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New quantum numbers in collision theory. V. Orientation of He 2 P state by 80-eV electron impact
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It is found that two simple dynamical relations can explain most observations of experiments on
the orientation of the He 2 'P state induced by electron impact versus scattering angle in the process
e(80 eV)+He 1'S~e+He 2'P. In particular, by utilizing these relations and with the help of
new quantum numbers, we identified a formula that can account for more than 80% of the orienta-
tion at large angles, which contains only three dynamical parameters of the form Im(S S) and one
other, namely, the differential cross section at 180' scattering.

I. INTRODUCTION

In this paper, new quantum numbers considered
throughout this series (Refs. 1 —4, which will be called pa-
pers I—IV hereafter) are applied to the process

e(80 eV)+He 1'S~e +He 2 'P

for the identification of the dynamical parameters on
which the observed orientation depends most sensitively.
The orientation, discussed here, refers to the expectation
value of the angular momentum operator for the He 2 'P
state with respect to the electron scattering angle. Its
measurement was pioneered by Kleinpoppen and his col-
leagues by electron-photon coincidence experiments.

Though a lot of theoretical work has been done for the
orientation for this system, and despite the fact that
many aspects for the underlying dynamics are now un-

derstood, several important problems still remain and
more experimental and theoretical work is still coming
out.

One of the old problems associated with the orienta-
tion for process (1) is the prediction of the sign of orienta-
tion at small and large angles. Kohmoto and Pano first
pointed out the relation between the signs of the orienta-
tion and of the scattering potential, which was later more
extensively perused by Hermann and Hertel. In particu-
lar, the latter work pointed out that the sign of the orien-
tation at forward scattering angles could be predicted
rather easily from the quantum formulation and exactly
coincides with that obtained from a simple classical grat-
ing' or rolling-ball" model. However, the rigor of their
result has often been suspected' because of the compli-
cated sign behaviors of many apparently significant
dynamical terms appearing in the theoretical orientation
formulas. The present work resolves the controversy in
this problem. The extension of this work to other pro-
cesses and systems is thus recommended.

However, the main result of this work is in the
identification of the dynamical parameters to which the
orientation is most sensitive for the process (1) at large
scattering angles. At large angles, Madison and
Winter, ' showed that the sign of orientation is in-
dependent of the charge of the projectile, in contrast to
the forward scattering case. More recently, Madison,
Csanak, and Cartwright' found an astonishing result;

namely, that the l =2 partial wave plays the most
significant role in determining the sign of the orientation
at large scattering angles. However, Ref. 13 has several
limitations. Firstly, it completely disregards the interfer-
ence among incident and outgoing partial waves and
their corresponding complex conjugate waves in the
quantum formulas for the orientation. Secondly, it does
not make clear the reason why such an l=2 partial wave
plays a special role for the orientation at large angles. In
this paper, we succeeded in giving an orientation formula
with only three dynamical parameters of the form
Im(S S) and one further parameter, namely the
differential cross section at 180 scattering. This formula
explains more than 80% of the orientation at large an-
gles. Two dynamical relations, the simple angle depen-
dence of inverse differential cross section and the short-
collision delay-time condition, played the most prominent
role in obtaining this formula. With this, we could ex-
plain most of the observations on orientation on the pro-
cess (1). Also, the astonishing result of Ref. 13 is shown
to originate from the short delay time in the collision.

In this study, we have only made a detailed analysis of
the process (1). However, one of the greatest assets of
this paper can be found in the fact that the dependency of
two simple dynamical relations on impact energy, atomic
excitation process, and so on, is well-known or can be
easily studied. By utilizing this knowledge our analysis
can easily be extrapolated to other processes. Attempts
have been made to indicate the possible applicability of
the results to other impact energies, atomic excitation
processes, and atomic systems. More detailed analysis is
called for in the future.

Section II discusses the problem of identifying
significant dynamical parameters and the possible
significance of new quantum numbers for this purpose.
Section III discusses the harmonic expansion on which
the later sections are based. Section IV identifies
significant dynamical parameters of (Dbe) and (L Dbo)
for the orientation for the process (1). Finally, a discus-
sion is given in Sec. V.

II. SIGNIFICANT DYNAMICAL PARAMETERS
AND NEW QUANTUM NUMBERS

The identification of dynamical parameters on which
observations most sensitively depend requires adaptation
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of theory whenever a theoretical formulation appropriate
to a certain range of variables proves inadequate in a
different range. For example, expansion in partial waves
is adequate for a large scattering angle but proves inade-
quate, thus requiring a 1ot of partial waves, for a small
scattering angle where the first Born approximation
affords a simple and transparent treatment. This contrast
was minimized in paper IV by analyzing dynamical pa-
rameters into contributions from the first Born approxi-
mation and those from alternative procedures. Extend-
ing the partial-wave analysis to small-angle scattering
that is required for the analysis at large angles will then
prove redundant since the contributions of high partial
waves cancel out at large angles.

Another example of redundancy owing to an inadequa-
cy of theoretical formulation emerges in the very struc-
ture of the orientation formula. The orientation of a tar-
get is defined as the expectation value of the target's an-
gular momentum component orthogonal to the
projectile's scattering plane, a value which depends on
the scattering angle 8 and will be indicated here by (L» ) ~

(the expectation values of other components of angular
momentum vanish because of symmetry' ). Theory,
however, calculates this value indirectly as the ratio

(2)

where DI, & denotes the response' of a projectile detector
placed in the scattering plane at an angle 0 from the
direction of incidence (b stands for the final states of the
projectile). The mean value (Dbs) is accordingly equal
to the scattering cross section do IdQ, while (L Dbs)
represents the expectation value of joint detection of the
projectile at an angle 0 and of the target angular momen-
tum L . Redundancy occurs in (2) through the presence
of Db in both the numerator and denominator without
canceling out in the ratio of mean values. Effective can-
cellation is nevertheless provided by a suitable approxi-
mation procedure as will be seen in Sec. IV. Identifying
such redundancies and avoiding them by exploiting syrn-
metries other than those under space rotation in the col-
lision formulas (or other features of a process) have been
a guideline of this series.

