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cross sections with the Firsov model
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The Firsov model for calculating electronic stopping cross sections has been modified to take
quasimolecule formation and charge polarization into account, since these effects are expected to
become important at low collision energies. The cross sections predicted by the resulting molecular
model (S,i ) were compared to those obtained using spherically symmetric free-atom electronic dis-

tributions (Sf„„).It is shown that S i/S&„„correlates with changes in electron density in the Fir-
sov plane. Differences in the Firsov plane position and orbital contributions in the free-atom and

molecular bases are also discussed.

I. INTRODUCTION

The importance of electronic energy losses and stop-
ping cross sections in very-low-energy (several keV) col-
lisions has been demonstrated in both theoretical'
and experimental studies. The models of Firsov and
Lindhard, Scarff, and Schi4tt have been extensively used
to calculate these quantities. Firsov s model is particular-
ly interesting since it explicitly takes into consideration
the electronic structure of both projectile and target.
This semiclassical approach attributes the electronic en-

ergy lost during the collision to the momentum lost by
the electrons as they cross an imaginary plane (the "Fir-
sov plane" ) which lies between the two nuclei. It has
been shown that in the absence of adjustable parameters,
electronic stopping cross sections obtained with the Fir-
sov model can deviate from experimental values by as
much as a factor of 2. In spite of this we think there is a
need for calculating these cross sections at low energies
where it is difficult to obtain or extrapolate reliable ex-
perimental cross sections or deduce the charge state of
the projectile (for use in other theories).

The original Firsov approach was based on the
Thomas-Fermi electron gas atomic model; subsequent
studies have dealt with the incorporation of more accu-
rate approximations to the Hartree-Fock-Slater wave
functions, interatomic potentials, ' and expressions
for the flux across the Firsov plane" into the theory.
Practically all these implementations and modifications
have treated the colliding particles as isolated atoms with
spherically symmetric electronic distributions, the excep-
tion being the treatment of molecular hydrogen targets. '

At low co11ision energies the electronic velocities are
greater than the nuclear velocities; one would expect
charge polarization and quasimolecule formation to be
present and become more important with decreasing en-
ergy. The inclusion of these two effects in the Firsov for-
malism should result in a model which provides a more
realistic picture of low-energy atomic collisions. In addi-
tion, the contribution of quasimolecular formation to the
discrepancies between theoretical and experimental

heavy-atom electronic stopping cross sections has been
cited but not quantitatively evaluated. '

In this study we shall modify the Firsov model (with
Brice's expression for the flux" ) to take these effects into
account. The necessary modifications shall be shown, as
well as predictions made with the resulting model.
Differences between calculations involving free atoms and
those done in a molecular basis shall be discussed. Calcu-
lations shall be confined to several ground-state diatomics
representative of commonly used projectile-target com-
binations.

II. THEORY

A. Background

4r=g4 ++0, .
t

(2)

The electronic stopping cross section is then

S, =2~J E(b)b db,
0

(3)

where the minimum impact parameter bo is either used

We shall briefly review the original Firsov theory and
modifications due to Brice." In Firsov's theory the elec-
tronic energy loss in a collision is attributed to the
momentum lost by electrons as they cross an imaginary
plane (the "Firsov plane" ) which separates the two
atoms. The electronic energy lost in a collision for a
given impact parameter b is

e(b)=m f PT(zo)u dzo, (1)

where m is the electron mass, u is the relative velocity of
and zo the relative position vector between the two atoms
(see Fig. 1), and PT is the total electronic flux across the
Firsov plane. Integration is done over a single collision
trajectory, which is dependent on b. For the collision of
two isolated atoms, Pr can be divided into contributions
from the target and projectile electrons (subscripts t and
p, respectively),
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Fi

projectile

paper by Cruz and co-workers for the discussion and
equations regarding these changes.

We shall use the quantum-mechanical approach pro-
posed by Brice" in calculating the flux across the Firsov
plane. Consider the system in Fig. 1 with the origin at
the center of the target atom. Suppose p denotes a point
on the Firsov plane and co denotes the plane's velocity
with respect to the origin. The flux due to a wave func-
tion g+ is given by the expression

get

FIG. 1. Coordinate system and positions of colliding atoms
and Firsov plane. The projectile passes the target with a rela-
tive velocity u and a distance of closest approach b. The loca-
tion of the projectile is given by zo, while a point on the Firsov
plane is denoted by p. The distance from the target to the Fir-
sov plane is z, .

zt —o.'r zo

a, =[1+(Z /Z, )
'

]
(4)

where o., is the fractional distance from the target atom,
z, is the distance from the target atom to the Firsov
plane, and Z and Z, are the atomic numbers of the pro-
jectile and target atoms, respectively. This equation was
based on the superposition of free Thomas-Fermi atoms;
in this study it shall be used to determine z, in the free
atom case. For molecules z, will be based on molecular
orbital (MO) calculations.

