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Dynamics of pulsed SU(1,1) coherent states
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In this paper we consider the time evolution of SU(1,1) coherent states driven by a coherence-
preserving Harniltonian containing periodic or quasiperiodic pulsing terms. This is a generalization
of a system consisting of a two-level atom subjected to quasiperiodic pulsing that was recently stud-
ied by Milonni, Ackerhalt, and Goggin [Phys. Rev. A 35, 1714 (1987)]. The time-evolution operator
in our case is given by a product of two finite group transformations of SU(1,1). Assuming an initial
SU(1,1) coherent state, we determine the equivalent classical motion generated by a Poincare map
that is a Mobius transformation on the Lobachevski plane, the interior of the unit circle in the com-
plex plane. The quantum-mechanical evolution of the state vector is calculated exactly and in
closed form even though the Hilbert space is infinite dimensional. We also study the autocorrela-
tion function which, as in the work of Milonni, Ackerhalt, and Goggin, is found to decay in the case
of quasiperiodic pulsing that may possibly be associated with a manifestation of chaos in a
quantum-mechanical system.

I. INTRODUCTION

In recent years there has been a great deal of interest in
the study of the quantum dynamics of systems driven by
time-periodic Hamiltonians. On the classica1 level, many
of them give rise to the type of motion that has been de-
scribed as "chaotic. "' On the one hand, it is generally
conceded that on the quantum level, the chaotic nature of
the system in question becomes suppressed. For example,
Hogg and Huberman have proved a theorem that for
bounded nonresonant systems, the state vector will
reassemble itself infinitely often in time. In the problem
of the quantum-kicked rotor, whose classical counterpart
exhibits chaotic dynamics and diffusive energy growth,
one finds the suppression of the chaotic motion and of the
energy growth; in fact, the energy becomes quasiperiodic
in time. ' This problem was also shown to be related to
that of Anderson's localization of wave functions in a
one-dimensional lattice in the presence of a static, ran-
dom potential.

It has, however, been recently shown that some of the
manifestations of chaos can make an appearance in quan-
tum dynamics. Pomeau et al. and Milonni et al. con-
sidered quasiperiodically kicked two-level systems and
showed that for incommensurate pulsing frequencies
"quantum chaos" exists in the sense that (i) the auto-
correlation function of the state vector decays, (ii) the
power spectrum of the state vector is broadband, and (iii)
the motion on the Bloch sphere is ergodic. The quantum
localization effect for a kicked rotor is greatly weakened
by the presence of the two incommensurate driving fre-
quencies. The system studied by Milonni et al. consists
of a two-level atom in the dipole approximation where
the interacting electromagnetic field consists of a periodic
sequence of 5 functions modulated by a periodic function

whose frequency is incommensurate with that of the 5-
function sequence. If the atom is initially in the ground
state, the Hamiltonian, which is linear in the Pauli ma-
trices, generates a generalized coherent state associated
with the Lie group SU(2). In fact, the Hamiltonian will
actually preserve the coherence of an arbitrary initial
SU(2) coherent state and it is well known that the "classi-
cal" motion of that state takes place on the Bloch sphere.

In this paper we consider the noncompact analog of
the SU(2) system studied in Ref. 7, namely, a Hamiltoni-
an belonging to a general class which preserves, under
time evolution, coherent states (CS's) associated with the
noncompact Lie group SU(1,1}. Such states have been
shown to be of considerable importance in the field of
nonlinear optics as they provide an example of ideal
squeezed states, in fact, squeezed vacuum states. ' ' "
Such states are produced by the interaction of an intense
coherent beam (laser light) with a nonlinear medium
modeled as a degenerate or nondegenerate parametric
amplifier. ' Here, we examine quasiperiodic forcing
when the Hamiltonian is linear in the generators of
SU(1, 1). Such a system could possibly be realized as a
parametric amplifier with the pumping field being modu-
lated by quasiperiodic pulsing. Assuming that the initial
state is an SU(1,1}CS, as defined by Perelomov, ' we em-
ploy group theory to determine the Poincare maps which
define the evolution of the CS from one pulse to the next.
It should be emphasized that even though the Hilbert
space representing the SU(1,1) dynamical group is infinite
dimensional, the quantum-mechanical evolution of the
relevant expectation values (energy, correlation functions,
etc. ) for the associated coherent states may be expressed
in closed form. In the case of pulsing, this evolution is
described by discrete "stroboscopic" or Poincare-type
evolution maps. (This is unlike the situation of the quan-
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turn rotor, where summations over an infinite basis of the
relevant Hilbert space are approximated by truncations. )

The phase space is the interior of the unit disk in the
complex plane, with the non-Euclidean geometry of the
Lobachevski plane. As in the case of the two-level atom,
we find that even though coherence is preserved, the au-
tocorrelation function of the state vector decays.

