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Dynamics of pattern formation in the Turing optical instability
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The transient dynamical evolution of spatial pattern formation in a nonlinear passive optical sys-
tem in a Fabry-Pérot cavity driven by an external coherent field is studied. The associated decay of
the unstable homogeneous state of the system is described analytically, with the inclusion of noise
effects, in terms of a stochastic amplitude equation for the unstable mode in the direction of instabil-
ity. As a result, the time scale on which the pattern is formed as well as the anomalous transient
fluctuations of the field intensity are explicitly calculated. Our results show that the behavior of
these fluctuations depends strongly on the position within the cavity. Finally, the symmetry-

restoring effect of fluctuations is also discussed.

I. INTRODUCTION

Nonlinear optical systems exhibit a variety of non-
equilibrium instabilities. Rather recently! a new type of
instability leading to spontaneous pattern formation has
been predicted and investigated. This contrasts with the
more extensively studied temporal instabilities which lead
to oscillations or pulsations.”’ The new type of instability
is analogous in its mathematical formulation to the well-
known Turing instability in nonlinear chemical systems.
The difference is that the role played by diffusion in
chemical systems is here played by diffraction associated
with transverse effects. In its simplest form' the instabili-
ty has been studied for a passive system in a Fabry-Pérot
cavity driven by an external coherent field E;. The cavity
is filled with a Kerr medium or a two-level system in the
pure dispersive limit. It has four mirrors orthogonal to
the longitudinal and transverse coordinates. In this situa-
tion there is no temporal effect associated with the insta-
bility, and the coexisting cavity modes in the resulting
nonhomogeneous stationary state have the same frequen-
cy as the driving field. The mathematical model used to
study this situation is, in appropriate units, !

3,E (x,t)=—E +E;+iE(|E|>—0)+iad*E . (1.1

E is the normalized envelope function of the field in the
cavity. The coordinate x is transverse to the cavity, and
in the units in (1.1), 0<x < 1. The incident field and the
cavity are polarized in the direction perpendicular to the
longitudinal coordinate and the x coordinate. The
diffraction coefficient a is inversely proportional to the
Fresnel number. The detuning parameter 6 is>*
2CA

0=0'——"="5 (1.2)

where 6’ and A are the cavity and atomic detunings, re-
spectively, and we choose the case A <0. The constant C
is the bistability parameter. The derivation of the model
(1.1) is discussed in Refs. 3 and 4. For this model, the in-
stability has been identified by linear-stability analysis,
and the stationary solution has been found, close to the
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instability point, using bifurcation theory.! The analysis
of (1.1) has been extended by numerical solutions to the
case of a cavity with spherical mirrors where spontaneous
breaking of cylindrical symmetry is possible.’> In this
case the instability is accompanied by temporal oscilla-
tions. A related instability leading to a spatial pattern
occurs in the laser.® In this case the competing spatial
modes select a common oscillation frequency so that the
laser intensity is stationary in time.

Our general purpose, in the context of these pattern-
formation instabilities in optical systems, is to describe
the transient dynamics of pattern formation. When the
appropriate control parameter is suddenly changed, an
initial homogeneous state becomes unstable and evolves
to a final nonhomogeneous state. In the passive system
described by (1.1) this occurs when the driving field
changes from a value E; <E;. to a value E; > E;.. The
dynamical evolution consists of the decay of an unstable
state during which a spatial pattern emerges. We aim to
describe such processes by analytical methods of general
validity which include noise effects. The consideration of
fluctuations is essential, since we are dealing with a decay
process which, properly speaking, is not possible in a
deterministic framework. In this paper, we restrict our-
selves to the simplest form of this type of instability,
given by (1.1), in which no temporal effects appear. We
will consider the Fabry-Pérot Cartesian geometry and pa-
rameter values for which the instability is supercritical.

The key idea to our development is the reduction of
(1.1) to a normal-form amplitude equation for the ampli-
tude of the unstable mode in the direction of the instabili-
ty.”® This can be done with the inclusion of noise terms.
In this way, one reduces, close enough to the instability,
the problem posed by a stochastic partial differential
equation for a vector variable to an ordinary stochastic
differential equation for a scalar variable. The method is
of general validity and can be applied to a variety of simi-
lar problems. Previous studies’* > of the optical Turing
instability based on Eq. (1.1) do not include analytical
solutions for the dynamical evolution and do not take
into account noise effects. In the absence of fluctuations
the lifetime of the unstable homogeneous state is infinite.
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The inclusion of fluctuations permits the calculation of
the time scale on which the pattern is formed and the
description of the important fluctuations occurring in the
transient decay process. In addition, fluctuations restore
the spontaneously broken symmetry associated with the
different pattern-forming deterministic solutions. In this
paper, we show the generality of the method and we cal-
culate the transient dynamical evolution of the mean in-
tensity associated with the field E (x,z). This calculation
describes the pattern formation and identifies the lifetime
of the unstable homogeneous state. We also calculate the
intensity fluctuations during the transient process. The
behavior of these fluctuations is largely dependent on the
space point in the cavity. Close to the walls of the cavity,
the intensity fluctuations grow monotonically in time to a
large value associated with a bimodal probability distri-
bution for the intensity. At the center of the cavity such
distribution evolves in time, remaining single-peaked, so
that close to the center of the cavity, intensity fluctua-
tions exhibit the characteristic peak associated with the
anomalous transient fluctuations occurring in the decay
of unstable states.” The symmetry-restoring effects of
fluctuations are also discussed.