The commonly used rectilinear-trajectory approxima-
tion (zero potential) shall be used when examining the
various details of the resulting model. This eliminates the
effect of the collision pairs' atomic numbers on the col-
lision trajectory and permits a clearer examination of the
effect of MO formation in various collision pairs on the
S,. We shall also compare our theoretical predictions to
experimental data in the absence of adjustable parame-
ters. When making these comparisons two changes will
be made: (a) the Biersack-Ziegler interatomic potential'
shall be used, and (b) bo will be determined from experi-
mental conditions. The reader is referred to the excellent

as an adjustable parameter or based on a given set of ex-
perimental conditions. Calculations in this paper shall
use bo & 2 a.u. since low-energy collisions will be studied.

The Firsov approach has several additional computa-
tional degrees of freedom that affect S, : (a) position and
motion of the Firsov plane, (b) interatomic potential, and
(c) fiux across the Firsov plane. This plane serves as a
boundary separating the "environments" of the two
atoms. It is normally positioned perpendicular to the in-
ternuclear axis, at a point where the electrostatic poten-
tial is at its minimum. This location, when not used as a
fitting or arbitrarily set parameter, can be based on the
Kishinevskii equation'

(/+V g+. —/+VS+ )
— lg+ I'd A

Re + —V +
1 Ako

(s)
m

where ko =mt', /fi and the integration is over the Firsov
plane. The last term takes the motion of the Firsov plane
into account.

The net flux for a bound-state wave function is zero
since Eq. (5) evaluates the fiux in both directions across
the Firsov plane. This makes it necessary to replace each
electronic orbital wave function with its corresponding
"partial wave function" (PWF). Brice defines the PWF
as

P+
—— f dk, f dk f y(k)e '" ~dk, , (6)

rk=ek yd kexp( —p kr ),
J

k kk k

where d k and p~ k are constants. The latter determines
the orbital's radial extent. The exponents in e depend on
the azimuthal symmetry of the AO, e.g. , 8=1 for an s-

type orbital and e=y for ap orbital. The Fourier trans-
form and the inverse transform [Eq. (6)] are applied to
the AO's to obtain the corresponding atomic PWF's.

B. Calculations in a molecular basis

The Firsov formalism shall now be modified to take
molecular orbital formation into account. A molecular
orbital can be represented by a combination of atomic or-
bitals,

Qk=g Ck krak
k

(9)

where ck k are the coeKcients (ck &AIR) of the A,th MO.
Since the coordinate system has been defined in such a
way that the z axis is always normal to the Firsov plane
(Fig. 1), the transformations need only be applied to the
molecular orbitals' z component to obtain the corre-

where y(g)=y(k„, k, k, ) is the Fourier transform of the
electronic wave function into momentum space. The
PWF thus describes all those electrons with velocity
k, )ko.

An atomic orbital (AO) in the Cartesian coordinate
system can be represented by a combination of Gaussian
functions'
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sponding PWF. The flux for this MO can be calculated
as

1 Re —g c~.I 1*+ g cl, V I &+

of atomic orbitals centered on different atoms. Integra-
tion after reversing the order of the sums and integrals
yields

(17)

Akp
g (c I *+)(cl,I I, +)dA,
j, k

(10) The "overlap flux" can be treated as the average of the
fluxes of electrons with k, & 0 and those with k, (0:

where the index A, has been omitted from the right-hand
side coefficients for clarity.

The nonlinear dependence of S, on the projectile veloc-
ity has been observed for some systems; it is interesting
to note that Eqs. (5) and (6) do provide for a nonlinear re-
lationship between S, and u (through ko). However,
most calculations involving the Firsov approach do not
take the motion of the Firsov plane into account (i.e.,
ko=0). This leaves S, dependent on u only through Eq.
(1), the linear dependence of which is consistent with
most experimental findings at low energies. To simplify
the computations we have elected to set kp=0 in all
molecular as well as free-atom calculations. This condi-
tion allows use of the following relation for the flux of a
bound-state orbital (atomic or molecular):

$(0, oo )= —P( —oo, Q),

where

P(a, b)=Re g+(a, b) Vg+(a—, b)
l

(12)

g+(a, b) = 1

(2~)3/2

X f dk f dk f y(k)e '"~dk, . (13)

PT =g P, (0, oo ) —g P (
—co, 0 ) (14)

(15)

A similar expression can be obtained for the molecular
case. Let the indices t, u represent orbitals centered on
the target atom and p, q the orbitals on the projectile.
Equation (10) can be written as

