, the Hamiltonian is

We consider only the first-order term in the expansion of
the exponent. The nonzero elements of S are, to first or-
der, proportional to the off-diagonal elements of Hd in
Eq. (3.1):

&«ISIOn+k &

&«l&IPn+k & z
n co+ coo

(3.5)

and are therefore approximately proportional to both 6„
and hen. Ideally, S =0. A relative measure of the magni-
tude of the S matrix elements can be defined analogously
to t, from Eq. (2.27) and we define s, such that

6,
s, =g (anlSlPO) =g

n~+~o
(3.6)

Minimization of s, minimizes the deviations in 8 and P
from 8o and Po, to low order.

B. Single-frequency modulation schemes

As an example of the application of Eqs. (3.3) to (3.6)
we direct our attention to the problem of broadband
pulses designed with only a single-modulation sideband
(i.e. , irradiation at a frequency +me@ with amplitude
0 ). First we demonstrate the application of the Flo-
quet formalism to the problem of broadband 180' pulses
in some detail. Then we will generalize to other flip an-
gles before continuing in Sec. III C with a discussion of
the generalization to multifrequency-irradiation schemes
with superior properties, where the successful application

&(t)= [coo+0 cos(meet + l(t ) ]I„+b,roI, (3.7)

where coo=to/2. (Similarly, for a 90' pulse, coo=co/4, and
so on, for other fiip angles. ) The energy-level scheme
which describes HF is shown in Fig. 4. The I lam ) I

manifold of states is shifted by co/2 in energy from the
I lgm ) I manifold. One solution for t5„ I which sets
e2 =0 is l5„ l

= l5 ~, +„~l for all n, because the denomina-
tors in Eq. (3.3b) are then successively equal and of oppo-
site sign, while the numerators are equal, and therefore
the sum of each pair of terms in the infinite series is zero.

Inspection of the expressions for 6„of Appendix A
shows that, for single-frequency irradiation at frequency
mes, the only nonzero 5„are for n =pm for p an integer.
Furthermore, for single-frequency irradiation,
l5„ l

= l5 „ l
for all n We can .arrive at an approximate

value of O, „such that cz =0, by evaluating only the lead-
ing terms in the infinite series, i.e., those with the smallest
denominators. This suggests an initial choice of n =1 in
Eq. (3.7) and examining Eq. (3.3b) we choose as a initial
approximation l5ol = l5, l. Where Jo(x) =J, (x) for
x =0 i /~, we have an approximate single-frequency
broadband ~ pulse. There are an infinite number of solu-
tions to this problem; the first two are x = 1.43 and
x =4.68. We expect solutions to cz =0 to be found near
these values of x. The lowest-amplitude solution is to be
preferred, both because co is smaller and because the 5„
for lnl ) 1 are smaller for x small. Thus we expect the
convergence of the infinite series for c2 to be more rapid.
For x (1.43, l5 l

) l5, l.
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The leading terms for c4 are similarly expressed. We
consider only those terms in Eq. (3.3c) composed of prod-
ucts of 60 and 6+, . For the special case of single-
frequency modulation, 5o =5o and 5
= —6, exp( —2i1(, ), and we find

c = ——'666*+4 3 0 1 1 (3.8)

~ I W
/

r ~ ~ ~

The first term in our expression for c4 is zero where
JD(x)=0 (x =2.4) or J,(x)=0 (x =0 or x =3.83). As
none of these conditions simultaneously satisfies c2=0,
broadband 180 pulses cannot be expected to be effective
for large offsets with only single-frequency irradiation.

As a practical matter, higher-order corrections to the
expansions for c2 and c4 change somewhat the precise
numerical values cited above, although not the general
conclusions. Numerical calculations show that the first
zero in cz occurs at x =1.58, and in c4 at x =2.50.
Where minimization of the initial deviation in the overall
rotation angle y from the ideal evolution frequency y0 is
the sole criterion, 6,= 1.58co provides the best composite
180' pulse. As predicted by Eq. (3.3), and illustrated in
Fig. 5, the deviation in k is quartic in small offsets A~ for
this choice of 0&. The effective bandwidth of such a
pulse is, however, somewhat limited. Where the criterion
is that the deviation Ay is small, broader bandwidths will
be achieved for other values of 0,. In particular, since J0
and J, &0, as long as x & 1.58, c2 is positive while c4 is
negative. Therefore, for fields weaker than x ( 1.58,
there exists some offset b.co%0 where b,y =0. A superior
single-frequency 180 pulse is expected for 0& & 1.58cu.