The paper is organized as follows. In Sec. II we de-
scribe the model Hamiltonian and determine its quantum
dynamics. An expression for the autocorrelation func-
tion is also derived. In Sec. III, the case of quasiperiodic
pulsing with commensurate frequencies, i.e., periodic
pulsing, is treated. Section IV is concerned with the case
of incommensurate frequencies or almost periodic puls-
ing. The results of some numerical calculations are dis-
cussed. We conclude with a brief summary in Sec. IV.

TO=a )a)+a2a2+1, K+ =a,aq, K =a, a2, (2.6)

and the corresponding Bargmann index is k=n, —n2,
the di8'erence between the number of photons in mode 1

and in mode 2. If the Hamiltonian H is linear in the gen-
erators [of Eq. (2.6)], as is the case in Eq. (2.1), then k is a
fixed number since the Casimir operator commutes with
H. In most of what follows, the results are independent
of the index k. However, when we require a specific sys-
tern we shall use the realization for the degenerate para-
metric amplifier with the k = —,

' representation, which in-
cludes the vacuum state.

With no loss of generality, we set 8 (t) =0 in Eq. (2.1)
and A(t) =2coo, which is appropriate for the degenerate
parametric amplifier. Furthermore, we assume that f (t)
is real and has the form

II. MODEL f(t)=F(t) g 6(t —nT),
n = —oo

(2.7)

The most general Hamiltonian which preserves SU(1, 1)
CS is of the form

where T )0 and F(t) is a real valued periodic function of
time to be specified later. The Hamiltonian thus becomes

H(t) = A(t)Ko+ f(t)K+ +f*(t)K +B(t), (2.1)
H=2oooKo+2K(F(t) g 5(t —nT), (2.8)

[KoiK+]=+K+~ [K K+ ]=2K—o . (2.2)

where A(t) and 8(t) are arbitrary functions of time and
f(t) is an arbitrary complex function of time. The opera-
tors Ko, K+ =Ki+K2 close as an su(1, 1) Lie algebra:

where we have set Ki =
—,'(K+ +K ). If the state vector

just prior to nth 6-function pulse is designated as
~
()'jln) &,

then immediately after the pulse it is given by

The Perelomov SU(1, 1) CS's are defined by the action' l(t(n)&'=e
' ' lg(n)& . (2.9)

~g, k & =exp(aK+ —a*K )~0, k &, (2.3)

where a= —(0/2)e '~, g= —tanh(0/2)e '~, with P and
L9 being group parameters with ranges —~ & 0 ( ~,
0~ P ~ 27r. The constant k is the Bargmann index related
to the eigenvalue k (k —1) of the Casimir operator
C =Eo K ] K 2. As usual we consider only the unitary
irreducible representations denoted as 2) (k), whose basis
states

~
m, k & diagonalize the compact generator Ko as

follows: Ko~m, k & =(m+k)~m, k &, m =0, 1,2, . . . , with
k )0. The parameter g defines the phase space, the
Lobachevski plane, ' ' and ~g~ (1. In terms of the basis
vectors, the SU(1, 1) CS becomes

(/2

Between pulses the evolution is governed by the free field
Hamiltonian Ho =2tooKo, so that the state vector just pri-
or to the (n + 1)th pulse is

~(ti(n +1)&
= U(n) ~P(n) &,

where U(n) is the evolution operator
—2i &a&TKo —2iF(nT)K)

(2.10)

(2. 1 1)

This evolution operator constitutes a product of finite
SU(1,1) group transformations. Using the non-Hermitian
2 X 2 representation of the su(1, 1) Lie algebra, where
Ko =o 3/2 and K, =i o2/2 (o., deno. te the usual Pauli ma-
trices), we obtain the corresponding 2 X 2 group elements

(2.4)

2i coo TK()
)