One such symmetry concerns the permutation P of a
wave function and its complex conjugate, whose products
occur in the analytical structure of observables. Single
elements of such structures that are even or odd under P
pertain generally to charge and current distributions, '

respectively, whereas the full expressions of observables
are of course invariant under P, as discussed in paper III
(e.g. , geometrical elements of differential cross section
and orientation are, respectively, even and odd under P
but their products with dynamical parameters are even).
States of a space and their adjoints have been labeled by
unprimed and primed symbols throughout this series. A
second symmetry, which pertains strictly to geometrical
parameters, relates to the permutations Q of initial- and
final-state variables, i.e., to permutations of polarizers
and analyzers or of the collimators for incident and scat-
tered particles. Initial and final states of projectiles (or

target) have been labeled by a (or A ) and b (or B), respec-
tively.

The parities under P and Q have been introduced in pa-
pers I and II. Their initial application was to replace the
set of projectile orbital quantum numbers I„Ib, I,', and l„'

for the process (1) by the set with definite parities under P
and Q

o =(1,+lb+1,'+lb )I2, Pcr =cr, Qcr =cr

r = ( lg + lb
—I,' —1„' ) l2, P~= —r, Q r =z

g=(l. —1, +1,' —1')/2, Pg=g , Qg-= —g

g=(1, —lb —1,'+lb)/2, Prl= —g, Qrl= —g .

(3)

III. HARMONIC EXPANSION

In this paper our discussion is restricted to the
differential cross section and the orientation of the pro-
cess (1). The zero value (L„=O) of the initial orbital
momentum of the target state for (1) yields K„=O, i.e., a
zero value of its multipole moments. The multipole mo-
ment transfers K, from a projectile to a target;
(K, =k, —kb ——K~ —K~ ) introduced in paper III is then
given by 0 and 1 for the differential cross section (K~ =0)

Here orbital quantum numbers 1, and lb of the projectile
before and after the collision differ in an inelastic process
which transfers angular momentum to the target and la-
bel the columns and rows of the scattering matrix S, re-
spectively. The quantum numbers I,' and l& perform the
same role for the Hermitian conjugate matrix S which
multiplies S in the formulas of cross section and orienta-
tion. Summations over all these four quantum numbers
occur because their values are not selectively prepared or
measured.

The differential cross section and the orientation of
process (1) were transcribed in the notation (3) and dis-
cussed in paper I. Paper II concerned the geometrical in-
terpretation of the parameters (3) and the restrictions im-
posed on them by the behavior of 6j coeScients. As an
important by-product of paper II, the physical basis for
Kohmoto and Fano's conjecture on a "generalized
Lande g factor" was found to be provided by the
Ponzano-Regge semiclassical theory of angular momen-
turn. This theory has proved very useful for identifying
the classical rolling-ball-like structure in quantum formu-
las of Ref. 17.

We claim that measured observables depend more sen-
sitively on dynamical parameters labeled by the symme-
trical quantum numbers (3) rather than by orbital quan-
tum numbers. The basis of this claim can be found, as
discussed in paper III, in that dynamical parameters in
these new quantum numbers are classified by more com-
monly observed characteristics of a system, i.e., by
different charge distributions under P and by different
propensities under Q. This claim is tested in this paper
by examining the contributions to orientation for the pro-
cess (1) from different values of Io, r, g, gI beyond the
parity analysis studied in papers I and II, demonstrating
its power in separating out significant dynamical parame-
ters.
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and the orientation (Kz ——1), respectively. This in turn
restricts the relevant multipole moments k, and kb of the
projectile through the relation

1&K, & ik. —k, (4)

k, =kb ——k .

The parity conditions l, + l,'+ k, =even, Ib + l& + kb
=even, and the parity conservation relation
L ~ + I, =L~ + Ib holding for the scattering matrix
(LsM~li, mb

~

S
~
L„M„l,m, ) for the process (1) allow

only even values of
~
k, —k&

~

. This, combined with (4),
yields k, =kb for both the differential cross section and
the orientation expressions of process (1).' We set then,
in the following:

markable cancellation could be understood by noticing
that the reciprocal of the differential cross section (Dbz)
is nearly proportional to 1 —cosB for the process (1),
which vanishes at 0=0, as shown in Fig. 1. A more ac-
curate and general application of this circumstance will
be described in Sec. IV A.