The procedure described above, which guarantees that
deviations from y0 are minimized for small offsets, is, as
discussed above, not su%cient to guarantee that we have
designed an acceptable broadband sequence. We further
require that the rotation direction vary only slowly with

and thus that D
&

1. Therefore, we now turn our at-
tention to our approximate expression for D &, and there-
fore to the minimization of s &.

Using approximate arguments such as those applied
above, we initially consider only the largest terms in Eq.
(3.6). This leads us to expect that the minimum value of
s, will be found where 60=6,. Conveniently, this is a
solution for c2=0 as well. It additionally provides us
with a constraint on the phase angle P, . Using the gen-
eral expressions for the 6 from Appendix A, and the
identity J „(x)=(—1)"J„(x)we find that g, =m. is the
preferred choice. Including subsequent terms in the ex-
pansion, a more accurate calculation shows that the zeros
of s, and cz are not identical. The minimum value in s&

for single-frequency irradiation occurs at x =1.18 and

As the minima s„c2, and c4 occur for different values
of x, any search for an acceptable broadband single-
frequency 180 pulse necessarily compromises between in-
itial deviations and bandwidth. We choose to define as an
acceptable broadband pulse one where by 0.03y0 and
68 and b, P (the deviations in 8 and P, respectively) are
less than 3 within the entire effective bandwidth of the
pulse. For single-frequency-vr irradiation sequences, a
numerical search gives Ace,„=Ace,„/2 =0.26
for 0,= 1.22, g, = rr

Composite single-frequency pulses for other flip angles
can also be easily designed by this method. Changes in
co0, which determine the on-resonance flip angle, change
the relative offsets between the I am ) I and the I ~Pm ) I

manifolds, and thus the weights of the various terms in
the expansions of Eq. (3.3). Where Jo(x)=[(co—coo)/
coo]J, (x) we have a first approximation to c2 =0. Smaller
values of x are required to minimize deviations in s

&
and

to achieve greater bandwidths Ace,„. Plots of the zero
crossings of c2 and c4, and minimal values of s, , for
single-frequency irradiation schemes are given in Fig. 6
as a function of a0=cu0/co. In each case it appears that
A&=a, co varies linearly with co0. A simultaneous solu-
tion c2 =c&=s& seems possible only for coo=0 (although
precisely at cu0=0 the nondegenerate perturbation theory
applied in this paper must be replaced by degenerate per-
turbation theory).

~ ~ r
I

~ I ~ ~

1
~ 4 ~ ~

I
~ ~ ~ ~

Q -2
t

0 0.c. 0.4 0.6 0.8
DQJ/ GJ

FIG. 5. Dependence of the normalized eigenvalue parameter
A, /ko as function of the resonance offset parameter hey/co for
single-frequency pulses of 90 and l80'. The single amplitudes
a& were chosen to make c& =0. The dashed line (

———) cor-
responds to a 90 pulse with ao= —' and a& = —1.57; the dot-
dashed line ( —.—~ —~ ) corresponds to a 180 pulse with ao= —,

'

and a, = —2.01. The solid line ( ) is the quartic function
1/k~=[1 —idaho/coi ]. The initial decay for both of the pulses
follows closely the model function, demonstrating their weak
dependence on Ace for small offsets.

~ I ~ I L ~ a ~ I ~ I i I I a ~ ~

0.2 0.3 0.4 O. 5

ao
FIG. 6. Calculated values a, (heavy dots) of single-frequency

pulses with different values ao for the cases s 1
=0 ( ), c2 =0

(
———), and c4=0 ( —.—.—.). No intersections occur be-

tween these lines in the range of the calculated values of ao and
a, , demonstrating that for finite single-frequency pulses, the pa-
rameters c&, e4, and s& cannot simultaneously be made equal to
zero. The on-resonance flip angle is 2ao~.
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C. Multifrequency modulation schemes

A broadband pulse is one where the terms c (boo)
contribute little to the value of A.„, and s, (and all
higher-order terms s, however they might be defined) is
small. The simplest solution, which is infinitely broad-
band, is c2=c4= - . =c =0, and similarly for all s
That such a solution exists for achievable values of co„
and arbitrary coo is far from clear, although the existence
of infinitely broadband inversion pulses ' ' and the
phenomenon of self-induced transparency suggest that
for certain coo it may be possible. Instead, we work to
minimize the effect of the entire series of terms.