I CO T
e

0
I 6)oT

e
(2.12)

Specific realizations and representations of the Lie
algebra are required for any application to quantum sys-
tems. We first consider the single-mode case, where the
algebra is realized in terms of a single set of Bose opera-
tors

—2iF( n T)K
)e 2X2

cosh [F(n T) ] i sinh[F (—n T)]
i sinh[F(nT)) cosh[F(nT)] (2.13)

Ko= —,'(a a+aa ), K+ =
—,'(a ), K =

—,'a (2.&)

The Bargmann index becomes k = —,
' (even photon num-

ber) or k =
—,
' (odd photon number). These operators are

su%cient for the case of a degenerate parametric
amplifier. ' '' For a two-mode (nondegenerate) paramet-
ric amplifier an appropriate realization is given by'

a„ b„
[U(n)]2x2= b* *b„* a,*

where

(2.14)

Thus the 2 X 2 group element corresponding to the evolu-
tion operator U is
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a„=e ' cosh[F(nT)],
1 cop Tb„= —ie ' sinh[F(nT)],

(2.15a}
algebra. Note that in the trivial case X=0, i.e., zero puls-
ing, the maps in Eq. (2.21) reduce to the relations

2lcopT
g„+,=e ' g„, N„= —2kcooT,

and

and

lgo k 1&=U(0)i(0,k, o&

Igo, kj +1&= U(j )I/0, k,j &, j =1,2, , n .

(2.16)

(2.17)

However, the action of a finite SU(1,1) transformation U
on an SU(1, 1) CS Ig, k & is given as'

Ul g', k & = e'
I
g', k &,

where

%=2k arg(a bg), —ag b-
b*g+a *—

(2.18)

(2.19a)

(2.15b)

We now let the initial state at n =0 be an SU(l, l) CS,
to be denoted as I (0,k, 0 &

=
I go, k &. The action of the

evolution operator of Eq. (2.11) produces the time
evolved SU(1, 1) CS, that is,

implying a rotation of the g state vector in phase space
with constant angular frequency —2coo, consistent with
the assumed form of the free-field Hamiltonian. (The
Poincare maps take "snapshots" of the time evolution at
intervals of the pulsing period T.) The dynamics associ-
ated with nontrivial pulsing will be discussed in the Secs.
III and IV.

The energies E, associated with each state vector
lg(n) & (between pulses) will be given by [cf. Eq. (2.8)]

1+i&.l'E„=2' 0(g„,k IKOI(„,k & =2aiok
~

. (2.23)
1 g

2

Clearly, the energies E„become unbounded if Ig„ I
~ l.

We now return to the form of the pulsing function f (t)
in Eq. (2.7) which will be adopted in this study. If F(t} is
periodic, with period T, then f(t) is a quasiperiodic
function, as defined by Pomeau and co-workers. ' Fol-
lowing Ref. 7, we have chosen the periodic amplitude
function F(t) in Eq. (2.7) to be

and F(t) =A. cos(co't ) . (2.24)

Using Eqs. (2.14) and (2.15), we obtain

lgo, k, 1 &=U(0)i(0 k &=e lgi, k &,

i(0, k, 2 &
= U(1)i(0, k, 1 & =e

lg. , k, n+» = U(n)lg. , k, n &

Thus we have the evolution equations

q;„,z. g„+i tanh[F(nT)]
k. +i=e

1 —ig„t an h[F(nT))a„g„b„—
b„*g„+a„*—

where the a„and b„are given in Eq. (2.15), and

4„—=2k arg(a„—b„g„) .

(2.19b)

(2.20)

(2.21a)

(2.21b)

Since the angular frequency of the 6-function sequence is
co=2~/T, we have

F(nT)=i, cos(2myn ), y=ai'/a~ . (2.25)

When co and cu' are commensurate, i.e., when g is ration-
al, the next pulsing function f (t) in Eq. (2.7) is periodic
in time. When g is irrational, the pulsing is
almost periodic (The defin. itions of quasiperiodic and al-
most periodic functions are presented briefly in the Ap-
pendix. )

We now derive an expression for the autocorrelation
function of the state vector, defined as

C(r) = lim —f dt (, P(t) Ig(t+r) & .
T

T~~ T 0
(2.26)

N
C(l)= lim —g (go, k, n I(0, k, n+l '& .N- X n=0

(2.27)

[Clearly, C (0)= 1.] From Eqs. (2.20), however, we have

For our pulsed system this expression reduces to the
discretized form

These equations essentially define the Poincare maps
which relate the two state vectors which exist just prior
to two consecutive 5-function pulses. We shall write Eq.
(2.21a) in the form

i(W„+C(l)= lim —g e
n=0

""(g„,klan„, , k& .

