# X-ray spectrum due to the deexcitation of a muonic molecule $p \alpha \mu$

S. Hara

Institute of Physics, University of Tsukuba, Ibaraki 305, Japan and Atomic Processes Laboratory, Institute for Physical and Chemical Research (RIKEN), Wako-shi 351-01, Japan

T. Ishihara

Institute of Applied Physics, University of Tsukuba, Ibaraki 305, Japan (Received 20 December 1988)

The x-ray spectrum due to the deexcitation of a muonic molecule  $p\alpha\mu$  with total angular momentum J=1 composed of <sup>4</sup>He, <sup>1</sup>H (and its isotopes), and a muon is investigated. There is a small second peak in the spectrum of  $p\alpha\mu$ . The lifetime of the muonic molecules is three times longer than that determined by a previous calculation.

### I. INTRODUCTION

The bound state of a muonic molecule  $(p\alpha\mu)_{J=1}$  composed of a proton p (or its isotopes deuteron d and triton t), an  $\alpha$  particle  $\alpha$ , and a negative muon  $\mu$  with total angular momentum J=1 is related to the muon transfer process

$$p\mu + \text{He} \rightarrow [(p\alpha\mu)_{J=1}e] + e , \qquad (1)$$

$$(p\alpha\mu)_{J=1} \rightarrow \alpha\mu + p + h\nu . \tag{2}$$

In order to avoid confusion, we refer to the state  $(p\alpha\mu)_{J=1}$  as a bound state in the following, although, strictly, it may be referred to as a resonant state because it is imbedded in the continuum of  $\alpha\mu + p$ . Above pro-



FIG. 1. Schematic diagram for the deexcitation of  $(p\alpha\mu)_{J=1}$ . The units are defined by Eq. (7). (a) Adiabatic potential energy curve  $\varepsilon_0(R)$  for  $\alpha\mu + p$ , (b) adiabatic potential energy curve for  $p\mu + \alpha$ , (c) probability density of the bound state  $(p\alpha\mu)_{J=1}$  $\rho(\mathbf{R}) = \int |\Psi^{JM}(\mathbf{r}, \mathbf{R})|^2 d\mathbf{r} \, 2\pi \sin\Theta \, d\Theta$ . The ordinate for curve (c) is arbitrary.

cesses are important since the mesic atoms such as  $p\mu$  contribute to the muon-catalyzed fusion reaction, whereas the final product  $\alpha\mu$  does not. Aristov *et al.*<sup>1</sup> and Kravtsov *et al.*<sup>2</sup> theoretically investigated the bound-state energies of  $(p\alpha\mu)_{J=1}$  (and its isotopes) and the formation rate of  $(p\alpha\mu)_{J=1}$  in process (1). The bound state  $(p\alpha\mu)_{J=1}$  decays into the ground repulsive  $\alpha\mu + p$  state with x-ray emission by electric dipole transition (see Fig. 1). The lifetime of  $(p\alpha\mu)_{J=1}$  and x-ray spectrum for process (2) were studied by Kravtsov *et al.*<sup>3</sup> by use of the Born-Oppenheimer approximation to the initial bound and final repulsive states. An experiment is now in progress to measure the x-ray spectrum for process (2).<sup>4</sup>

In this paper, process (2) is reformulated. The x-ray spectra and the lifetime of  $(p\alpha\mu)_{J=1}$  and its isotopes are calculated using the exact wave function for the initial bound state. The obtained spectrum for  $(p\alpha\mu)_{J=1}$  has a small second peak at the emitted photon energy  $E_{\gamma} = 8.02$  keV. Intensities of x-ray spectra are three times smaller and thus the lifetime three times longer than those of a previous calculation.<sup>3</sup>

#### **II. THEORY**

The total wave function for  $(p\alpha\mu)_{J=1}$  and its isotopes can be written in the following form:

$$\Psi^{JM} = \sum_{m} \Phi^{Jm}(\xi, \eta, R) \left[ \frac{2J+1}{8\pi^2} \right]^{1/2} D_{Mm}^{J*}(\Phi, \Theta, \varphi) .$$
(3)

Here M and m are components of the total angular momentum J along a space fixed z axis and along internuclear distance vector  $\mathbf{R}$ , respectively,  $D_{Jm}^{J*}$  is the rotation matrix,<sup>5</sup> and  $R = |\mathbf{R}|$ . A set of variables  $\mathbf{r}(\xi, \eta, \varphi)$ represents spheroidal coordinates for the muon;  $\Theta$  and  $\Phi$ are the polar and azimuthal angles for the vector  $\mathbf{R}$  in the space-fixed coordinates. The position vector of the muon relative to the midpoint of p and  $\alpha$  is represented by  $\mathbf{r}$ .