For the moment we concentrate on the terms c . A
completely analogous argument holds for the s . Clear-
ly, if the power-series expansion for A, is to diverge only
minimally from its on-resonance value for hue=0, we re-
quire c2=0. Somewhat further off resonance, terms in
c4(bee) become more important. We consider the poly-
nomial expression cz(bc@) +c4(bc@) . It has an ex-
tremum of —cz/4c4 at b,co=+—ez/2c4 and, if cz and
c4 are of opposite sign, a zero crossing at
bco=Q —cz/c4. In order to extend the range of hco for
which this polynomial is small, we require that c2 be
small, that c4 be of the same magnitude, and that they be
of opposite sign. At larger offsets, the c6 and c8

coefficients also become relevant.
As c4 is generally smaller than cz (because ~5„~ (—,

' ), an

initial approximation to a broadband excitation sequence
is identified by finding pulse parameters A„which mini-
mize the value of ~cz ~. This condition can generally be
achieved for any coo at only a small number of values of
0 . We have discussed the general characteristics of
single-frequency irradiation schemes above. For single-
frequency modulation sequences, it seems impossible to
simultaneously satisfy c2 =c4 =0, where 0 & ~0~ & 2m.
Some compromise between the initial deviation in A.„and
the bandwidth bee, „must be struck. Notable improve-
ment in simultaneously minimizing both c2 and c4 can be
made by introducing several nonzero co„. The surfaces of
cz [co"„) and c4jco"„j can be easily evaluated numerically,
and simultaneous zero crossings identified. As more
fields are added, it becomes possible to rigorously mini-
mize s&.

Where it is possible to simultaneously satisfy the pair
of conditions c2 =0 and s, =0, these co„would result in a
broadband-irradiation sequence for some range of Ace) 0.
Most broadband pulses will have [co„) chosen such that
the low-order coefficients are small yet not precisely zero,
so as to provide some compensation for the finite values
of higher-order terms which cause performance to
deteriorate at large offsets. Optimization of performance
in a broadband sequence generally requires a systematic
variation of (co„) in some region where the calculated
values of c2, c4, and s, are appropriately small. We can
observe that the higher-order corrections are being mini-
mized by counting the number of times y =yo as a func-
tion of Ace, or more accurately by counting the number of
zeros in the derivative of y or 0. In principal, we might
also calculate these terms by an extension of Eqs. (3.3)

and (3.6), but such calculations do not appear practical.
For n,„ fixed, and thus a finite number of irradiation
frequencies neet and amplitudes co„, there appears to be a
natural maximum bandwidth Aco,„over which it is pos-
sible to achieve uniform excitation. Within that band-
width, additional constraints (e.g. , minimum co or co~,„)
can be imposed, but substantial improvement in the
bandwidth hen „seems to require additional irradia-
tion sidebands of significant intensity and not simply
more precisely chosen values of the 0„. This appears
consistent with our understanding that the process we ap-
ply leads to minimization of more of the c and s
coefficients at each step. Broad bandwidths also appear
to be more difficult to achieve near the extreme values of
y (i.e., for y ~45' or y ~ 315 ) than at intermediate rota-
tion angles.

Our procedure for finding broadband pulses is then as
follows. First, two or three values of Q„are chosen
nonzero (generally, Q„Qz, and 03). The expressions for
5„,cz, c~, and s, are then evaluated [Eqs. (A9), (3.3), and
(3.6)] and simultaneous zero-crossings or near-zero-
crossings of the latter three are identified. Starting with
these values for the low-order Q„a subsequent search is
performed which investigates the propagator U (0,r, b co )

itself, in order to maximize the bandwidth of uniform ex-
citation. In the final search, additional nonzero Q„were
introduced, occasionally including Q4. The ultimate cri-
terion for uniform excitation is necessarily an arbitrary
one. One measure which has been suggested is deviations
in the quaternion. We have chosen instead to define a
bandwidth given by hcoo within which the rotation angle

y deviates by no more than 3%%uo from its on-resonance
ideal value, and that neither the polar angles 8 or P devi-
ate by more than 3 . So as to identify the bandwidth in-
dependent of the rather trivial observation that doubling
the applied field also doubles the absolute bandwidth, we
define the range of satisfactory excitation via the dimen-
sionless parameter bc@,„. While there appears to be a
whole set of families of solutions which would satisfy our
criterion as broadband-excitation sequences, we focused
on those solutions which were found for the lowest values
of co. For any desired rotation angle y the uniform exci-
tation bandwidth is maximized for a fixed number of
nonzero Q„. If the bandwidth thus achieved is
insufficient, then additional sidebands might be intro-
duced.