(2.28)

k. +i=~.(k. } . (2.22)
The inner product in Eq. (2.28) is simply expressed in
closed form as

The functions R„belong to a special class of Mobius
transformations which map the unit circle I(I =1 and its
interior lgl (1 one-to-one and onto themselves, respec-
tively. ' The latter region corresponds to the
Lobachevski phase space associated with the SU(l, l) Lie

(g„,k lg„,, k &

(2.29)
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III. PERIODIC PULSING

We first consider the special case g=0, + 1,+2, . . . , in
Eq. (2.24), which gives a constant pulsing amplitude
F(nT)=kin . Eq. (2.8). The evolution of the SU(1,1) CS
reduces to the dynamics with iteration of a Mobius trans-
formation, i.e.,

(3.1)

where R has the form in Eq. (2.19) and

l cop T
a =e ' cosh'. ,

I c()p T
b = —ie ' sinhk. .

(3.2)

The dynamics are relatively uncomplicated and deter-
mined from a knowledge of the fixed points of R (z). To
summarize, we let C =

I z, E C,
~
z

~

= 1 } denote the unit
circle in the complex plane and S= Iz E C, ~z

~

& 1} its in-
terior. As stated earlier, R (C) =C and R (S)=S.

The two fixed points of R (z), say, p, and p2, satisfy the
quadratic equation

b *z + ( a —a * )z b= 0 . — (3.3)

Note that p,pz= b!b* so—that ~pi~~p2~=1. There are
three classifications according to the location and nature
of the fixed points.

(i) Hyperbolic case: p, and pz are distinct and both lie
on C. One point, say, pi, is attractive, i.e., ~R'(pi)~ &1
and the other is repulsive, ~R'(pz)~ & 1.

(ii) Parabolic case: pi =pz =p a degenerate fixed point
lying on C, which is indifferent, ~R '(p)~ = l.

(iii) Elliptic case: pi and pz are distinct, inverse to each
other with respect to C, and we let pi ES. Both fixed
points are indifferent.

If coo and T are fixed and A, is considered a variable pa-
rameter, all being real, then the fixed points pi and p2 mi-

grate as k is varied. The parabolic case occurs at a criti-
cal value A. =X, for which the discriminant D associated
with the quadratic equation (3.3) vanishes. We may use
Eq. (2.19b) to write

(3.6)

This implies that we may focus on a subset of the iterates
g„, defined by

m =0, 1,2, . . . . (3.7)

This subset is generated by the iteration procedure

+i=S(g ), m =0, 1,2, . . . ,

where

(3.8)

V may be made arbitrarily small, the states g„must ap-
proach the unit circle arbitrarily closely. Hence the ener-
gies E„ form an unbounded sequence.

(iii) A, & Xz. For goES, the iterates g„ lie on an invari-
ant "circle" (in hyperbolic geometry) containing $0. For
go=pi, this circle degenerates to a point. Thus the ener-
gies E„will form a bounded sequence which is either
periodic or quasiperiodic.

In Fig. 1 energy sequences that represent the three
categories listed above are shown. The initial state was
(0=0.5, and we chose coo=0.126, T= 1. A solution to
Eq. (3.5) occurs at k =0. 12633. In the hyperbolic case
A. =0.15 the energies E„are seen to grow exponentially,
which is a consequence of their geometric approach to
the attractive fixed point on the unit circle, and the ener-

gy formula, Eq. (2.23).
Up to now, we have considered only the special case,

g=an integer, in Eq. (2.24) for periodic kicking. In the
more general case of commensurate frequencies, i.e.,
g=co/co' rational, the pulsing is also periodic. The dy-
namics can also be reduced to the study of a single
Mobius transformation, as we now show. Let g=p/q,
where p and q are relatively prime integers, q&0, 1. Then
F(nT)=F((n+I)lT), where K) 2 is the least common
multiple of p and q. It then fo11ows that the rational
maps R„ in Eq. (2.21) are periodic, i.e.,