The paper is organized as follows. For clarity of pre-
sentation we first study, in Sec. II, the deterministic dy-
namics associated with Eq. (1.1). This includes a sum-
mary of the linear-stability analysis, the derivation of an
amplitude equation, and the deterministic solution for the
time- and space-dependent intensity. The discussion of
the multiplicity of deterministic solutions goes under the
name of space-dependent bistability. Section III is devot-
ed to the stochastic dynamics. The starting original mod-
el is discussed in Sec. III A. It contains thermal-noise,
phase, and intensity fluctuations of the driving field. Sec-
tion III A also contains the derivation of a stochastic am-
plitude equation. In Sec. III B the qualitative stochastic
behavior is discussed, and Sec. III C contains the stochas-
tic transient dynamics calculation. In the Appendix we
specify some of our results to lowest order in the parame-
ter that measures the distance to the instability point.

II. DETERMINISTIC DYNAMICS

The homogeneous stationary solution of (1.1),

Ey=E, ;+iE,  satisfies the equation
E}=|E P [1+(|E,|*—0)]. (2.1

Bistability, exhlbmng two possible solutions of |E |2 as a
function of E}, occurs for 8> 6, =V'3. We denote by the
complex variable

q(x,t)=q,+ig, , (2.2)

the deviation of E (x,¢) from the homogeneous stationary
solution

E(x,0)=Eg+q(x,1) . 2.3)

The nonlinear equation satisfied by q (x,t) can be written
as

3,94(x,6)= 3 K 5q95(x,t)+ N (q), a=1,2 (2.4)
B
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where K ,5 determines the linear dynamics around E; for
a given E; and N,(q) includes the nonlinear contribu-
tions. Explicitly,

—1-2E, (E,, 6—E3},—3E}, —ad’
Kas= \3p3,+E3, —0+a02  —1+42E, E,,
(2.5)
Nol@)= 3 hopodudot 2 Bavodudvdo » (2.6
po=1 mv,o=1
where the coefficients 4 and g are given by
—E,, —2E,; 3E,, 2E,,
hue=| o —3E, | "we=| 0 E,, |
(2.7)
gn2=gun="L 81n=gm=1, 2.8)

and the remaining g coefficients vanish.

A. Linear analysis

As a first step in studying the nonlinear dynamics of
pattern formation through an amplitude equation, we
first review the linear stability analysis of (1.1), introduc-
ing some more notation that will be used later. The
linear-stability problem of (1.1) amounts to the analysis of
the eigenvalue equation associated with K ,5. Taking into’
account the reflecting boundary condition dE /9x =0 at
x =0,1, the eigenvalue equation can be written as

zxaﬁuc WEIx)=A(kHVEI(x), j=1,2, 2.9)
where the eigenvectors V%/(x) can be written as
Vhi(x)=07(k)cos(kx) , (2.10)

with wave numbers k=mn,n=0,1, . The two exgen-
values A j(k ) for a given wave number have the form'

Ai(kH)=—1£(1-£)'"7?, 2.11)
where
E=1+(|E,|>—6)(3|E,|*—6)
+ak’[ak*—2(2|E,|>*—0)] . (2.12)

In the following, j =1 will be associated with the plus
sign in (2.11). We will focus in this paper on the situation
6 <6, for which bistability does not occur. In this case
(2.12) implies' that the homogeneous mode n =0 remains
stable and that a range of unstable modes exists for
|E;|>>1,2|E,|*> 6. The growth of these unstable modes
leads to the formation of a pattern in which the homo-
geneous solution coexists. The instability first occurs at
|[E,|?=1 for a critical wave number k,, such that
ak?=2—6. We will assume to have parameter values
such that a single-mode k. becomes unstable.

There are several features of the linear dynamics worth
noticing. The first thing to note is that, although A, (k?)
only depends on |E,|?, the matrix K depends separately
on E, ; and E, ,, so that the problem is essentially a two-
variable problem and cannot be reduced to a closed
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dynamical equation for the field intensity I =|E|2.
Second, it should be noted that the matrix K is real but
nonsymmetric, a fact that has several consequences. The
eigenvalues and eigenvectors are generally complex with
A(k?)=A%(k2)and O} (k)=[02(k)]*. The eigenvectors
O/ (k) are determined except for two real constants.
They are chosen by a normalization condition

3 0LkOoLk) =1,

a=1,2

(2.13)

and a global phase factor is fixed requiring the first com-
ponent O (k) to be real. Equation (2.13) makes it clear
that the eigenvectors O/(k) are not orthogonal for
different j, but that they are linearly independent, except
for accidental degeneracy of A ;(k 2).