We adopt Eq. (3) for the wave function of the initial bound state and the Born-Oppenheimer (BO) approximation for the ground repulsive state. Thus the wave function for the final state, in which the momentum for the

<u>39</u> 5633

relative motion of p and  $\alpha$  is k, is given by

$$\Psi_{\rm BO}^{JM} = \Phi_{1\sigma}(\xi,\eta;R) \frac{X_J(kR)}{R} \left[\frac{2J+1}{8\pi^2}\right]^{1/2} D_{M0}^{J*}(\Phi,\Theta,\varphi) .$$
(4)

The ground-state  $1\sigma$  orbital for  $p\alpha\mu \Phi_{1\sigma}(\xi,\eta;R)$  is determined by the following equation:

$$\left[-\frac{1}{2m}\nabla_r^2 + \frac{2}{R} - \frac{2}{r_{\alpha\mu}} - \frac{1}{r_{p\mu}} - \varepsilon_0(R)\right] \Phi_{1\sigma}(\xi,\eta;R) = 0 , \qquad (5)$$

where  $r_{\alpha\mu}$  and  $r_{p\mu}$  are distances between  $\alpha$  and  $\mu$  and pand  $\mu$ , respectively,  $\epsilon_0(R)$  the adiabatic potential energy for  $\alpha\mu + p$ , and

$$1/m = 1/M_{\alpha} + 1/m_{\mu} . (6)$$

Here  $M_{\alpha}$  and  $m_{\mu}$  are masses of  $\alpha$  and  $\mu$ , respectively. This choice of *m* gives correct dissociation limit for  $\alpha\mu + p$  in the BO approximation. Unless otherwise stated, the following units are used throughout this paper:

$$e = \hbar = m = 1 \quad . \tag{7}$$

The radial function  $X_J(kR)$  satisfies the following equation:

$$\left[-\frac{1}{2M}\left(\frac{d^{2}}{dR^{2}}-\frac{J(J+1)}{R^{2}}\right)+\varepsilon_{0}(R)-\frac{1}{2M}k^{2}\right]X_{J}(kR)=0, \quad (8)$$

with boundary conditions,

$$X_J(0) = 0$$
 . (9)

$$X_J(kR) \rightarrow \sin\left[kR - \frac{J\pi}{2} - \frac{M}{k}\ln(2kR) + \delta_J\right],$$
 (10)

where  $\delta_J$  is the phase shift including the Coulomb phase. In Eq. (8),

$$1/M = 1/M_p + 1/M_{\alpha}$$
, (11)

and  $M_p$  is the proton mass. The momentum k for the relative motion is determined by

$$E_{p\alpha\mu} - \varepsilon_0(\infty) = E_{\gamma} + \frac{k^2}{2M} , \qquad (12)$$

where  $E_{p\alpha\mu}$  is the bound-state energy.

The transition probability per unit time and unit energy, that is, the energy spectrum of x-ray is given by

$$\frac{d\lambda}{dE} = \frac{4}{3} (\alpha E_{\gamma})^3 \left[ \frac{2M}{\pi k} \right] \sum_{M_i} \sum_{J_f M_f} \frac{1}{2J_i + 1} |\langle \Psi_{BO}^{J_f M_f} | \mathbf{d} | \Psi_{I_i M_i}^{J_i M_i} \rangle|^2,$$
(13)

where the angular bracket denotes volume integral over **R** and **r**,  $\alpha$  is the fine-structure constant, and **d** the dipole moment of  $p\alpha\mu$  with respect to the center of mass of the

system,

$$\mathbf{I} = -\left[1 + \frac{2m_{\mu}}{M_{\text{tot}}}\right]\mathbf{r} - \frac{1}{M_{\text{tot}}}(-3M_{p} + M_{\alpha} - m_{\mu})\mathbf{R} , \quad (14)$$

where

$$\boldsymbol{M}_{\rm tot} = \boldsymbol{M}_p + \boldsymbol{M}_\alpha + \boldsymbol{m}_\mu \ . \tag{15}$$

In Eq. (13), three components of d give the same contribution. The space-fixed z component of d can be written in the form

$$d_{z} = \sum_{\lambda} D_{0\lambda}^{1*}(\Phi, \Theta, \varphi) g_{\lambda}(\xi, \eta, R) , \qquad (16)$$

where  $g_{\lambda}$  are functions of  $\xi$ ,  $\eta$ , and R. Substitution of Eqs. (3), (4), and (16) into (13) gives

$$\frac{d\lambda}{dE} = \frac{8M}{3\pi k} (\alpha E_{\gamma})^3 \sum_{J_f} \left| \sum_m C(J_i 1 J_f; m, -m) A(J_f, m) \right|^2,$$
(17)

where

$$A(J_f,m) = \left(\int R \ dR \right) X_{J_f}(kR) (\Phi_{1\sigma}|g_{-m}|\Phi^{J_im}) \ . \tag{18}$$

In Eq. (18), the last set parentheses denotes the integral over  $\xi$  and  $\eta$ .