IV. DEPENDENCE OF Lk ON DYNAMICAL
PARAMETERS

Contributions to observables from terms with different
quantum numbers have been sorted out in paper I by
reorganizing the multiple sums over projectile orbitals,

On this basis we may introduce harmonic expansions
of the expectation values of the operators in the orienta-
tion formula (2) in terms of the Legendre functions
Pk(cosB) and the associated Legendre functions
Pk i( cosB )

o, v, g, g
X X X

(o —k)/2=0 (r+ k —1)/2=0 g=+1 g p

(Dbs) = g DkPk(cosB),
k

(LyDb~) = g Ni, P„,(cosB) .
k

(L )s——Q L„Pi„(cosB) .
k

(6)

Our study of the dependence of cross section and orienta-
tion on the quantum numbers [o., r, g, rII will accordingly
deal with the dependence of the harmonic coefficients Dk,
X„,and L„on these indices. [We also note that both an-
gular momentum transfer quantum numbers j, and j,'
equal 1 (=Ls). This circumstance, together with (5), im-
plies that the permutations P and Q considered generally
in paper III have no effect on the indices [j„j,', k, , kb I;
only their influence on [l„li„l,', lb I

= [o., r, g, III is ac-
cordingly relevant. ]

In our study of the relation between observables and
the dynamical parameters S S, the harmonic expansion
(6) plays the same role as the partial-wave expansion does
in the analysis of scattering wave functions. A charac-
teristic feature of the coefficients Dk, X&,Lk in (6) at in-
termediate energies is that the expressions of (D&z) and
(L Dbg) contain large numbers of significant terms (re-
calling the uncertainty relation of B and k), but the ex-
pansion of (L )& does not. An understanding of this
phenomenon is important for our analysis.

The phenomenon will be illustrated by the plots of
Dk, 2Vk, Lk calculated by a distorted-wave Born procedure
(DWBA). This type of procedure has proved successful
in earlier calculations of process (1). ' Only the first two
or three coefficients Lk have appreciable values in con-
trast to the distributions of Dk and Nk. The latter distri-
butions reAect primarily the large forward peak of
(Dbti), which originates from dipole transitions of an
atom produced at long ranges r by an interaction propor-
tional to 1/r . This peak effectively cancels in the ratio
(L~Db~) l(Db~) of Eq. (2) even though Di, s is averaged
separately in the numerator and denominator. This re-
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FIG. 1. Inverse of the DWBA difFerential cross section for
process (1) at 80 eV and its truncated expansions in Pk(coso) vs
scattering angle: , total; ———,truncated after the first
term; ——,after the second term; —.- —,after the third
term; —.. . —,after the fourth term.

This operation was applied specifically to the harmonic
analysis (6) of (Db&) and (L Db&). Its extension to the
analysis of (L ) s would be straightforward if (L ) z were
directly proportional to (L Dbz) but is complicated by
its nonlinear dependence on (Dbs). This complication
will be analyzed here.

Recall also that the ultimate aim of this work is to ex-
tract information on the dynamical parameters in Eq.
(31) of paper III,
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[S (j,')S(j, )]
. 1

+( —1) ' ' '[S (j,')S(j, )]

The real and imaginary parts of these parameters occur,
respectively, in the expansions of (Dbi)) and of (L~Dbs),
for process (1), according to Eq. (29) of paper III. They
are note quite independent, being related by dispersion re-
lation integrals ' extended over the whole energy spec-
trum, but are practically independent in observations
within a limited range of collision energies. This asser-
tion forms the basis of the separate treatments of dynami-
cal parameters of (Db&) and (L Db&) for the analysis of
orientation in Secs. IV A and IV B.

A. Lk and dynamical parameters of (Dbb)

g U„k.Lk. CkN——k,
k'

(9)

whose matrix

Two alternative approaches will be followed to make
explicit the dependence of the harmonic coefficients Lk
on the dynamical parameters of (Db&) in the denomina-
tor of (2).

(a) Multiply (2) by (Dbs) and then project the equation
onto each harmonic Pkl(cosO). This results in the linear
system

I

Ukk (——Dbs)Pk, (cosH)Pk, (cosO)d (cosO)—1
'2 2

k k' k" k k' k"
[k(k+1)+k'(k'+1) —k"(k"+1)]=QDk- 0 0 0 2k.k'

k" k"

contains the dynamical parameters of (Db&), while

2k(k +1)
k

Lk ——g ( U )kk. Ck Nk
k'

(12)

is the normalization integral of Pk, (cosH).
(b) Project the equation (2) directly onto Pkl(cosO) to

obtain the solution of (9)

I

This formula condenses all relevant dynamical charac-
teristics of a collision of interest in the simple value of
(Dbb) for 180' scattering. This value depends presum-
ably on the contributions of only a few partial waves in
the expansion of the projectile wave function. Its use im-
plies accordingly that the factor 1/(Dbs) contributes lit-
tle dynamical information to the orientation (L ) &. Us-
ing (14) in the integral expression (13) shows that the ma-
trix U ' is almost tridiagonal with matrix elements

in terms of the reciprocal matrix U ' represented by an
integral over the reciprocal (Dbs)

1

(U )« ——(C„Ck ) (Dbll) Pk, (cosH)Pk. ,—1

1
U

—1

kk 2C (D )

k —1
(U )„„,= — (U )„2k —1

(15)

X (cosO)d (cosO) . (13)

) i 1 —cosO

bs) 8
(14)

TABLE I. Coefficients D& of Pk(cosO) for the expansion of
(Dbe) for the process (1).

Equation (12) proves more effective than (9), not only be-
cause it yields Lk directly, but especially because the ma-
trix U ' turns out to be approximately tridiagonal,
reflecting the simple dependence of (Dbs) on O indi-
cated in Sec. II. An approximate analytic expression of
U ' is given here; a study of U itself and of its inversion
is given in Appendix B.

The analytic representation of (Dbs) as proportion-
al to 1 —cosO takes the form (see Fig. 1 and Table I)

k+2
)k k+1 ( )k+I k+12k +3 'l

The values of (U ')» and (U ')z2 calculated by (15) are
3.36 and 1.87 for the process (1) at 80 eV, while their ex-
act values are 3.41 and 1.78, respectively. The error of
Eq. (15) for these significant matrix elements is thus less
than S%%uo.