In the following, we will also need to introduce the left
eigenvectors O i}(k) of K,

S 0 kK gu =1, (kDD (k) . (2.14)
The /ieft eigenvectors are, by definition, orthogonal to
right eigenvectors for different j. They are chosen here
with the following normalization condition:

20

k)OL(k)=8, (2.15)

The explicit calculation for 6=1 of eigenvectors and
eigenvalues to first order in the distance v=E; —E;. from
the mstability point is given in the Appendix. The eigen-
values A;(k 2) are real, while for k =0,2k,, the eigenval-
ues are complex for finite v, but k (k= O) at v=0 is real
and degenerate. At v=0 the matrix K is symmetric.

G j(O=M KNG ;42 3 Tuenacicn i (D6
Kk

J"

where the coefficients @ are complex numbers given by

Gy = 3 Moo O WIIOL (KOG (k™) (2.18)
a,u, o
akk'k”k’”,jj‘j”j”'
= 3 ZauorO LUKIOL (KOS (KO (k™)
a,u,o,v

(2.19)

and the coefficients J introduce the selection rules for the
possible mode couplings

Jkk.kn=foldx cos(kx)cos(k’x)cos(k''x) , (2.20)

Jupwrien= [ dx costkx)cos(k'x)cos(k " x)cos(k"x) .
(2.21)

For the homogeneous mode k =0, one finds slightly
different coefficients:

(O+2 3 Tikkrkm@rekke, jj i ibie, j(t
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B. Amplitude equation

A solution for the nonlinear Eq. (2.4) is sought in the
form of an expansion in the complete set of functions as-
sociated with the linear problem®3

(x,t)= k)cos(kx) .

2§k, (2.16)

The complex amplitudes &, ;(¢) carry the time depen-
dence; the space dependence is given by the cos(kx) fac-
tor for different wave numbers, and the vector O/ (k)
mixes in the solution the two eigenvectors with the same
wave number. For complex eigenvalues A;(k),
Sk 1(1)=&% 5(1). The key idea is now to single out the dy-

namics of the amplitude § k., 1(¢) of the unstable mode k,

in the direction of mstablhty j =1, while the other ampli-
tudes follow the dynamics of §, ,(z). This greatly

simplifies the problem passing from an equation for two
space-dependent variables ¢,(x,?) to an equation for a
single space-independent variable amenable to analytical
treatment. Other numerical approaches™® to this and
other similar problems are based on a straightforward
Fourier analysis of g,(x,t) which does not take advan-
tage of the existence of a direction of instability j =1 for
the unstable mode k.. We make use here of this direction
of instability by the explicit introduction of the vector
O (k).

Equations for the amplitudes £ ;(¢) are obtained by in-
troducing (2.16) in (2.4) and using (2.15). We obtain for
k+#0

)gk”,j“(t)gk’”,j”’(t) R
e
Y

(2.17)

bo,/(0= 21,0005, (D +1 3 ogo, o, (1o, (1)
JJ

+1 3 agene i DGk D+ OE)

KJ"
(2.22)

where the cubic nonlinearities are not written explicitly.

The unstable amplitude is associated with the single
positive eigenvalue A,(k?). To make clear the difference
between stable and unstable modes we introduce the no-
tation

u zgl(kc) 4
and (2.23)
Sk,jzgj(k) s

with
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k#k,, j=1,20r k =k, j=2

Close enough to the instability, the unstable amplitude is
a small quantity and the stable amplitudes are at least one
order smaller than u. On these grounds (2.17) can be
simplified as follows. In the equation for u, terms of or-
der s2, u?s, us?, and s> are neglected in front of u3. The
coupling among the unstable mode and the stable modes
in the equations for u is kept by terms of order us. In the
same way, in the equations for s, terms of order us, u 3,52,
u’s, us?, and s* are neglected in front of u%. The result-
ing simplified form of Egs. (2.17) is

a()=A(k2)u + AP u*+ AP u 3+2A(2>S,” , (2.24)

z = 2 2),2
Skvj(t)_)\'j(k )Sk,j+Ask'lu ) (2.25)
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k =2k_. Explicitly,
2 A(z)Skj =4u Re 2 (1——;—8k,2kc)akckck,lllsk,l .
k=0,2k,
(2.26)
In addition, A4 (2) vanish except for k =0,2k,
Al =4k ik =0,2k, (2.27)

In summary, for k =0,2k,, S, g relaxes to zero, since
Aj(k ) <0, and the stable modes k =0,2k, are coupled to
the dynamics of the unstable amphtude Invoking the
adiabatic elimination® principle based on the different
time scales determined by A,(k?) and A,(k =0,2k,), we

express Sy ;, k =0,2k, in terms of u by setting S"k,j =0in

(2.25). This gives the final closed-amplitude equation for
u
where 4Y=1a, kckck(ci)llll' Selection rules (2.?0) and ()=, (kD +Cu? (2.28)
(2.21) are such that 4,”=0 and u only couples in (2.24)
to the homogeneous mode k =0 and the first harmonic where
|
C=3q, —4Re ——1—a a —;a a (2.29)
Tk k k k1111 20,(0) 90keke 11k k01 255y Fak k111 Tk 2k 111 .