D. Calculations

The numerical calculation of the 5„values from the 0„
and P„parameters of the irradiation field was accom-
plished in either of two fashions. In the first case, the 6„
are calculated by numerical diagonalization of the matrix
&AN+ g„co„Z„. The submatrix of AN+ g„co„Z„ in
the ~ak ), ~ak ) manifold of states was generated for a
finite number of +k values only. The dimension k of the
truncated square matrix was chosen by checking for con-
version of the eigenvector elements. In most cases k =30
proved sufficient. The diagonalization of this matrix re-
sults in a truncated representation of the matrix d [see
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Eqs. (2.38) and (Bl)]. Given d, the elements 5„are ob-
tained using Eq. (A3). The 5„values might also be calcu-
lated directly using the prescription of Appendix A,
where they are expressed in terms of the Bessel functions
J~(Qk /ken). A finite number of Bessel functions J„were
calculated so as to truncate the otherwise infinite sum in
this equation. Only Bessel functions J~(Qk /kco) ) 5

X10 were included in the summations. For fields of
moderate strengths, no more than the first eight Bessel
functions (Jo —J~ ) were required.

Given the I 5„I, c2, c4, and s, were evaluated using
Eqs. (3.3b), (3.3c), and (3.6), respectively. Sets of 0„
values for which both c2=0 and s, =0 were found by
varying the Q„while checking for values at which both
conditions were simultaneously satisfied. These calcula-
tions were done on an IBM-320 computer and, occasion-
ally, on an IBM PC-AT microcomputer. The evaluation
of the evolution operator elements was performed on a
PC-AT. The time-dependent Hamiltonian &(t) was ap-
proximated by a large number of piecewise time-
independent steps at the average value of &(r) during the
appropriate interval. The propagator for that interval
was calculated and appended to the product of all previ-
ous intervals. The process was repeated until further sub-
division gave no significant change in the final result.
When the number of steps was at least 100 times the larg-
est frequency component, convergence was good. Given
U(0, r) the pulse parameters y(bee), 8(hen), and P(bee)
could be derived from Eqs. (2.29). Optimization of pulse
shapes was achieved by taking the sum of the mean-
square deviations between the propagators calculated for
Dao=0 and some set of offsets up to a threshold offset.
The final stage of optimization involved human interven-
tion to choose between closely related solutions.

E. Broadband excitation pulses: Results

TABLE I. Coefficients a„describing a portion of the path
where c2=s, =0 and c4 is sma11 for only ta„az, a, &0) and
ap=0. 125 (i.e., a m. /4 pulse). Listed are all of the nonzero a„,
the rms field co, and the calculated value of C4. The amplitudes
of the modulation sidebands are restricted to fall in the range
—3 al ~3, —3(a~(3, and —4 a2 ~4.

ap

0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125

a&

—1.69
—1.75
—1.81
—1.85
—1.90
—1.95
—2.00
—2.05
—2.11
—2.18
—2.26
—2.36
—2.49
—2.71

0.38
0.36
0.36
0.34
0.34
0.33
0.32
0.31
0.30
0.28
0.27
0.23
0.15
0.05

a3

—4.00
—3 ~ 50
—3.00
—2.50
—2.00
—1.50
—1.00
—0.50

0.00
0.50
1.00
1.50
2.00
2.50

3.08
2.78
2.49
2.21
1.97
1.76
1.60
1.51
1.51
1.60
1.76
1.99
2.26
3.15

c4

0.002
—0.009
—0.022
—0.044
—0.062
—0.081
—0.094
—0.106
—0.100
—0.087
—0.069
—0.051
—0.031
—0.012

pulses. The choice of these particular Aip angles was,
from a theoretical perspective, arbitrary, although from
an experimental perspective this set includes several of
the most useful Hip angles in coherent spectroscopy. We
wish to emphasize that there exists a continuum of solu-
tions for all possible Hip angles. The preliminary search
was carried out for only three nonzero Fourier
coefficients a „a2, and a3. The range of values investi-
gated was —3 ~ a

&
3, —3 a2 3, and —4 (az (4.

Paths in the three-dimensional parameter space described
by a, , a2, and a3, where both c2 and s, are zero, are cal-
culated and presented in Tables I—IV.