Returning now to the expression (12) of the harmonic
coefficients of the orientation Lk, we note that these
coefficients depend explicitly and approximately linearly
only on the dynamical parameters in the expression
Nk(rr, ~, g, i)) given in Eq. (16) of paper I. The factor
(Db&) ' of (L )& has a twofold inAuence on each Lk..
(a) it normalizes Lk through the value of 1/(Db ), and
(b) it averages over each group of three coefficients Nk. , as
indicated by

Dk 4', a.u. )

—544.8
562.3

82.6
—45.6

33.0
20.0

—1 1 k —1
) k, k'Ck'Nk' Nk Nk —l2(D ) 2k —1

k+2
2k+3 +

(16)
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The values of Lk calculated by the approximate (16) and
the exact values calculated from (9) or (12) without mak-
ing use of (14) and (15) are compared in Table II. From
Table II, we see that the inaccuracy of Eq. (16) is less
than 7% for L, ((=0) and L2((=0) but as large as 37%
and 57% for L&(g=O) and Lz(ri=O), respectively. How-
ever, even for the latter, Eq. (16) gives the correct sign of
orientation and thus may be used for a qualitative pur-
pose. On the other hand, (16) is good for both qualitative
and quantitative purpose for Lk(j=O), i.e., at large an-
gles, as will be evident in Sec. IV B). Notice that the sum
of the three coefficients of N& in the large parentheses
vanishes to 0(1/k ). This approximate cancellation will
prove important in Sec. IV. It also reduces greatly the
computation time in the alternative calculation of U
by the method of Appendix B.

B. L„and dynamical parameters of ( L» /Dbe )

Observed orientation curves versus scattering angles of
the projectile electron for the system (1) show a remark-
ably simple shape and resemble a sine curve. This indi-
cates that only a few coefficients are needed for the ex-
pansion of orientation in terms of Pk&. The coefficients
L& of the harmonic expansion of the orientation for pro-
cess (1) at 80 eV are plotted as a histrogram in Fig. 2.
These coefficients have been obtained from the formulas
of paper I using an input data basically the same scatter-
ing matrix elements calculated by DWBA of Ref. 19. All
the other data provided in this paper derive from the
same source.

Two main features are apparent in Fig. 2: (a) the very
rapid convergence to zero of the coefficient LI, as k in-
creases, and (b) the alternation in sign of the largest
coefficients L

&
and L2. The principal source for the rapid

convergence of I I, derives from the cancellation of the
three coefficients of Nk in (16), which becomes rapidly
more effective with increasing k. The effectiveness of this
cancellation presupposes a rather smooth dependence of
NI, itself on k, which is illustrated by the joint plot of
Dk, NI, , L& in Fig. 3. An additional factor contributing to
the convergence of Lk will be discussed in Sec. V. All of
the following analyses rely on or utilize this rapid conver-
gence of Lk.

The remaining analysis of this paper centers on the
contributions to Lk, in Eq. (16), from terms of the Nk
with different sets of quantum numbers I cr, r, g, g I be-
cause the influence of the denominator (Db&) in Eq. (2)
has already been taken into account through the struc-
ture of (16).

The contributions of different I
o. , r, g, g I with g =0

(i.e. , (=+I) and with /=0 (g=+I) are antisymmetric
under the permutation g of projectile preparation and

detection, thus reflecting the influence of the propensity
rule discussed in Sec. V of paper III. As discussed in pa-
per II, terms with g=O are classically allowed and most
important to forward scattering, while those with (=0
are classically forbidden and will be shown to be impor-
tant to orientation at back scattering angles. The contri-
butions from different ranges of o. correspond to large
and small impact parameters, and those from different ~
stem from interferences between larger and smaller orbit-
al momenta of the projectile. Most contributions of
larger ~ accrue from the first born contributions. These
properties of the new quantum numbers will be utilized
directly in Secs. IVB 1 —IVB4 in order to identify the
most significant dynamical parameters.

1. Short collision delay time and the dominance
of /=0 at large angles

Figure 4 shows (L )e subdivided into the separate
contributions from coefficients Nk(o, r, g, g) with g=O
and with (=0. The y axis in Fig. 4 is chosen parallel to
pb )&p, here, inverted in sign from another convention.
Note how the g=0 curve converges to zero at 0 ~ 90' and
that for /=0 remains near zero at smaller angles.

The prevalence of g=O contributions to (L )& at
small angles parallels the prevalence of (L Dbs) in that
range, which derives in turn from the large values and
the uniform sign of g&Nk(cr, w, g, O) for all values of o.
and r. The same circumstance causes (L Dbs) to con-
verge to zero at 0 ~ 90', where the sign of Pk&(cosg) alter-
nates for even and odd values of k.

The predominance in magnitude of g=O components
to N„(as well as to Dk ) has been introduced in paper II
with regard to the magnitude of their 6j coefficients. 6j
coefficients belong mostly to a classically forbidden range
for q=O components, v hile belonging to a classically al-
lowed range for (=0 components. This predominance is
enhanced when the magnitudes of the dynamical parame-
ters are also included, as considered in paper III in con-
nection with the propensity rules. That is, a (propensity
favored-favored) —(propensity unfavored-unfavored) com-
bination takes place for the dynamical parameters
S S(g= 1)—S S(g= —1) with g=O components, while
a (propensity favored-unfavored) —(propensity unfavored-
favored) combination takes place for the dynamical pa-
rameters with (=0 components. The numerical values of

and Dk for g=O and /=0 components shown in
Table III confirm the dominance of g=O components.
The influence of the predominance of g=O components
on the sign of orientation at small angles will be touched
only lightly in Sec. IV B4 in this paper (for more details,
see Ref. 17). Here we want to pay more attention to how
small-g components can dominate the orientation at large

TABLE II ~ Accuracy of the approximate formula (16) for the process (1).