The parameters A;(k2) and C in (2.28) can be calculated
for a given E; in terms of the linear dynamics associated
with the matrix K. The explicit calculation to lowest or-
der in v=E,—E,c is given in the Appendix. From the
solution of (2.28) and going back to (2.16) the solution
E(x,t) to the original problem can be constructed. In
(2.16) only k =0,k.,2k. will contribute, since other
modes have zero amplitude in this approximation.

C. Transient dynamics and space-dependent bistability

The time development of the spatial pattern associated
with the field amplitude E (x,¢) is determined by the solu-
tion of (2.28). We are interested in the transient dynam-

u (t)==%|uglexp[A,(k)t]/{1—[Cud /A

The simple solution (2.30) is shown in Fig. 1 for different
values of E; and u,. The important point to notice is
that the time needed to reach the final stationary value
u,(0)==%[A,(k.)/—C]"? and the rate at which it is ap-
proached depends on E;, but the time scale in which the
decay process starts is determined in this context by the
chosen initial condition. It is this last time scale that is

k,)1[exp2A,(k)t]—1}172 .

[
ics which follow an instantaneous change of E; from a
value E; <E; to a value E;>E;. The first E; value

determines the initial condition. In the present deter-
ministic context, u =0 in the steady state corresponding
to E; <E,;. The solution of (2.28) with such an initial

condition is u (¢)=0 for all times. This just reflects that
the decay of the unstable state created by the change of
E,; is not possible in the absence of fluctuations. Such
fluctuations will be introduced in Sec. III. Here we allow
for a small initial condition u, and solve (2.28) with
u(t =0)=u,. The choice of the sign of u, gives rise to
two different solutions u.(#) with the same absolute
value of the initial condition

(2.30)
[
EZ(x,t)=Ey ,+u. ()0 (k. )cos(k.x)
+2Re[So (10 (k =0)]
+2Re[Sy 1 (1)04(2k,)cos(2k.x)] . (2.31)

Using the adiabatic elimination of the linearly stable
modes,

associated with the lifetime of the unstable state. EJ(x,0)=Ey ,+u. ()0} (k )cosk.x +u’l (1) A, (x),
Associated with the two solutions u (¢) there are two
solutions for the field amplitude obtained from (2.16): (2.32)
where
J
Aa(x):_R A :O)aOk k 1“0 (k O) A’l%kc)achkckc’lllollx(ch) COS(chx) . (2.33)
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FIG. 1. Solution given by (2.30) for different values of E; and
of the initial amplitude as indicated. The constant C in (2.30) is
calculated from (2.29) for those parameter values and =1,
k.=1. (Arbitrary scale for the amplitude.)

Equation (2.32) gives the solution for E (x,t) in terms of
quantities which can be calculated explicitly for any E;.
The explicit form of this solution to first order in
v=EFE, -—E,c is given in the Appendix.

The structure of (2.32) makes it clear that the dom-
inant contribution to E (x,t)—E,, comes from the unsta-
ble mode k.. In addition, the mode kK =0 gives a new
contribution to the homogeneous part of the field. In the
dominant contribution the eigenvector OL(k,) weights
the different contributions of the amplitude u, (¢) in the
two components of the electric field for a=1,2. At
E;=E,, O1{(k.)=01(k.) (see the Appendix), giving the
same weight in the two components. However, as we
move away from the instability point the weight of the
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CONTROL PARAMETER E,

FIG. 2. Ratio of the real and imaginary parts of the field in
the cavity as a function of E; (=1, k. =m).

real component becomes larger. The relative weight of
the real and imaginary parts of the field is shown in Fig.
2.

The emergent structure pattern for the relevant physi-
cal quantity which is the field intensity I (x,7)=|E (x, 1)|?
is obtained from (2.32)

Ii(x)t):IS[+a1(x)ui(t)+az(x)ui(t)

Fas(x)u () +a,(x)ud (1), (2.34)
where
a,(x)=2cos(k.x) 3 E, ,0}(k,),
a,(x)= 3 {[0L(k,)cos’k.x +2E , A,(x)} ,
* (2.35)

ay(x)=2cos(k.x) 3 OLk,) A, (x),

as(x)=3 4% .

Associated with the two solutions 1 (¢) we find two solu-
tions for the intensity. This fact means that (2.34) implies
symmetry breaking in two senses. First, the emergence of
the pattern breaks the continuous-space translational
symmetry. The pattern formation starting from the
homogeneous solution is shown in Fig. 3. Second, the
solutions 7, (x) have no definite parity when A— — A, be-
ing x =1+ A. The choice of the * solution by the choice
of the sign of the initial condition breaks the reflection
symmetry. The I, solution in Fig. 3 gives a stronger in-
tensity to the left-hand side of the cavity, while the I _
solution would give more light intensity in right-hand
side of the cavity. For example, for 6=1, n. =1, we have

a15(A)=—a,;(—A), a,4A)=a,(—D), (2.36)
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FIG. 3. Field intensity I, as given by Eq. (2.34) vs transverse
coordinate for different times (=1, k. =). t(st) indicates the
time at which, numerically, the system reaches the steady state.

so that the complete set of solutions has reflection sym-
metry since I, (A)=I(—A).