### **III. RESULTS**

We have calculated the bound-state energies of  $p \alpha \mu$ (and its isotopes)  $E_{p\alpha\mu}$  and wave function  $\Psi^{J_i M_i}$  with  $J_i = 1$ ,  $M_i = 0$  by a variational method<sup>6,7</sup> using a 300-term trial function. In Table I,  $E_{p\alpha\mu}$  values are compared with those obtained by using the BO approximation.<sup>1,2</sup> For the final state,  $\Phi_{1\alpha}(\xi, \eta; R)$  and  $\varepsilon_0(R)$  are calculated by the method proposed by Bates and Carson.<sup>8</sup> Equation (8) for  $J = J_f = 0$  and 2 were solved numerically to obtain the radial wave function  $X_J(kR)$ . We have adopted the following mass constants:  $M_{\alpha} = 7294.295m_e$ ,  $M_p = 1836.151m_e$ , deuteron mass  $M_d = 3670.481m_e$ , triton mass  $M_t = 5496.899m_e$ , and  $m_{\mu} = 206.769m_e$ , where  $m_e$  is the electron mass.

TABLE I. Energies and lifetimes of  $(p\alpha\mu)_{J=1}$  and its isotopes. (a) present; (b) Refs. 1 and 3; (c) Ref. 2.

| Muonic molecule | Energy<br>(eV) | Lifetime<br>(sec)      |
|-----------------|----------------|------------------------|
| рац             |                |                        |
| (a)             | -50.02         | $5.20 \times 10^{-12}$ |
| (b)             | -41.6          | $1.8 \times 10^{-12}$  |
| (c)             | -43.7          |                        |
| dαμ             |                |                        |
| (a)             | - 57.84        | $5.90 \times 10^{-12}$ |
| (b)             | - 55.9         | $1.9 \times 10^{-12}$  |
| (c)             | - 57.5         |                        |
| tαμ             |                |                        |
| (a)             | -63.53         | $6.03 \times 10^{-12}$ |
| (b)             | -62.9          | $2.1 \times 10^{-12}$  |
| (c)             | -63.9          |                        |



FIG. 2. X-ray spectra due to the deexcitation. (a)  $p\alpha\mu \rightarrow \alpha\mu + p$ , (b)  $d\alpha\mu \rightarrow \alpha\mu + d$ , (c)  $t\alpha\mu \rightarrow \alpha\mu + t$ .



FIG. 3.  $S_0(R)$  for  $(p\alpha\mu)_{J=1}$ , see Eq. (20). The units are defined by Eq. (7).



FIG. 4. Normalized continuum wave function  $X_0(kR)$  for  $\alpha\mu + p$ . The units are defined by Eq. (7). (a) k = 1.91,  $E_{\gamma} = 7.0$  keV, (b) k = 1.11,  $E_{\gamma} = 7.9$  keV, (c) k = 0.99,  $E_{\gamma} = 8.0$  keV.

As can be seen from Table I, bound-state energies for  $d\alpha\mu$  and  $t\alpha\mu$  calculated by the BO approximation are close to those by the present variational method. Thus the wave functions for  $d\alpha\mu$  and  $t\alpha\mu$  obtained by the BO approximation will not differ very much from ours, which includes nonadiabatic effects. For  $p\alpha\mu$ , however, the bound-state energy by the BO approximation is rather different from that by the variational method. Ratio of muon mass to the reduced mass of  $p + \alpha$  is not very small. The ratio  $\frac{1}{7}$  is compared with  $\frac{1}{12}$  and  $\frac{1}{15}$  of the ratio of muon mass to the reduced masses of  $d + \alpha$  and  $t + \alpha$ , respectively. This implies that the BO approximation is not very good for the  $p\alpha\mu$  system. Thus the energy and wave function of  $p\alpha\mu$  obtained by the BO approximation is not as good as those of  $d\alpha\mu$  and  $t\alpha\mu$ .

The x-ray spectra are shown in Fig. 2. The overall shapes of  $d\alpha\mu$  and  $t\alpha\mu$  spectra are similar to those obtained by Kravtsov *et al.*<sup>3</sup> On the other hand, the spectrum of  $p\alpha\mu$  is different. As was discussed by Kravtsov *et al.*<sup>3</sup> the shape of the spectrum is mainly determined by the initial-state wave function. Therefore, the discrepancy of the  $p\alpha\mu$  spectrum is attributed to the inaccuracy of the  $p\alpha\mu$  wave function in the BO approximation.