Pz= f Re —.g c,c„l,*+(Vl „+) dA
1

2m l

+ f Re —. gc~c I ~
(V'I

~ ) dA
1

2m i

+ Re —.gc, c (I,' VI +I* V'I, ) dA,1

2m i t,p

(16)

where the last term represents the flux due to the overlap

Equation (11) facilitates calculation of the flux in both
free-atom and molecular cases. In the coordinate system
specified in Fig. 1, the electronic flux for the free-atom
case [Eq. (2}]becomes

+ —g P,~(0, oo ) —g P,p(
—oo, 0)

1

t,p t, p

=g $,„(0,oo )+g P (0, oo ) +g P, (0, oo ) .
t, p

(18)

III. RESULTS AND DISCUSSION

Differences in the fractional distance et in the free-
atom and molecular bases were first investigated. Figure
2 shows et for several collision pairs at zp =1 and 3 a.u.
The points correspond to at in the molecular basis. At a
given ratio Z /Z„ these values for et are tightly grouped
at small zp, and this distribution slightly broadens with
increasing zp ~ The solid line is the value of at for the
free-atom basis as calculated from the Kishinevskii equa-
tion [Eq. (4}]. This equation cannot be expected to (and
indeed does not) predict the position of the Firsov plane
in a diatomic molecule. In this figure it can be seen that
the position of the Firsov plane in the molecular basis is

Thus the electronic flux need only be evaluated in the
positive z direction for both free-atom and molecular
cases. It is Eqs. (15}and (18) which are used to evaluate
the electronic fluxes in the free-atom and molecular cases.
The results are then used in Eqs. (1) and (3) to obtain the
corresponding electronic stopping cross sections S, . In
the free-atom and molecular bases these cross sections
shall be denoted by Sf„, and S,], respectively. Using
this approach the contribution each orbital makes to the
electronic stopping cross section can also be determined
from its contribution to the flux.

In keeping with Firsov's original concept of the plane
separating the environments of the two atoms, the total
(i.e., electronic plus nuclear) electrostatic potential shall
be used in calculating S, for a molecule. Since the deter-
mination of these electrostatic potentials is a routine part
of many MO computations we have placed the Firsov
plane at the total electrostatic potential minimum.

Molecular-orbital calculations using a 6-31G' basis
set' ' were performed at the self-consistent-field (SCF)
and configuration-interaction (CI) levels with GAMEss, '

an ab initio quantum chemistry program. The same
basis set was used to construct the corresponding spheri-
cally symmetric free-atom wave functions. Since the
greatest electronic energy losses occur at small b, the
change of variables s= 1 boih was —done in Eq. (3).
Equations (1) and (3) were numerically evaluated with 15-
to 24-point Gauss-Legendre quadratures; the accuracy of
and uncertainty in the integrations were checked by
analyzing their convergence.
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FIG. 2. Comparison of fractional distance a, in free-atom
and molecular bases. Its relation to Z~/Z, is shown at two in-

ternuclear separations. Points represent a, based on the total
electrostatic potential minimum from MO calculations. Results
for several projectile-target combinations are presented. The
targets are represented as follows:, silicon; 0, neon;
aluminum; +, carbon. Solid line is e, as predicted by the
Kishinevskii equation [Eq. (4)].

dA db,

different from that in the free-atom basis when two
different atoms are colliding. (For the collision of identi-
cal atoms, Z /Z, = I and ar =0.5 in both bases. )

The importance of electron correlation in the calcula-
tion of electronic stopping cross sections was next deter-
mined. Cross sections obtained using configuration-
interaction wave functions were compared with values re-
sulting from self-consistent-field wave functions. Some
cross sections are shown in Table I: In most cases (B2,
C2, and Ne2 being representative of these) the differences
between the CI and SCF results were comparable to the
uncertainties in the integrations. It was only for Oz that
a significant difference in the two kinds of cross sections
was observed.

An estimate of the extent of quasimolecule formation
and charge polarization is necessary if one wishes to ex-
amine its effect on the electronic stopping cross section.
One such parameter is the electron density in the region
of the Firsov plane, which we shall designate as A. To
measure its change the following definitions in the free-
atom and molecular bases will be used:

For the free-atom basis the target and projectile atomic
orbitals (I «and I I, , respectively) are centered at
points corresponding to the positions of the nuclei used
in the MO calculations. The first integration is per-
formed over the Firsov plane at position Z, for a given
internuclear separation; the result is then evaluated over
the range of impact parameters.