Components

=0
g=0

Ll
from (16)

0.630
—0.787

(exact)

0.677
—0.495

Error
(%)

7
37

L2
from (16)

—0.206
—0.647

L2
(exact)

—0.186
—0.274

Error
(%)

2
57
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FIG. 4. Components r1=0 and (=0 of the orientation (L )~
as for Fig. 2.

angles.
Inspection of Table III shows that N& is abnormally

small compared to other Nk for g =0, while all Nk
coefficients vary smoothly as a function of k for g=O.
This derives from the short-collision delay-time condition
holding for the process (I), as we proceed to show. Con-
sider the imaginary parts of dynamical paramters (8) for
Nk,

1m[St(j, )S (j,)],&
„—Im[S (j, )S (j, ) ]

=St(j, )S (j, ) l, ~ „sin[/(/, , /b ) —Q(/,', /b )]

—
l
St(j, )S (j, ) l, ~ „sin[/(/b, /, ) —p(/b, /,

'
)],

p(/, , /q) =6I (E, )+5I (EI, )+NI I rr . (18)

For k= 1 and g=(/, —lb+1,' —lb)/2=0, the value of
l
r

l
=(1,+/s —1,

' —/b)/2 is zero from
l

r
l

&k —
l

r/ l.
Then

l

~
l

=(=0 yields 1, =lb and 1„=1,', whereby

where P(/, , lb ) denotes the phase of the scattering matrix

SI, I,
= ((La/b)j —mi

l
S

l
(L~/, )j,m, ) .

In the distorted-wave Born approximation, P(/„/b ) can
be written as a sum of elastic phase shifts with a possible
additional term from negative signs of radial overlap in-
tegrals,

04—

Q3— — 0.010

+5 I I I ~ f I I ~ ~ t I I I I $ ~ I I I $ I I I I / ~ ~ I I f I ~ ~ I J I I I I f I I I I f I ~ ~ I 0001 50

sin[/(/„/„) —P(/,', /b )]=sin[[BI (E, ) —5& (Eb )]

+ [&I,«b ) —&I,«. )]

+(NI I NI I )ml . —(19)

0.1
U

0 - I
1
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FICx. 3. Coefficients Dk, Nk, and Lk as for Fig. 2:,Dk,——,Nq', ———,Lk. The values Dk and Lk are normalized
to Q„DJ,Pq(cosO) =do /dI), in a.u.

This expression is very small if the plane shift is a slowly
varying function of energy, i.e., when the delay time
[2' t)5&(E)/t)E] is short. N, itself is also very small, be-
ing a linear combination of dynamical parameters of al-
most zero magnitudes.

The short-delay-time condition holds when

AEl
E. Al

(20)

where AE is the atomic excitation energy, E, is the im-
pact energy, and El=1. Therefore it holds at high im-
pact energies and for low partial waves. High partial
waves do not change the result N

&
0 not only their con-

tribution is small but also sin[/(/, , /b) —P(/,', /& )]=0 by
another reason, which can be easily checked from the
well-known phase-shift formulas for the 1/r potential
for electron-atom collision at large impact parameters.
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TABLE III. Coefficients Dq and X„,with ri=O and /=0 contributions separated for the process (1).
Numbers in brackets represent the exponent of the power of ten factors.

0
1

2
3
4
5

6
7
8

9
10
ll
12
13
14
15
16
17
18
19
20

DI, (g=O)

0.369 16[—01]
0.10091[+00]
0.15225[+00]
0.19073[+00]
0.217 15[+00]
0.233 01[+00]
0.240 08[+00]
0.240 17[+00]
0.23497[+00]
0.225 94[+00]
0.21429[+00]
0.201 01[+00]
0.186 84[+00]
0.172 36[+00]
0.158 00[+00]
0.14404[+00]
0.13070[+00]
0.118 11[+00]
0.106 34[+00]
0.954 44[ —01]
0.854 10[—Ol ]

Dp ((=0)
0.000 00[+00]
0.867 96[—03]
0.242 61[ —02]
0.266 36[—02]
0.11154[ —02]

—0.246 56[ —02]
—0.769 24[ —02]
—0.13800[ —01]
—0.19976[ —01]
—0.255 77[ —01]
—0.301 95[—02]
—0.33648[ —01]
—0.359 21[—01]
—0.371 14[—01]
—0.373 79[ —01]
—0.368 91[—01]
—0.358 23[ —Ol ]—0.343 29[ —01]
—0.325 42[ —01]
—0.305 72[ —01]
—0.285 06[ —01]

NI, (g=O)

0.000 00[+00]
—0.667 57[—02]
—0.878 37[—02]
—0.945 44[ —02]
—0.924 56[—02]
—0.856 77[ —02]
—0.768 21[—02]
—0.674 40[ —02]
—0.583 83[—02]
—0.500 72[ —02]
—0.426 72[ —02]
—0.362 08[ —02]
—0.306 13[—02]
—0.258 61[—02]
—0.218 03[—02]
—0.183 66[—02]
—0.154 61[—02]
—0.130 10[—02]
—0.10946[ —02]
—0.920 80[ —03]
—0.774 61[—03]

IVY ((=0)
0.000 00[ +00]
0.870 02[ —04]'

—0.187 64[ —02]
—0.263 92[ —02]
—0.300 78[ —02]
—0.306 71[—02]
—0.291 14[—02]
—0.263 11[—02]
—0.229 62[ —02]
—0.195 40[ —02]
—0.163 25[ —02]
—0.134 59[—02]
—0.10991[—02]
—0.891 70[—03]
—0.720 40[ —03 ]
—0.680 56[ —03 ]
—0.467 41[—03]
—0.376 35[—03]
—0.303 34[ —03]
—0.244 91[—03]
—0.198 19[—03]

'Note the small value of N, (/=0) which derives from the very short delay time for the collision pro-
cess (1) at 80 eV impact energy.