Because the number of possible Fourier coefficients 0„
and phases g„ in Eq. (2.4) can easily become large, we re-
stricted ourselves, as we explained previously, to
broadband-excitation pulses where $„=0or n. With this
restriction an amplitude-modulated-irradiation sequence
of length ~ can be defined uniquely by a set of Fourier
coefficients

TABLE II. Coefficients a„describing a portion of the path
where cz =s|=0 and c4 is small for only (a, , a2, a, &OI and

ap =0.25 (i.e., a m. /2 pulse). Listed are all of the nonzero a„, the
rms field co, and the calculated value of c4. The amplitudes of
the modulation sidebands are restricted to fall in the range
—3 al 3, —3 a2 3and —4 a2(4.

a„=+
CO

(3.9)

where the + sign corresponds to $„=0,vr. With this con-
dition the pulses become symmetric in time with respect
to their centers, and therefore the pulse-response parame-
ter /=0 independent of b,co. The value ao equals the on-
resonance effective pulse strength, and the a„values to-
gether define the shape of the irradiation. For &=1, a
y0=90 pulse corresponds to ao= —,'. In the same way,
45, 135, or 180' correspond to ao= —,', —,', and —,', respec-
tively.

Following the search procedure described above, a„
values are found which satisfy the two conditions
c2 =s& =0. Four irradiation sequences are considered in
this paper, namely, broadband 45', 90, 135, and 180

ap

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

—1.38
—1.44
—1 ~ 50
—1 ~ 55
—1.61
—1.65
—1.70
—1.76
—1.82
—1 ~ 88
—1.95
—2.04
—2.16
—2.33
—2.65

a2

0.84
0.79
0.77
0.75
0.72
0.71
0.70
0.67
0.66
0.64
0.60
0.59
0.55
0.43
0.15

a3

—4.00
—3.50
—3.00
—2.50
—2.00
—1.50
—1.00
—0.50

0.00
0.50
1.00
1.50
2.00
2.50
3.00

3.06
2.75
2.45
2.16
1.90
1.68
1.50
1.40
1.39
1.47
1.62
1.85
2.13
2.49
2.84

C4

0.011
0.003

—0.009
—0.027
—0.046
—0.069
—0.087
—0.100
—0.100
—0.094
—0.081
—0.062
—0.041
—0.022

0.005
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TABLE III. Coefficients a„describing a portion of the path
where c, =s, =0 and c4 is small for only [a„a„a,AO) and

ao =0.375 (i.e., a 3m/4 pulse). Listed are all of the nonzero a„,
the rms field co, and the calculated value of c4. The amplitudes
of the modulation sidebands are restricted to fall in the range

3 3 —a2 3 and —4 a2 4.

ao

0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375

a&

—1.06
—1.13
—1.20
—1.25
—1.30
—1.35
—1.40
—1.46
—1.51
—1.57
—1.64
—1.73
—1.82
—1.96
—2.18

ap

1.33
1.26
1.21
1.18
1.15
1.12
1.09
1.08
1.07
1.04
1.02
0.98
0.95
0.90
0.76

Q3

—4.00
—3.50
—3.00
—2.50
—2.00
—1.50
—1.00
—0.50

0.00
0.50
1.00
1.50
2.00
2.50
3.00

3.10
2.78
2.47
2.18
1.91
1.68
1.49
1.38
1.36
1.43
1.58
1.80
2.06
2.37
2.70

C4

0.017
0.015
0.007

—0.007
—0.027
—0.048
—0.069
—0.081
—0.094
—0.094
—0.087
—0.069
—0.052
—0.031
—0.013

Within this limited range, one dominant pathway was
found for each choice of y. Additional pathways near ex-
treme values in one or several of the parameters, and thus
with larger values of co, were also detected. These are not
presented here, but will be discussed in a later publica-
tion, where many of these pathways and their corre-
sponding pulse characteristics will be summarized.

Ciiven these initial results, there were a number of pos-
sible means of proceeding. We have chosen two paths:
first, we attempted to find maximal bandwidth-irradiation
schemes (which involved addition of a fourth coefficient

a~) where the quantity b,co,„was the only measure of
quality. Our second effort was to find low-power (with
respect to average field co and peak field ni, „)compensat-
ed pulses. Both types of pulses were found for each of the
representative rotation angles discussed above. In either
case, the irradiation sequences presented are the result of
a final search carried out for values of [a, ) in the vicinity
of the pathways found above.