The existence of these two solutions for the intensity
can be understood as a space-dependent bistability in the
sense that for each space point x two solutions are possi-
ble. But the difference between these two solutions de-
pends on the space point. For n.=1 the two solutions
coincide at x =1 and their largest difference occurs at the
sides of the cavity. An important point to note is that
these two solutions do not grow symmetrically from I
so that for a general point x, I, —I #—(I,—1_). The
two solutions cannot be made to coincide by a trivial
redefinition of variables, as in (2.28), where bistability
does not exist for y =u?2.

III. STOCHASTIC DYNAMICS

We now address the question of giving a stochastic for-
mulation of the dynamics of pattern formation associated
with (1.1). The inclusion of noise terms in (1.1) is essen-
tial in describing the transient process. In connection
with the choice of initial condition for (2.28), to give a
deterministic description of the decay of the unstable
state, we have already seen that fluctuations are needed
to initiate the decay. They determine the time scale in
which the relaxation occurs and they are also responsible
for the transient fluctuations which are generally anoma-
lously large.® In addition, fluctuations have in these
problems an important effect in the final steady state; the
broken reflection symmetry discussed above is restored
when a small noise term is included because fluctuations
mix the two solutions I (x,¢). This symmetry-restoring
effect is preserved if the noise intensity is taken to zero
once the steady state is reached. This fact reflects the
noncommutativity of the deterministic limit and the limit
t— 0.
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A. Stochastic model and amplitude equation

Possible sources of noise to be included in (1.1) are
quantum noise, parametric or external noise, and thermal
noise. Quantum noise'® will not be considered here. In
order to introduce parametric noise!! associated with
phase and intensity fluctuations of the incident field, a
frame of reference selecting the phase difference between
E and E; is introduced:

E/(t)=|E,(t)lexplip(t)],

_ (3.1)
E(x,t)=E (x,t)exp[ —iy(t)] .

The chosen stochastic model for E(x,1) is
3,E(x,t)= —E+|E;|+i(|E|*—6)E +iad’E —iy(t)E
+w(t)+7(x,t), (3.2)

where (1) and o(t) are real space-independent stochastic
processes. () is associated with frequency fluctuations.
Following the ordinary-phase diffusion model, 9(¢) is tak-
en as a Gaussian white noise of zero mean and correla-
tion

(¢(t)¢(t'))=ep8(t—t') . (3.3)
¥(t) models equally well the fluctuations of the detuning
parameter 6 considered in Ref. 12. The process w(t) is
associated with amplitude fluctuations introduced when
replacing |E,;| by |E;|+w(2); it is also taken as a Gauss-
ian white noise of zero mean and correlation

(o(t)o(t')) =€,8(t —1t) . (3.4)

The complex space-dependent process n=m;+in,
models thermal fluctuations. It is taken to be Gaussian
white noise with correlation

(nglx, imglx, 1)) =€p8(x —x")8(t —1')845 ,

a,f=1,2. (3.5)

The stochastic nonlinear equation for ¢(x,?)=E(x,
t)— E becomes (2.4) supplemented by noise terms. Am-
plitude and thermal noise appear as new independent
terms in the right-hand side of (2.4), while frequency
noise contributes to the linear term. Explicitly,

9,9,(x,t)= 3 K ,p5q5(x,1)+N,(q)
B

+ 3 Mpqpid(t)+8, 0()+1,(x,8),  (3.6)
B

where M,z is the unit antisymmetric matrix, My,
=M,,=0,M;,=1,M,;=—1.

Our strategy is now to reduce (3.6) to its normal form,
given by a stochastic amplitude equation much in the
same way that (2.4) was reduced to (2.28). We still seek a
solution of the form (2.16) for q,(x,?), where, now, Sk’j(t)
will become stochastic processes. A similar decomposi-
tion is introduced for 7,(x,):

No(x,0)="3 ;. ;j(1)OL(k)cos(kx) , (3.7
k. j
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so that
<77k,j(l)nk‘,j'(tl)>: 2(1-%6[(,0)67‘6([ _t’)ak,k'

X3 OiKk)O (k') . (3.8)

Following the same steps as in Sec. II the new terms
that appear on the right-hand side of (2.17) are

S agy ;P OEs oy (D+8; 60 {(k =0)wl(2) , (3.9)
<
@ = 3 MO (k)OS (K') (3.10)
a,B
and Eqgs. (2.24) and (2.25) become
()= Ak Ju + AP u3+ kzj AZS, u
(3.11)

+¥ 3 B, &tk )+ (1),
J

Si /(0= A;(k)S, ;+ A;j;u2+¢(t)kszssk,jJrnk,j(t)

+8,00 {(k =0)a(1) , (3.12)

where
B,=a,; 1 » (3.13)
Bszakk,lj +akk’2j+akk’j2 . (314)

Equations (3.11) and (3.12) indicate that amplitude noise
only couples to the homogeneous mode, but frequency
noise couples in a multiplicative way to all the modes and
introduces a nondiagonal linear term in (3.11). This is so
because the expansion (2.16) is based on the linearization
of only the deterministic part of (3.6).