Next let us examine the inAuence of the result
N&(/=0)=0. Equation (16) for the first two Li and L&
coefficients can be written, neglecting N, ((=0), as

—3N Nq —4N3

2(der/dQ)s ' 2(do'/dQ)e
for (=0

(21a)

Ni ——5Nq

2( d cr /d II ) e

N~ ——,
' N )

——,N3

2(do /d Q, )e
for g=0 .

(21b)

Two consequences follow immediately from (21). First,
in contrast to Nk where g =0 components dominate
(=0, Lr, ((=0) for k=1,2 will have comparable magni-
tudes to those of Lr, (iI =0). Second, L, and Li will have
opposite signs for /=0, while having the same sign for
rl=O, whereby the (=0 component may predominate at
large angles where P» and Pz, also have opposite signs.
It is obvious from (21a) that L, with /=0 will have sign
opposite that of Nz(/=0). On the other hand, Lz(/=0)
will have the same sign as Nz(/=0) because N3 has a
coefficient which is —, times smaller than that of Nz, if Nk
does not vary rapidly as a function of k. A slow variation
of Nk with k is expected at intermediate and high ener-
gies. Thus opposite signs result for the /=0 components
of L, and Lz. When g=0, N, is not small and then, as
for Lz(ri=0), Li(ri=0) will have the same sign as
N, (il =0). For Lz(rl =0), the prediction of the sign does
not seem so easy at first glance without solving scattering
equations, because of the presence of all three coefficients

Nt, . But (21b) predicts that Lz(iI=0) and Nl, will have
the same sign if the Nk vary linearly with k. This result
is not expected to change in practice since Nk is most
likely to have a negative second derivative (i.e., convex) at
small k before reaching its maximum. Otherwise, the dis-
tribution of Nk would be too sharp, yielding a broad an-
gular distribution, which is highly improbable at inter-
mediate and high energies. Since Nk is likely to have the
same sign for all k at intermediate and high energies in
order for ( L„Dbz) to have a peak at small angles, L, and
I z should also have the same sign. On the other hand,
P), ~ sinO and Pz, ~ sin20 have opposite signs at
~/2&0&m. and yield constructive interference if their
coefficients L, and Lz are of opposite sign. Thus (=0
components may predominate at large angles. The nu-
merical calculation shown in Fig. 4 shows that the
predominance of (=0 over rl=O components is quite re-
markable for the process (1). Such predominance might,
however, depend on system, impact energy, etc.

2. Importance of only a fein partial ioaves for (=0

We showed in Sec. IV B 1 that /=0 components
predominate for orientation at large angles. A very good
opportunity to identify detailed and specific dynamical
information follows from this result, since only a few par-
tial waves participate significantly for /=0 components,
as shown in Fig. 5, where the convergence of partial sums

c k —1

g L„(cr,r, O, il)
cr =k r= —k + i g+1
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FIG. 5. Truncated sums g ' „g", I, Q„L&(cr,r, O, q) for
k =1—5 vs cr, : ——,k=1; —"—,k=2; —. . —,k=3;

.-- —,k=4; —-- - —,k=S.

j, .k=(a. + 1)ii+rg=(j, + —,
' )(k + —,

' )cosH . (23)

If cos8 calculated from (23) is larger than unity, the given
value of o. belongs to a classically forbidden range. For

I

for k = 1 —5 is plotted as functions of increasing o,
The fast convergence observed in Fig. 5 derives from

two causes. In paper II, we showed that large a (or l) be-
long to a classically forbidden range for (=0. We can
tell easily whether a given 0. belongs to a classically for-
bidden range by calculating cos0 from

k=1 and j, =l, o. )2 belongs to a classically forbidden
range. Only cr = 1 does not belong to a classically forbid-
den range. This is one cause for the fast convergence of
Nk and thus Lk versus a. The other cause comes from
the existence of Q symmetry in the dynamical parameters
(17) for (=0 components after a few cr T.he possible ex-
istence of Q symmetry is expected in the dynamical pa-
rameters for (=0 components from their very structure,
i.e. , (parity favored-unfavored) —(parity unfavored-
favored). The first and second terms of this expression,
differing in the exchange of input and output indices
might even cancel out at some o. . Such a cancellation ac-
tually occurs for process (1) at 80 eV, accelerating the
convergence.

Figure 5 shows that L (I/=0) already attains 90% of
its value with o. =2 alone. Note that the o. =1 contribu-
tion is quite small due to NI((=0) =0. Then, from (21),
N2(a. =2) is the almost sole source of

k —1

Nk ——g g g Nk(o. , r, O, il), (24)
o =k 7.= —k +1 g+1

and contributes to L (I(=0) through (12). Since

~

r
~

( k —
~ g ~

= 1, a unit value of r contributes to
Nz(o =2). Only positive r is taken here owing to P sym-
metry as discussed in paper I. These sets of new quantum
numbers (cr =2, r= 1, (=0, rl =+ I ) correspond to
(l„lb, l,', lb)=(2, 1,0, 1) and (1,2, 1,0) from (3). Likewise,
N2(a =2, r = 1) and N3(a. =3, r =2) are identified as con-
tributing to most of L2(/=0) from Fig. 5. Then, from
(16), the orientation formulas can be written down in
terms of these Nk(o, r, O, ri) or equivalently of the corre-
sponding dynamical parameters (17) using Eq. (16) and
(24) of paper I and of the differential cross section at
0= 180'.