1. Broadest-bandwidth pulses

The identification of the absolute maxima in bandwidth
for any given ao and number of a„ is a fairly difficult pro-
cedure and depends strongly on the actual test for quality
applied. It is, however, quite generally true that optimal
bandwidth pulses are most sensitive to the amplitudes of
the lowest-order coefficients a„. A general scheme, useful
for predicting the optimal low-order coefficients, has been
presented elsewhere. ' " Starting from the coefficients
[a„a2,a3j provided by Tables I—IV where c2=c4=s,
=0, we added an additional sideband with amplitude a4
at frequency 4', and maximized the bandwidth. This al-
ways decreases the optimal value of ~a2~. In Table V we
provide the coefficients ta„; n =0, . . . , 4l for our broad-
est bandwidth pulses in the amplitude region we have ex-
plored.

It is not clear that there exists any good experimental
justification in attempting to improve marginally these
results, because it seems unlikely that there exists an ex-
perimental apparatus capable of reproducing the pulse
shapes to the precision we provide. While the optimum
bandwidth is quite sensitive to the precision of the
coefficients, at offsets hen well within the specified band-

7

TABLE IV. Coefficients a„describing a portion of the path
where c2=s, =0 and c4 is small for only [a, ,a2, a3%0] and
ao=0. 50 (i.e., a m pulse). Listed are all of the nonzero a„, the
rms field co, and the calculated value of c4. The amplitudes of
the modulation sidebands are restricted to fall in the range
—3 a) 3, —3 ap 3, and —4 Q2 4. I I I I i i i ~

I I I l l I

ao

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

a&

—0.74
—0.81
—0.88
—0.94
—1.00
—1.05
—1.10
—1.15
—1.21
—1.26
—1.33
—1.41
—1.50
—1.62
—1.79

ap

1.88
1.74
1.69
1.62
1.57
1.54
1 ~ 53
1.51
1.49
1.47
1.44
1.43
1.42
1.40
1.36

Q3

—4.00
—3.50
—3.00
—2.50
—2.00
—1 ~ 50
—1.00
—0.50

0.00
0.50
1.00
1.50
2.00
2.50
3.00

3.21
2.87
2.56
2.27
2.00
1.76
1.59
1.48
1.45
1.50
1.64
1.84
2.09
2.38
2.70

C4

0.019
0.020
0.017
0.007

—0.009
—0.029
—0.047
—0.062
—0.081
—0.087
—0.081
—0.069
—0.056
—0.037
—0.019

(b)

l.5-,
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FIG. 7. Time dependence of the pulses defined in Tables V
and VI. Solid lines ( ) represent the 45 pulses, dash-dotted
lines ( —~ —.—) represent the 90 pulses, dash-double-dotted
lines ( —~ ~ —) the 135 pulses, and dashed lines (

———) the
180 pulses. (a) The four-frequency broadest-bandwidth pulses
of Table V. (b) The three-frequency low-power pulses of Table
VI. Note that the vertical scale is

2
that of (a).
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TABLE V. Coefficients a„, the bandwidth hen, „, rms field co, and peak field co,„, for optical band-
width pulses with four modulation sidebands.

45
90'

135'
180'

ao

0.125
0.25
0.375
0.50

—1.753
—1.50
—1.25
—1.00

0.26
0.54
0.795
1.05

—3.23
—2.58
—2.06
—1.625

0.51
1.00
1.46
1.92

~~max

0.63
0.88
1.03
1.06

2.65
2.27
2.10
2.11

~max

5.878
5.87
5.94
6.095

width the performance is relatively insensitive to small
variations in the specified amplitudes. In situations
where the performance at large offsets is critical, it will
generally prove more satisfactory to design a broader-
bandwidth-irradiation sequence, which appears to be pos-
sible by adding further modulation sidebands and addi-
tional nonzero a„, rather than to rely upon experimental
reproduction of the theoretical performance. '

Comparing the broadband-excitation pulses we first see
that the required mean pulse intensities decrease for in-
creasing pulse length, while Ace,„simultaneously in-
creases. This confirms our observation from single-
frequency modulation studies that it is easier to create a
180 pulse than a 4S' pulse and that the broadest band-
widths at the lowest values of 6 will generally be found
for coo 0.5 ~ Our experience with pulse optimization sug-
gests that it is the introduction of additional frequency
components which allows us to successively decrease the
size of additional terms in the expansion of Eq. (3.3), and
that there is a natural bandwidth limitation for any given
choice of number of modulation sidebands. Whether the
bandwidth limitation can be overcome by choosing to ex-
plore the higher-amplitude pathways which we have
discovered remains to be explored.