The multiplicative character of frequency noise makes
the adiabatic elimination of the stable modes more
difficult than in the deterministic case. We will consider,
in this paper, a first approximation of the noise terms in
(3.11)-(3.14) introduced as follows: The important fluc-
tuations are those connected with the growth of the un-
stable mode and, therefore, noise terms in (3.12) are
neglected. Also, since the main interest here is in the ear-
ly stages of decay, multiplicative frequency noise in (3.11)
can be neglected in front of Mg, ,1- In fact, B, is such that
strictly at the instability point E,=E,C, a x, 11=0, so
that ¢(z) does not couple to u [see (3.13)]. Neglecting
multiplicative noise is known to be generally a good ap-
proximation when studying the first stages of decay of an
unstable state!>” !5 because multiplicative-noise terms
vanish for ¥ =0. We note that within the approximation
scheme used here, the most relevant source of noise in
(3.11) influencing the decay process is the k. component
of 7(x,t). Following the same adiabatic elimination
scheme of Sec. II, the stochastic amplitude equation be-
comes

u=A(kDu +Cu’+n, (1), (3.15)
where
(i 1(Omy1(27)) = €82 —1") (3.16)
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and € defined through (3.8). It can be seen from the re-
sults in the Appendix for O /(k) that e=¢e for E,=E; .

The simple stochastic equation (3.15) can be studied by
standard techniques. The stochastic behavior of E(x,t)
can be constructed from u (z) in the same manner as the
deterministic case in Sec. IIC. It is important to note
that the method followed here to reduce a complicated
stochastic space-dependent dynamics is rather general.
In fact, the main steps of the method and general features
of our results remain the same for any general nonlinear
equation like (2.4) with quadratic and cubic nonlineari-
ties.

B. Qualitative stochastic picture:
symmetry-restoring and transient fluctuations

Important qualitative facts concerning noise effects can
be discussed without further explicit calculation. As pre-
viously discussed, for e=0, u (¢) reaches at t = «, either
of two values giving rise to two solutions 7/, (A), which
only coincide at the center of the cavity A=0. For small
€ the qualitative stochastic picture is then that for A70;
an intensity probability distribution that initially peaks
around I will evolve splitting into two peaks that will
approach positions centered around I.(A). The peak
splitting will be more noticeable close to the walls of the
cavity, while in the middle of the cavity the probability
distribution remains single peaked for all times, the posi-
tion of the peak moving from I at t =0 to J(A=0) for
t = . The symmetry restoring mentioned before is now
obvious and it is due to the mixing of the two determinis-
tic solutions by fluctuations. Indeed, u (¢) in (2.34) is now
a stochastic process such that (x2"*!(#))=0 for all
times. Then (I(A,?))=(I(—A,t)), because only the a,
and a, terms in (2.34) remain after averaging. Of course,
a given realization approaches at intermediate times one
of the two deterministic solutions, but at late times the
two solutions are mixed by an escape mechanism activat-
ed by fluctuations.

The time scale in which a solution I, escapes to a
solution I_ is given by Kramers time T ~e%°/¢, where
Av is the potential barrier associated with the two sta-
tionary solutions of (3.15) as €e—0. However, we note
that, in these late-stage processes, noise terms neglected
in (3.15) may become important, changing the actual
value of the escape time 7. A second important noise
effect concerns transient fluctuations. It is generally
known that in the decay of an unstable state the time-
dependent variance of the relevant variable exhibits
anomalously large fluctuations.® This means that fluctua-
tions are relatively small around the initial and final sta-
tionary values at ¢t =0 and ¢t = o, but that in the tran-
sient a large maximum exists. The phenomenon is under-
stood as the amplification by deterministic nonlinear dy-
namics of the initial fluctuations that triggers the decay
process. The maximum of the time-dependent variance
occurs after the system has left the vicinity of the unsta-
ble state. This time scale is associated with the lifetime of
the unstable state given by a first-passage time. Anoma-
lously large transient fluctuations are well known during
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laser switch on.'®!” In our problem, transient intensity
fluctuations are obtained from (2.34) and (3.15) as

8(x,0)={((I —(I))*)
=a}(x){u(1)) +2a,(x)a;(x){u*t))

+ad(x){u’t)) +2(x,0), (3.17
where
3(x,0)=a3(x){[uX(t)—Cu(t))]?)
+al(x){[u*)—(u())]?)
+2a,(x)a (x){ [u(t)—(u’(1))]
X[utt)—(ut())]) . (3.18)

8(x,t) has two contributions: =(x,t) involves variances,
and at steady state (f =), X vanishes as €—0. The
remaining part § —= grows with time and reaches a final
value which remains finite for e=0. In fact,

lim 8(x,t = 0 )=a?(x)u’ +2a,(x)a;(x)u, +a3(x)u®,

€e—0

(3.19)

where u" =[A,(k.)/(—C)]"’2. This result makes clear
the noncommutativity of the limits €—0 and t— 0,
since for e=0, § =0 for all times. The above result is val-
id for all points x, but in particular for x =1 and 6=1,
a,;(x)=a;(x)=0, so that &8(x=41,t)=2(x =1,t) and
lim,_,,8(x =4,t=0)=0. The essential physical pic-
ture is the following: 86— X is associated with fluctuations
occurring in two-peaked probability distributions. These

remain in the limit of vanishing fluctuations in which the

J

7(t)~ {h ()exp[A,(k2)t]} /(1 —[Ch2(t) /A, (k2)]{exp[2A,(k,)t]—1})'/2 .