L2((=0)

9&2 ™(S2ISoI—SIqSIo)
L I((=0)=

2 (83%)+(17%),

——', &2 Im(S2iSoi SI2S Io )+ —,'&3 Im(S32Soi —S2~S Io )
(92% ) + ( 8% ),

k, (do. /d Q)e

(25)

(26)

where the scattering matrices S» are defined just below Eq. (17) and k, denotes the incident projectile wave number.
a b

The second terms in parentheses of L I and L2 are much smaller than the first and can be neglected (see the discussion
at the very end of Sec. V B of paper III). The orientation formula at large angles is thus approximated by

P» (cos8)lm[(9&2/80)S2ISoI ]+Pz(cosO)lmI [ —(3&2/8)S2I +(&3/7)S3z]SoI I

k, (der/dQ)e

3. Explanation of obseruations on orientation

Equation (16) or (26) predicts that the magnitude of
orientation will increase as the differential cross section at
0=~ decreases in its denominator. It will be interesting
to check whether underestimates of the existing theoreti-
cal calculations for the magnitudes of orientation at large
angles derive from overestimates of the theoretical
differential cross sections at large angles.

The shift of the angle of zero orientation {70 for 80 eV)
toward a smaller value with increasing impact energy can

i (1.09)m ef(1 So 2 P„)= ' j(p, —p),
q p

(27)

where j in P& and j denote one of the {x,y, z) com-
ponents of the He 2 'P state, q denotes the momentum

be explained from the very structure of the formulas for
I k in Eq. {25) or {26). Kelsey obtained the formula for
the second Born scattering amplitudes f which are dom-
inant at large angles for the process (1)
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transfer, p, and pb denote the incident and outgoing mo-
menta of the projectile. From (27), the energy depen-
dence of [k, (do /dA)e ]

' is given by E, . Numerical
study shows that scattering matrices S& &

increase with
a b

increasing impact energy. Thus the modulus of each
Im(S S)/[k, (do /dQ)II „] increases with increasing en-

ergy. The effect of this increase is directly reflected into
LI((=0) but cancels in Lz((=0) where two such terms
appear with opposite signs, as evident in (25) or (26). For
the same reason, the dependence of L

I( )7=0) and
Lz(r)=0) on energy will be more or less similar to that of
Lz((=0) and thus may not change much as compared to
that of L (I(=0). Since L I($= 0)P II(c osO) gives a non-
negative contribution (negative in another convention)
for all angles, the increase of the modulus of L (I/=0)
while other coefficients remain constant will shift the zero
of orientation to smaller angles.

A sudden change of a sign at large angles when l=2 is
added, observed in Ref. 13, is also easily explained. Note
that the orientation given by the approximate equation
(25), which applies to large angles and is thus responsible
for the change of sign of orientation at large angles, is
zero with 1=0 and 1 partial waves alone. It suddenly ac-
quires its values when the l=2 partial wave is included.
Inclusion of higher partial waves will not change the re-
sult dramatically since (25) receives higher partial-wave
contributions only from l=3 through the insignificant
second term N3 of (21a). The exclusion of 1=0 and 1 par-
tial waves in (25) derives from N I(/=0)=0(sh ort delay
time). The lowest partial wave contribution to N2 enters
through S2, SO, , as explained below (24).

Also Eq. (25) or (26) clearly shows which factors are re-
sponsible for the sign of the orientation at large angles.
Note first that another systematics discussed at the end of
Sec. V B instead of propensity rules for g=O components
applies to the dynamical parameters in (25). This is uti-
lized to simplify (25) into (26). Secondly, SoI factors out
in the approximate formula (26)

This prediction would be difficult for /=0 components
which have the dynamical parameters of the form (parity
favored-unfavored) —(parity unfavored-favored), without
solving scattering equations. It is instead easy for the
il =0 components with the form (parity favored-
favored) —(parity unfavored-unfavored), where the first
term is clearly bigger than the second. The predomi-
nance of the g=O components at small angles settles the
controversy described in the third paragraph of the Intro-
duction. Detailed discussions on this and the connection
between the classical rolling-ball model and quantum for-
mulas are given in Ref. 17.

V. DISCUSSION

The approximate formula (25) or (26) can explain most
observations on orientation. This study demonstrates
that electron-photon coincidence experiments on process
(1) provide a rare opportunity to obtain information on
the dynamical parameters with /=0. For the diff'erential
cross section, the same analysis shows that g=O com-
ponents predominate at both small and large angles.
However, some problems are not solved yet.

The plot of partial sums

~c k

L (ko. , gr, 0),
o=k+1 ~= —k (=+1

(29)

as functions of increasing o.„reveals sharp oscillations of
Lk from one value of o., to the next in Fig. 6. The origin
of this phenomenon lies in the contribution of the sums
over o. in (29) for the Nk in large parentheses in (16)
where successive terms have coefficients of opposite sign.
Since the sum over o. runs only over positive values of
o —r —g, each stepwise increase of cr, contributes to LI, a
term of alternating sign. This oscillation in Lk implies
extensive cancellations in Eq. (29). Attempts to identify
the surviving significant dynamical terms important for

(L )e~ lm[(9i/2P„S~I /80+P2I )SINAI ],
which does not correspond to the propensity favored
terms. Influence of the correction term NI I n in (18) is

a b

therefore likely actually to occur in the process (1), mak-
ing the sign of orientation positive (or negative in the oth-
er convention). The negative radial overlap integral re-
sponsible for the correction term implies the significance
of a negative transition charge density in this particular
process, which is normal in positron-atom collisions.