Figure 7(a) presents the time profile of these pulses.
These maximum-bandwidth pulses all have similar tem-
poral profiles. At the beginning and end of the cycle the
amplitude of the applied field is significantly weaker than
it is at the middle of the cycle. This behavior seems
characteristic of many composite pulse schemes, where if
we observe the trajectories traversed by a representative
magnetization vector during the application of the com-
posite pulse most of the evolution generally takes place in
the middle of the pulse sequence. Thus the peak power
demands can be much greater than the mean.

2. Low-power composite pulses

In many experimental situations, optimizing the
effective excitation bandwidth may not be the most im-

portant parameter. Instead, power limitations may make
it important to minimize either the average or peak irra-
diation field without sacrificing too much of the band-
width.

It is easy, instead, to derive "low-power" pulses using
the same basic procedure described above. Given the
paths which identify the simultaneous zero crossings of
c2 and s &, we chose points where the power requirements
as represented by co were low. Pulses were then opti-
mized for maximum bandwidth Ace,„subject to the con-
straint that 6 should remain small. These low-power
pulses also seem to have relatively more modest peak
power requirements, and should be useful in experimental
situations where the average power may not be as great a
concern as the limitations imposed by the finite output
powers of available amplifiers. The coeScients describing
our low-power pulses, and a pictorial representation of
these pulses, are given in Tables VI and Fig. 7(b), respec-
tively. By comparison with the broadest-bandwidth
pulses presented above, the mean and peak fields are sub-
stantially reduced, as is the efFective bandwidth.

3. Magnetization pathways

At all other points in this paper we have referred only
to the propagator U(O, r), and thus implicitly concerned
ourselves with only the net evolution from initial to final

states. That the actual evolution of the two-level system
under % is a complicated function of the offsets and the
irradiation sequence is illustrated in Figs. 8 and 9, where
we provide representative trajectories for the broadest-
bandwidth sequences (Fig. 8) and low-power sequences
for yo=n. /2. For each sequence we have also provided
two different initial and final states, both for longitudinal
magnetization initially aligned parallel to the z axis [Figs.
8(a) and 9(a)], and for transverse magnetization initially
aligned parallel to the x axis. We also provide the trajec-
tories for two offsets within the effective bandwidth
hm (Ace,„. In aH eight cases, a high degree of compen-
sation for the deleterious effects of resonance offset is ex-
hibited.

TABLE VI. Coefficients a„, the bandwidth Ace,„, rms field co, and peak field co,„, for low-power
pulses with three modulation sidebands.

45'
90'

135
180'

0.125
0.25
0.375
0.50

—2.1
—1.7
—1.5
—1.2

0.2
0.7
1.0
1.5

0.2
—0.2

0.5
0.7

~~max

0.30
0.50
0.50
0.50

1.50
1.33
1.38
1 ~ 53

~max

2.225
2.85
2.375
2.50
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(a) (b

FIG. 8. Calculated trajectories showing the evolution of the
tip of the magnetization vector during the four-frequency
broadest-bandwidth 90' pulse whose coefficients (a, ,ai, t23, a41
are given in Table V. The initial orientation of the magnetiza-
tion vector is chosen to be parallel to (a) the z axis, and (b) the x
axis. For these representations, the pulses are applied in the y
direction. Evolution during the pulse is plotted for two reso-
nance offsets: Ace=0. 4 and Ace=0. 7.

FIG. 9. Calculated trajectories showing the evolution of the
tip of the magnetization vector during the three-frequency low-
power 90' pulse whose coefficients [a,az, a3 ) are given in Table
VI. The initial orientation of the magnetization vector is
chosen to be parallel to (a) the z axis, and (b) the x axis. For
these representations, the pulses are applied in the y direction.
Evolution during the pulse is plotted for two resonance offsets:
Ace=0. 2 and Dao=0. 4.

IV. CONCLUSIONS ACKNOWLEDGMENTS

In this paper we have presented a general scheme use-
ful for the analysis of arbitrary irradiation schemes on a
two-level system. While we express the irradiation field
as a Fourier series, the subsequent transformation be-
tween the time-dependent Hamiltonian &(t) and HF re-
tains all the essential details of the problem (unlike the
linear-response theory). This transformation creates a
new problem. Where previously the time dependence of
& made a prediction of the properties of U(0, r) difficult,
we now encounter the difficulty of diagonalizing an
infinite-dimension matrix. The methods of achieving this
diagonalization (or approximate diagonalization) depend
on the details of the particular problem. For the case we
have treated in this paper —broadband, offset-
independent-irradiation schemes on two-level systems-
we have shown how perturbation theory leads to expres-
sions which provide significant guidance as to appropri-
ate initial values for subsequent numerical optimization.
The broadband amplitude-modulated pulses derived from
this procedure provide significantly improved perfor-
mance over composite pulses which have been derived by
other equally general treatments. It appears possible to
improve the performance of these pulses to a great ex-
tent, although we have not yet analyzed the limits.
Furthermore, the treatment we have presented allows for
the imposition of further constraints without significantly
complicating the analysis.