D =4[Re(a )] —4, (3.4)

so that D=0 implies Re(a)=+1. Thus A. satisfies the
transcendental equation

cosh', =+sec(cvoT ) . (3.5)

The system is hyperbolic for A, ) A, and elliptic for
A, & A, . The dynamics of the iteration sequence I g„}may
then be summarized as follows. '

(i) A. &A~: g„~p, as n~~ for all ~go~
& 1 except

go=pz, in which case g„=p2, n=0, 1,2, . . . . (The iterates
approach the attractive fixed point along geodesics in the
hyperbolic geometry. '

) Thus, for any (physical) starting
value ~go~ & 1, we have E„~~ as n ~ ~, i.e., the energy
is unbounded.

(ii) A, =A, : Let A be an open neighborhood of g'o such
that A (closure of A) does not contain the fixed point p,
and let V be any neighborhood of p. Then there exists an
integer N) 0, such that for all n )N, R "(A)& V. Since

CD

26

0.0
I

50.0 ioo. a

= 0.05

IS0.0 200.0

FIG. l. Evolution of scaled energies E„/2cook under periodic
kicking, cf. Eqs. (3.1) and (2.23), for three representative cases:
(i) A, =0.5 (hyperbolic), (ii) A. =0.126 (parabolic) (the oscillatory
divergence is not evident during this time scale), (iii) X=0.15 (el-
liptic). In all cases, $0=0.5, so that Eo /2cook = —', . Also,

o=0.126, T= 1.0
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S(z)=Rx io R& 20 ~ ~ OR ioRo(z)

Tz S
—s*z+ r* (3.9)

and the convolution symbol denotes composition of func-
tions. The map S(z) is necessarily a Mobius transfor-
mation of the same class as the R;(z). Its coefficients r
and s are determined from the matrix product
U(K —1)U(K —2) . U(1)U(0) where the U(n) ma-
trices are defined in Eq. (2.14).

Thus the dynamics of the nontrivial commensurate
cases has been reduced to the iteration procedure, Eq.
(3.7). A fixed point po of S(z) corresponds to a K cycle of

the ( iterates, i.e., S(po) =po implies the existence of the
cycle {p &&,p, , . . . ,Px, I, where

P, =Ro(Po) P2=Ri(Pi), . .. ,

PK Rsc —i(Px —i) Po .
(3.10)

Since all maps R; have the unit circle C invariant it also
follows that if po E C, then p; E C, i =1, . . . , K —1. Simi-
larly, if po ES, then p, ES, i = 1, . . . , K —1. The K cycle
in (3.9) will be attractive, indiff'erent, or repulsive, accord-
ing to whether ~S'(po)~ is less than, equal to, or greater
than 1, respectively. The dynamics is then classified as

(i) Hyperbolic case: both fixed points of S(z), say, po

(c) = 2.75

t ~

~ ~ 4

'
~

' -- ~ . ' '
~

~
'

~ ~
'l

~

-+"-:~ ". " . .'. " ~
~"

-: .:.,'. . ' - .. -.: ~a~'I'
~ ';, .' . ~ -. rI' i ~.~ ~

s ~

~
' .ay' ~-v. ~

\ ~r

p, .pJ'.g IP'~tel

FIG. 2. Some representative phase portraits of („ values assumed during almost-periodic pulsing; go=0.5, coo=0. 126, T=1.0,
y=4637/13313: (a) A, =0.1, (b) A, =1.5, (c) 2.75. For k&2.8, the g„quickly settle near the unit circle; at the resolution of these
graphs, essentially on it.
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(attractive) and qo (repulsive), lie on C. The iteration pro-
cedure g„+,=f„(g'„) will then produce an attractive K
cycle [pc, . . . , pz i I and repulsive K cycle
Iqo, . . . , qz, ), both lying on C.

(ii) Parabolic case: pc =qo, a degenerate fixed point of
S(z) on C, yielding an indiff'erent K cycle on C.