The stochastic process & (t) appears in the solution of the
linear approximation to (3.15) as an effective stochastic
initial condition when u,=0,

2
Akt
b

u,(t)y=nh(te (3.22)

_ 2y,
Akt

h(n)= [ ‘die (3.23)

Equation (3.21) gives u (¢) as a functional of 4 (¢) in which
the initial fluctuating regime around u,=0 is dominated
by noise and the linear term is propagated on time by the
nonlinear deterministic mapping. The process A (t) is
Gaussian of zero mean and with variance

2(=—FC (71— -
o“(t) ZAl(kC)“ exp[ —2A(k.)t]} .

Nk 1(1”) .

e

(3.24)

In this scheme the calculation of any time-dependent
average of a function f(u (t)) of the process u (¢) reduces
to a Gaussian average over the probability distribution
P (h,t) of the process A (1):

(fluN=[7 dh P(h,0f [u=a(h(1),1)] .  (3.25)
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probability distribution becomes a superposition of two &
functions. On the other hand, X is associated with the
transient anomalous fluctuations, which already occur in
the evolution of a single-peaked distribution. Those are
the anomalous fluctuations mentioned before which de-
pend here on the space point x. They are masked by the
part of 8 which grows monotonically with time, except
close to the center of the cavity (A=0) in which § — X be-
comes small because no peak splitting occurs. Only in
these space points will the characteristic peak of the tran-
sient anomalous fluctuations become apparent in &(z).
The intensity fluctuations 8(x,t) relax to a small value for
points close to x ~1 and to a large value given by (3.19)
close to the walls of the cavity. Another way of under-
standing (3.19) is to notice that

lim 8(x,t =0 )= lin%)[“z( =0))—(I(t=w))?]

€—

€—0

=I,(t=0)—1_(t=w)]*, (3.20)
so that this quantity grows with the square of the
difference between the two stationary deterministic solu-
tions for the intensity.

C. Transient-dynamics calculation

The above discussion can be made quantitative by solv-
ing the stochastic theory'® (QDT) version of the dynami-
cal scaling theory,9 as reviewed elsewhere.!” The basic
idea is to approximate the process u () by a process #(t)
obtained from the nonlinear deterministic solution (2.30)
replacing the initial condition u, by a stochastic process
h(t):

(3.21)

In particular, the moments of u (¢) needed to calculate
the mean intensity and intensity fluctuations from (2.34)
and (3.17), respectively, are easily calculated. Analytic
expressions are available for the moments in terms of
confluent hypergeometric functions.!'® The process h (1)
saturates on time because, for times A(k.)t>>1, ol(1)
becomes time independent. As a consequence, the ap-
proximation (3.21) for #(¢) takes into account the essen-
tial fluctuations in the early stages of decay of the unsta-
ble state, but neglects fluctuations occurring in the late
stages of evolution around the final equilibrium state.
This means that, as t — o, a calculation based on (3.21)
reproduces the limit € —0 discussed in Sec. III B. It also
means that late-stage fluctuations connecting the deter-
ministic solutions I, (x,?) are not included here.

The lifetime of the unstable state is determined by the
initial fluctuating regime.'>'%1771% It can be defined as
the time T that the process u*(¢) takes to reach a given
reference value u2. This can be calculated inverting
(3.22) and averaging over A. One finds'*2° for small e,
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FIG. 4. Mean intensity as a function of time and transverse
position. Notice that the lifetime of the homogeneous state is
about T=60 (0=1, k. =m).

1 2ughi(k)  y(1)

In 20, (k,)

T~ €

(3.26)

where 1 is the digamma function.?!

Results of a calculation of (I(x,?)) and 8(x,t) based
on (3.21) are shown in Figs. 4—6. The evolution of the
mean intensity is seen in Fig. 4. The pattern formation
for the mean intensity is shown in Fig. 4(a) where
(I(x,t)) goes to a final spatial structure starting from a
homogeneous situation. Comparing Fig. 4(a) with Fig. 3
the symmetry-restoring effect of fluctuations is explicitly
seen. In fact, it is found that
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(I(x,t=00))=1TI (x,t=00)+]_(x,t=)]

Ay(k2) A(k2)
C C?

=I,—a,(x) +a,lx)

(3.27)

The mean intensity evolves in time, taking values smaller
or larger than the original I, value depending on the
space position, as seen in Fig. 4(b). The time scale in
which the pattern forms is the time at which (I) be-
comes essentially different from I at all points simul-
taneously. This time scale is given by the first-passage
time (3.26). For the parameter values in Fig. 4(b) and
taking uR=u2(oo)/2, one finds T ~60, which agrees
with the time scale that one can associate with the life-
time of the homogeneous state in Fig. 4(b).