Accordingly, the sign of the orientation at large angles
depends on three causes: the predominance of /=0 com-
ponents, systematics on the predominance of
Im(SI I SI*I ) or Im(SI I SI*,I, ) (different Q parity terms),ab ah ba btt
and the occurrence of the negative radial overlap in-
teg rais.

1.2
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4. Further consequences of g=0 and /=0 separation

The separation of /=0 and ri=O components makes it
easy to predict the sign of orientation at small angles.
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the orientation at small scattering angles have not been
successful. A study on the cancellation of the first Born
amplitudes that commonly appear both in (L D ) d

(D ) as dominant contributions at small angles may
prove useful to solve this problem.

Separate contribution from larger and small 1 f
/(k-

er va ues o
—

~ g ~

) are plotted in Fig. 7 by sorting out the
contributions to Lk as functions of o- from—'

, rl
~

)/2. In Fig. 7, the oscillations discussed&~(k —
i

ions 0 0 rom

above are prominent only for large
~

r
~

. More impor-
tantly, the contributions from larger and smaller ~ have
comparable magnitude and opposite signs, thus contrib-
uting to the generally faster convergence of L,k to zero for
larger k. The origin of this cancellation remains to be
solved.

Final comment concerns the inversion pr bl
the r

p o em, i.e.,
e problem of extracting dynamical parameters for ex-

perimental data. It is well known in the elastic scattering
theory that most details of wave functions and potentials
at short ranges do not appear in scattering observation.
The shift of the phase of a wave function from that of a
wave function for zero potential scattering suffices to
determine observation in asymptotic regions. Or, in--
versely, phase shifts and eventually potentials can be ex-
tracted from the scattering experiments. The inversion

problem in the literature usually refers to obtaining po-
tentials from the phase shifts that are assumed to be
known. This may be true for elastic scattering. Howev-
er, for inelastic scattering it is not trivial even to extract
the corresponding phase shifts, i.e., short-range dynami-
cal parameters or quantum-eigendefects. In this a er
the most sisignificant dynamical parameters are identified
at large scattering angles, from which it might be possible
to extract short-range dynamical parameters by the
theory developed in Ref. 29 modified for application to
an electron-atom scattering system. Eventually, this pro-
cedure may prove important.
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APPENDIX A: CHARACTERISTICS
OF HARMONIC EXPANSIONS

Expansions of angular distributions into Legendre po-
lynomials Pk(cos0) and their associated functions
Pk, dPk cos——0)/d0 are analogous to Fourier expansions
in their density of the relations of the type Ak b, 0=1.
These relations connect the width 50 of a peak or the
wavelength of oscillation of an angular distribution f (0)
to the spectral width Ak of corresponding coefficients fk.

Another characteristic of harmonic expansion proves
important to tell how wide and sharp (narrow) harmonic
distributions are from the oscillation period of angular
measurements. If the distribution of harmonic
coefticients has, e.g., a square shape of width Ak, the cor-
responding angular distribution has a period 2m/Ak
which also equals the position of its first minimum.
(Peaks of angular distribution at zero degree seem to
break the periodicity but result from a singularity. ) A
smoother distribution in k with the same width narrows
the ratio of peaks to troughs of f (0) but leaves its period
of oscillation unchanged.

The differential cross section (D&s) for the process (1)
at 80 eV has a forward peak of half-width 8', the corre-
sponding distribution of Dk peaks at k=7 with a stan-
dard deviation b, k =7 (see Table I). On the other hand,
the distribution of (L~D&s) starts at zero at 0=0, then
peaks and returns to zero at 70', with a standard devia-
tion 5.8 of N& (Table I) approximately equal to
360'/70 =5.15, as calculated from the formula 2~/Ak.
[A zero of g& N& Pk, ——d ( g& Nk Pk ) /d 0 corresponds to
an extremum, the first minimum in this case, of
Xk NkP~ 1

APPENDIX B: U MATRIX

The characteristic forward peak of difrerential cross
sections at intermediate and high energies greatly reduces
the dimension of the U matrix required to attain the
reasonably good value of the matrix elements (U ')
with small m and n.

The sharp decrease (60=8 ) of the differential cross
section (Dzz) from its value at 0=0 produces a very
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P, (cosO) = —
—,'m (m +1)P&&(cosO), (B1)

whereby we obtain

U „=—,'m (m +1)U,„(m (n) . (B2)

sharp peak at an angle less than 8' in the integrand of Eq.
(9) when multiplied by the sharp increase of P„&(cosO)
(m & n ) of (9). The largest contribution to the integral (9)
comes then from the narrow range of angles around the
peak at near zero deg."ee. In this range, P, (cosO) can be
approximated by

Numerical study shows that if the relation (B2) holds
among U matrix elements, the matrix elements (U ')
obtained from a submatrix of U with dimension m are al-
most the same as those obtained from a larger submatrix;
m can be as small as 2. [This reasonable property derived
easily from (B2).]

Equation (9) implies that the n )& n submatrix of U can
be obtained from DI, values with k (2n. . Thus if a sub-
matrix smaller than 5)&5 is enough for orientation, as is
the case at large angles as described in Sec. III, only D&
values with k less than 10 need be included.
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