(iii) Elliptic case: attractive K cycle in S.
As an illustrative example, we consider the case g= —,',

so that F((2k+1)T)=—2, F(2kT)=k, k=0, 1,2, . . . . A
little algebra reveals that the map S(z)=R, & Ro(z) in Eq.
(3.9) is defined by the parameters

CO

oo'H
hG0

C3

g =e cosh g —sinh g
2I ct)0 I

b =i sinhA, cosh', (e " —1) .
(3.1 1)

i

50.0 100.0 150.0 200. 0

From Eq. (3.4), the critical value A. satisfies one of the
equations

FIG. 3. Scaled energies E„/2~ koof state vectors g„corre-
sponding to the trajectories plotted in Figs. 2(a) —2(c), as well as
for the case A, =3.0.

cos(2coo T )cosh A.
—sinh A+ I =0 . (3.12)

For our usual case coo =0.126, T= 1, we find that
=2.7633 [plus sign in (3.12)], which is consistent with

observed phase-space trajectories.

IV. ALMOST-PERIODIC PULSING

As mentioned in Sec. II, the case of incommensurate
frequencies, i.e., g irrational, produces almost-periodic
pulsing. The coefficients a„and b„ in Eq. (2.14b) are al-
most periodic. At present, our study is limited to a series
of numerical experiments, the results of which are dis-
cussed below. A number of "irrational" values of g were
employed and found to yield similar behavior. The re-
sults cited below correspond to the particular value
g=4637/13 313, which has been used in Refs. 6 and 7 to
approximate an irrational frequency ratio. For a given
modulation amplitude A. , the g„sequence was calculated
to N-10 terms. The general qualitative behavior of the
sequences (e.g. , autocorrelation vector) is found to be in-
dependent of the starting values go, as well as the parame-
ters ~o and To. For the results shown below, we chose
&~ =0 5 too=0. 126, T= l. From the g„, the autocorrela-so ~o
tion (AC) coefficients C(l) were calculated, usually to
l =200.

Firstly, for A, )0, the iterates g„are observed to fill re-
gions in phase space which may be donut shaped. The
sizes of these regions are dependent upon the initial con-
ditions. Nevertheless, as k increases, the outer boun-
daries of these regions migrate toward the unit circle C.
Some representative portraits are presented in Fig. 2 for
X=0.1, 1.5, and 2.75. At A, =2.8 there is a sudden transi-

nd the && quickly settle on an annulus whose innern a. e)~n
when A. =3.0,diameter lies very close to C. For example, when

the g„ for n )40 are found within 1 part in 10' of C.
The energies E„corresponding to the trajectories in Fig.
10 are plotted in Fig. 3. Recalling Eq. (2.23), we see that
the energy quickly increases as the g„approach the circle
C.

~y de-As A, increases to 2.8, the autocorrelation C(l) e-
creases in norm. In Fig. 4 sample AC vectors for k =0.5

2.0, and 3.0 are shown. For A, =3.0, we find that
C(l) (0.001 for 1)0 and are thus indistinguishable from
zero in the graph. The decrease in the norm of C(k) as k

Fi. 5increases is revealed in Fig. 5, where in analogy to ig.
of Ref. 6, we plot the following norm of the AC function:

/fC/
= max /C(n) f, (4.1)

C3

X = 2.0

0.0
I

50 ' 0 100.0 150.0 200.0

FICx. 4. Autocorrelation coefficients C(k), 0» k»200 for
almost-periodic pulsing, A, =0, 2.0, an 3.0. For k = 3.0,
C(k) & 0.005, hence indistinguishable from zero on the graph.

as a function of k. This decrease, which follows the pat-
tern observed in Ref. 6, has been used as a fingerprint to
characterize (or define) quantum chaos. (Some com-
ments on this point are made in Sec. V.)

We should mention that the critical pulsing amplitude
varies with the parameters coo (free-field frequency)

and T (pulsing period). The quantitative nature of this
dependence has not been investigated in detail. However,
from the form of the Poincare maps, e.g. , q. 1 it
follows that for fixed T, X, is periodic with respect to coo.

For A. sufficiently large, the g„ iterates lie arbitrarily
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CO

C)

C3o-

0.0 1.0 2.0
If& M M M M W M M M M ] 0.0 50.0 100.0 150.0 200.0

FIG. 5. Norm of autocorrelation vectors!! C!!,defined in Eq.
(4.1), for almost-periodic pulsing, 0.0 ~ A. 4.0.