There remain a number of completely unexplored but
closely related problems. Perhaps most trivially one
might ask as to whether other pathways with different
coefficients Ia„ I might prove more efficient. This is a
problem which can be addressed by the very same tech-
niques described in this paper. More fundamental ques-
tions about extensions of the Floquet formalism that we
have used here might also be asked. The most direct ex-
tensions appear to be in the design of broadband-pulse se-
quences for three-level systems (e.g. , spin-1 nuclei), and to
optimized narrow-band rather than broadband excita-
tion. We expect both these and other questions to be
fruitful avenues in the near future.
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APPENDIX A

Using Eq. (2.42), we write

(co„/neo)Z„inYo/2 —inYo/2

n (wo)
—(cu„ /neo)Z„

X e
n (wo)

We use the fact that all Z„operators commute

[Z„,Z ]=0 .

(A 1)

(A2)

The 6 matrix then takes on the form

(0) (d')
2 (d ') (0) (A3)

1 —(2a) /m co)Zak rt [e "
] an+k) .

m (wo)
(A4)

To simplify this expression, we first consider only the ele-
ments of Z„between ~ak) and ~ak+n), whose values
are —,'. Further, we realize that the m„coefficients are re-
lated because

CO —n COn

The elements of d can therefore be expressed as

(A5)

where d is the submatrix corresponding to
g„&oexp(co„ Incr)Z„between the states ~an ) and ~am ).
The d matrix is treated more extensively in Appendix B.
The 5„elements of 6 can be calculated by evaluation of
the elements of d, and
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1 2cOm5„=—ak g exp Z
2

( 0) m co

2' m Z an+a
me@

(A6)

equivalently,

1 ~m

(k +p)! men

k (~0)

k+p ' km*

k!

k! m cok, p
k (~p)

k k —p
( —1)'
(k —p)! m co

(A7a)

By changing the index of summation we can write,

where the operators enclosed within the parentheses are
all Hermitian.

To proceed, let us first calculate 5„ is the simplest case,
where there is only a single time-dependent irradiation
field at frequency +(meet) and with amplitudes ~ and

In this case, using the expansion of an exponential
operator and the fact that the only nonzero elements of
Z and Z have a value of —,

' and connect eigenstates

I
ak ) to

I
ak +m ), we can evaluate the expression for 5„,

and

(A7b)

Expressing co in terms of a real coefficient —,'0 and a

phase factor e [viz. , Eq. (2.4)],
'&m

( —1)" &m

k!(k +p)! 2m co

k (~0)

2k +p

l J
mes

'p&m
e (A8)

where we used the infinite-series definition of the Bessel
functions J (x).

Finally, the matrix elements of 6 for an arbitrary irra-
diation sequence with n, nonzero 0 can be written as

n2, n3) .

n =n —2n —3n
1 2 3

J„
CO

A302
J„ J„2' 3 3'

[i ( n
l ttt& + n

2 P& + n 3 $3+
(A9)

where we make use of the fact that all operators of the
form exp[i(co /me@)Z ] commute. D(1)= g (aOldlan )(1), (B4)

The real eigenvalue of any unitary matrix equals 1, and

APPENDIX B

The matrix D of Eq. (2.38) is composed of four subma-
trices, which are related by Eq. (2.39). A convenient rep-
resentation of D is g (aOldlan ) = g (anldlaO) =1 . (B5)

where (1) is an infinite vector all of whose elements equal
I. The sum of all row and column elements of d are
therefore equal, and using Eq. (B2),

(d) (d)
v'2 —(d ') (d ') (Bl) The important consequence of this statement is that Eq.

(B5) in conjunction with Eq. (Bl), proves

where d is a unitary submatrix with elements

(anld lam ) = (an +kid lam +k ) .

Thus the sum of all row elements of d are equal:

g (aOldlan ) = g (akldlan +k) .

(B2)

(B3)

g (anlDlaO) = g (anlDIPO) = 1

V'2

A similar statement holds for d ', and therefore

& —&P IDI »=& &P IDIP»= v'2

(B6)
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