Figure 5 shows the intensity fluctuations 8(x,z). The
symmetry around x =4 due to fluctuations is apparent.
It is also clear that fluctuations are much larger at the
sides than in the center of the cavity. This agrees with
our previous qualitative discussion. The large intensity
fluctuations at the sides of the cavity are due to peak
splitting of the probability distribution. The space depen-
dence of the intensity fluctuations at ¢ = o is obtained
from (3.19) [2(x,t = o0 )=0],

8(x,t = o0 )=1[1+cos(2k.x)][d, +d,cos(2k x)

+dycos*(2k.x)], (3.28)

where d, d,, d,, and d; are given in terms of a; and u”,.
It predicts a maximum of fluctuations at x =0,1 and a
minimum at x =1. The numerical values shown in Fig. 5
coincide with (3.20). At the sides of the cavity 8(x,t?) is
seen to grow monotonically with time, while for x ~ ; the
crossing of lines indicates the existence of a maximum as

E =1.05
1, -6
€=10

=150
18 : t(st)

t=110

1.2

0.6

10" INTENSITY FLUCTUATIONS

t=50

00 02 ©04 06 08 10
TRANSVERSE COORDINATE

0.0

FIG. 5. Intensity fluctuations as calculated from Eq. (3.20) vs
position (=1, k. =).
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1.8 1
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2 4.0+
2
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=}
-
o
= 207
1%
=z
s
Z 104
5 _x=048
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(o} 30 60 90 120 150
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FIG. 6. Time evolution of the intensity fluctuations for
different values of the transverse coordinate.

a function of time. This is more clearly depicted on Fig.
6, which makes quantitative our previous discussion of
the two contributions to 8(x,?). At x =0.5 only X sur-
vives in 8 and a clear peak associated with transient
anomalous fluctuations occurs. The peak becomes less
defined when moving away from the center of the cavity
because the = contribution due to peak splitting of the in-
tensity probability distribution comes in. For x <0.4 or
x >0.6, 6(t) grows monotonically with time to its final
value, which is larger the closer it is to the cavity walls.
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APPENDIX

In this appendix we give explicit results for some of our
previous formulas through an explicit calculation to
lowest order in a small parameter v=E;—E;, which

measures the distance in parameter space to the point in
which the homogeneous solution becomes unstable. Our
results are specified for the value of the detuning parame-
ter 6=1 used in the calculations shown in the figures.

For 6=1, E = 1 and the homogeneous stationary

solution is

E ;=1+v, E, =2v, (A1)
so that the eigenvalues (2.11) becomes

Aj(k?)=—1£[v(8ak’—4)+2ak*—a’k*]'? . (A2)
The eigenvalues used in our calculation are

M(k2)=2v, AykD)=—2—2v, (A3)

Aj(k=0)=—1%2iv'"?, (A4)

Aj(k =2k, )=—1%i2V2(1—1v) . (AS5)

For k. we have real eigenvalues, A,(kcz), indicating the
soft-mode instability, and A,(k2?) remaining negative
beyond the instability point. For k =0,2k, we have com-
plex eigenvalues that come in pairs. An important point
to notice is that A;(k =0) becomes real and degenerate as
v—0. The expansion (2.16) is based on independent
eigenvectors obtained for v#0. The eigenvalues associat-
ed with k =2k_ remain complex as v—0.

The associated eigenvectors are calculated with the
normalization conditions discussed in Sec. Il A. Our aim
is to calculate E,(x,?) in (2.33) to order v. Since A,(k?) is
already of order v, it is enough to find C in (2.29) and
Ol(k =0) and A4,(x) in (2.32) to order zero in v. For
k =k, and k =2k, it is then enough to calculate the
eigenvectors at v=0. For k =k_, the matrix K 5 is sym-
metric at v=0 and

V2
] (A6)
Of,(kc)=5f,(kc)=——§—(l,—l)
For k =2k,
(k)= — (v
o,(k) ‘/3( 2,i),
(A7)

’

and 0%(k)=[0L(k)]*, O 2(k)=[0 !(k)]*. The situation
for k =0 is different since there are no independent eigen-
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vectors at v=0. We keep the dominant contribution in v,
and the final constants involved in the solution (2.32) are
well defined as v—0:

Ok =0)=("2, —2¢'2—j) |
—1/2
2

+i,i/2 |,

O lk=0)=

and OL(k=0)=[0L(k=0)]*, 02xk=0)=[0 Xk
=0)]*. The fact that the first component of O (k =0)
diverges as v—O0 reflects the degeneracy of A;(k =0) at
v=0. The products of left and right eigenvectors appear-
ing in the coefficients @i j;;» and @yprgrgen [(2.18)
and (2.19)] remain finite as v—0.

i
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Substituting the above eigenvectors in (2.18) and (2.19)
19 (

we find, for C in (2.29) as v—0, C = — 3 (Ref. 22) and
the solution (2.32) becomes
. 1 +(E;,—E; ) 1
E; (x,1)= 2E,—E, ) +—\/—_2~coskcx 1 s
—1 A
2 18
Fui(| | | [—cos2k.x |, (A9)
9

For small v the dominant term is the one corresponding
to the unstable mode and proportional to u (¢), which is
of order v!”2. Both components of this term have the
same amplitude. This is no longer so when v becomes
larger, as seen in Fig. 2.

*On sabbatical leave from Instituto de Investigaciones en Ma-
teriales, Universidad Nacional Autonoma de México, Distrito
Federal, Mexico.
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