FIG. 6. Plot of r„=arg(g„) for almost-periodic kicking,
A. =3.0, where!g„!=1 to one part in 10' for n ~40. The plot
reveals that the iterates are concentrated near two ~ values, al
and 0',

p
= cx 1 +K.

close to the unit circle C. This can be seen, at least par-
tially, as follows. From Eq. (2.21a), setting r„=!g„!and
t„=tanh[F( n T) ] for simplicity,

r2n+1
r„+t, +2r„ t„sin~„

rag(g„) .
1+r t +2r t sin~

For !t„!—1, we have r„+,—1. As A, increases, more of
the quasiperiodically varying t„will assume values
suSciently close to unity to keep the iterates near the
unit circle. To investigate the dynamics in this regime
more closely we consider the angular distribution of the

in these annuli. A plot of the angles r„=arg(g„)
versus n for the case A. =3.0 is shown in Fig. 6, revealing
that most iterates are found near two angles, o.

&
and

o'.2=aj+~. In Fig. 7 we obtain an understanding of the
return map ~„+,=P(r„) generated by plotting consecu-
tive pairs of angles (r„,r„+I). The rather singular distri-
bution of iterates is evident. Based on these and other
numerical results, we would conjecture that in the limit
A, ~ ~, the invariant measure (assuming it exists) associ-
ated with the return map P is composed of two point
masses located at a, and ct, +n(r =!g! = 1. in both cases).

which all state vector parameters g„are attracted to the
unit circle, implying unboundedness of the F.„.

The decay of the autocorrelation vector has been used
as one possible characterization of quantum-mechanical
chaos. However, there are some questions about such
an a priori classification, since the autocorrelation vector
of a (time) series is, in essence, a reAection of its Fourier
transform. In the case of almost-periodic pulsing, its de-
cay would be expected as a natural consequence of the
application of almost-periodic maps. This has previously
been noted in Ref. 7 and also in Ref. 17. We also men-
tion that Ford and Mantica' have come to the same con-
clusion with a study of the pulsed quantum-mechanical

V. SUMMARY

In this paper, the Poincare maps defining the evolution
of SU(1, 1) coherent states under (periodic and quasi-
periodic) pulsing have been derived in closed form. In the
periodic case, this evolution reduces to the iteration of a
Mobius transformation on the phase space, the interior of
the unit circle. Depending upon the pulsing amplitude,
the energies E„of the state vectors between pulses may
form periodic or quasiperiodic sequences which are either
bounded (elliptic case) or unbounded (parabolic and hy-
perbolic cases). In the quasiperiodic case, the norm of
the autocorrelation vector is found to decrease with in-
creasing pulsing amplitude, as found with other systems.
There appears to be a critical pulsing amplitude beyond

FIG. 7. Return map ~„+,=P(~„) corresponding to ~„vs n

graph of Fig. 6, obtained by plotting continuous pairs (~„,~„+,).
k =3.0.
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rotor and the quantum cat map. An advantage of these
SU(1, 1) model problems is that the transformations in-
volved in the time evolution may be written in closed
form.

If the n variables t are all proportional to the time t,

t =co t, j=l, . . . , n, (A2)
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then y is said to be quasiperiodic in time. '

Let f be a function of a single (real) variable t, such
that for any given e & 0, the inequality

I f(t+r) f(t—)~ (e, for all t (A3)

is satisfied by infinitely many values of r on the real line,
located over the line in such a way that empty intervals
of arbitrarily great length are not left. (The set of r
values satisfying the inequality is said to be relatively
dense on R.) Then f(t) is said to be almost periodic in t. '

An example of an almost-periodic function is
APPENDIX f ( t ) = sin(2nt ) + si n(2V2m. t ) . (A4)

For purposes of clarity and distinction, we present
brief definitions of quasiperiodic and almost-periodic
functions, following Refs. 16 and 19. Let y be a function
of n independent variables t, , . ~ . , t„, and periodic, of
period 2~ in each argument, i.e.,

y(t&, . . . , t, . . . , t„)

=y(t, , . . . , t + 2vr, . . . , t„), j= 1, . . . , n

(See Ref. 19, p. 1, for proof. )

With the periodic amplitude function F(t) given in Eq.
(2.24), the net pulsing function f(t) in Eq. (2.7) is seen to
be quasiperiodic in t with angular frequencies co and
co=2~/T. If the frequencies are commensurate, i.e., if
the ratio co /co is rational, then f (t) is periodic. If the ra-
tio is irrational, then f (t) is almost periodic in t.
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