The absolute value of  $d\lambda/dE$  is about three times smaller in the present calculation for all isotopes. For example, we have obtained the maximum value for  $p\alpha\mu$ ,  $1.93 \times 10^{11} \text{ sec}^{-1} \text{ keV}^{-1}$  at  $E_{\gamma} \approx 7.04$  keV, whereas Kravtsov *et al.*, obtained  $5.3 \times 10^{11} \text{ sec}^{-1} \text{ keV}^{-1}$  at  $E_{\gamma} \approx 7.0$  keV. The reason of this discrepancy is not clear. It may be due to the effect of interference between  $J_f = 0$ and 2 existing in their formalism. The lifetime  $\tau$  of the resonant states,

$$\tau = 1 \bigg/ \int \left[ \frac{d\lambda}{dE} \right] dE , \qquad (19)$$

is also given in Table I. The values are about three times larger than those of previous calculations.<sup>3</sup>

In our  $p \alpha \mu$  spectrum, there is a small second peak at  $E_{\gamma} \approx 8$  keV, with peak height about  $\frac{1}{22}$  of the main peak and with half width about 0.1 keV. To understand the cause of the second peak, we have plotted

$$S_0(R) = \left[ \Phi_{1\sigma}(\xi,\eta;R) \left| \frac{R}{2} \xi \eta \right| \Phi^{J_i 0}(\xi,\eta,R) \right], \quad (20)$$

for  $p\alpha\mu$  as a function of R in Fig. 3. The integrand  $R \xi \eta / 2$  is proportional to  $g_0(\xi, \eta, R)$  of Eqs. (16) and (18) when  $(-3M_p + M_\alpha - m_\mu)\mathbf{R}/M_{tot}$  is neglected in Eq. (14). As can be seen from this figure,  $S_0(R)$  remains nonzero even at  $R \approx 20$ . This is because the bound state is a weakly bound state. Figure 4 shows  $X_{J_f}(kR)$  for  $J_f = 0$  with k = 1.91, 1.11, and 0.99. These values of k correspond to  $E_\gamma = 7.0$ , 7.9 and 8.0 keV, respectively. At  $k \approx 1.9$ , overlap between  $S_0(R)$  and  $X_0(kR)$  is largest. At k = 1.11,  $X_0(kR)$  is small in the region where  $S_0(R)$  is large and

oscillation of  $X_0(kR)$  cancels overlap between  $S_0(R)$  and  $X_0(kR)$  at  $10 \le R$ . At k = 0.99, there is no cancellation in the region  $10 \le R \le 20$ . This nonzero overlap produces the small second peak at  $E_{\gamma} \approx 8$  keV. For other isotopes,  $S_0(R)$  is small in  $10 \le R \le 20$  and there is no second peak which is visible in Fig. 2.

Note added in proof. Recently, the lifetime of the muonic molecule  $(d^{3}\text{He}\mu)$  has attracted much attention in connection with the fusion process  $d + {}^{3}\text{He} \rightarrow p + \alpha$ . We have calculated the bound-state energy and the life-

time of  $(d^{3}\text{He}\mu)$ . For J = 0 and 1, the bound-state energies relative to the ground state of  $d\mu$  atom are -70.74 and -47.90 eV, the lifetimes are  $5.71 \times 10^{-12}$  and  $6.44 \times 10^{-12}$  sec, respectively. We are grateful to Dr. M. Kamimura for useful discussion on this problem.

## ACKNOWLEDGMENTS

We are grateful to Professor T. Watanabe, Professor K. Nagamine, and Professor T. Kondow for useful discussion.

- <sup>1</sup>Yu A. Aristov, A. V. Kravtsov, N. P. Popov, G. E. Solyakin, N. F. Truskova, and M. P. Faifman, Yad. Fiz. 33, 1066 (1981)
   [Sov. J. Nucl. Phys. 33, 564 (1981)].
- <sup>2</sup>A. V. Kravtsov, A. I. Mikhailov, and N. P. Popov, J. Phys. B 19, 2579 (1986).
- <sup>3</sup>A. V. Kravtsov, N. P. Popov, G. E. Solyakin, Yu A. Aristov, M. P. Faifman, and N. F. Truskova, Phys. Lett. 83A, 379 (1981).
- <sup>4</sup>K. Nagamine (private communication); see also T. Matsuzaki, K. Ishida, K. Nagamine, Y. Hirata, and R. Kadono, Muon

Catalyzed Fusion 2, 217 (1988).

- <sup>5</sup>M. E. Rose, *Elementary Theory of Angular Momentum* (Wiley, New York, 1957).
- <sup>6</sup>S. Hara, T. Ishihara, and N. Toshima, J. Phys. Soc. Jpn. 55, 3293 (1986).
- <sup>7</sup>S. Hara, T. Ishihara, and N. Toshima, Muon Catalyzed Fusion **1**, 277 (1987).
- <sup>8</sup>D. R. Bates and T. R. Carson, Proc. R. Soc. London, Ser. A 234, 207 (1956).