The ratios S „/Sr„„and A „/A&„, for several
projectile-target combinations are compared in Fig. 3.
Changes in the electronic stopping cross sections roughly
correlate with the extent of charge polarization into the
Firsov plane region as measured by A, j and A&„,. For
example, the repulsive interaction in Ne+Ne decreases A
and S„while polarization of charge into the internuclear
region (as in C+C) increases both. These results are con-
sistent with those of Brice and Cruz, ' who used the Fir-
sov treatment in calculating S, for molecular hydrogen
targets. It was found that decreasing the internuclear
distance R,i within the target molecule drew charge
away from the region between the molecule and the in-

coming projectile. This resulted in decreased values of
S, . The same relation between R,i and S, was obtained
by Geertsen, Oddershede, and Sabin using the polariza-
tion propagator formalism.

Other factors such as the velocity or momentum distri-
bution of the electrons can also influence changes in S, .
Suppose one considers the electron flux as a classical
effusion process. Such a treatment was used in Firsov's
original model (using Thomas-Fermi atoms), and was
modified by Cheshire and co-workers to utilize more ac-
curate Hartree-Fock atomic wave functions. The flux
due to a wave function I k at a given internuclear separa-
tion zo can be written as

(20)

where ( Ut ) k is the average of the electronic velocity that
is normal to the Firsov plane, and the integration is car-
ried out over the Firsov plane. From electron momen-
tum distribution studies ' it is known that (vi)k de-
creases upon charge polarization into the internuclear re-

1.50

TABLE I. Comparison of a few molecular electronic stop-
ping cross sections based on SCF and CI ground-state wave
functions. Different collision velocities and minimum impact
parameters were used for each collision pair.

0.50
0.50

C

I

h ~ j

~ Ei

I

1.00
+mol/Afree

1.50

Collision pair

B+B
C+C
0+0
Ne+Ne

0.77+0.02
1.44+0.03
1.08+0.03
1.62+0.03

0.78+0.02
1.42+0.03
1.02+0.03
1.60+0.03

S,l (10 ' eV cm /atom)
SCF CI FIG. 3. Effect of charge polarization (as measured by

A, i /A&„„) on changes in electronic stopping cross section.
Several collision pairs are shown (label =projectile+ target):
a=F+Ne; b=Ne+Ne; c=O+Ne; d=F+F; e=O+O; f=Be+Be; g =Al+ Al; h =Ne+ Si; '= N+ N; j=C+ C; k
=B+B; 1=0+Si; m =0+C.
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TABLE II. Atomic orbital contributions to S&„„for some second-row homonuclear diatomics (with
b0=2.5 a.u. U=0.25 a.u. ).

Collision
pair 1s

Atomic orbital
contribution (%)

2$ 2p+ 3d 1s 2p+ 3d

Number of electrons
in orbital'

2$

N+N
0+0
F+F
Ne+Ne

39
33
27
22

61
67
73
78

6
8

10
12

'Sum of electrons in two identical orbitals since the system is composed of two identical atoms.

gion. This means that two main competing effects are
present: an increase in electron density about the plane
(leading to an increase in S, ) is accompanied by a de-
crease in electron momentum perpendicular to the Firsov
plane (which tends to decrease S,). If momentum eKects
were largely responsible for changes in the cross sections
then one would observe increases in charge polarization
into the Firsov plane to be accompanied by decreases in
S, . The results in Fig. 3 show that the reverse is true, in-
dicating the importance of electronic density effects.
Thus, within the framework of the Firsov formalism,
changes in the electron density as rejected in A,~/A&„,
can be used as the primary indicator of changes inS,~/S&„, . This is again in agreement with the findings
of Brice and Cruz' for molecular hydrogen targets.

One might expect chemical bond formation between
collision partners to increase A, ~

and S
~

relative to the
free-atom values. Figure 3 shows that S,~

)S&„, for the
multiply bonded C2 and N2. For other cases (single or no
bonds between collision partners) no general relation is
evident. For example, the molecular electronic stopping
cross sections for F+F and 0+C are less than the free-
atom values, even though these two pairs form stable dia-
tomic molecules. It is interesting to note that electronic
densities around the Firsov plane resulting from the su-
perposition of the free-atom values can be greater than
the corresponding molecular values, even in cases where
chemical bonds are formed.

One difference between the free-atom and molecular
bases in the Firsov framework is the effect of additional
electrons in a sequence of elements on the electronic stop-
ping cross sections. Consider the set of second-row
homonuclear diatomics from N to Ne shown in Table II.

As one progresses through the sequence, a pair of elec-
trons is added to the outermost set of orbitals, which in
this case is composed of the 2p and 3d orbitals. It can be
seen that each incremental pair of electrons contributes
to S&„,. For the molecular case, it is only the electrons in
bonding orbitals which make significant contributions toS,&. The same set of diatomics is shown in Table III; al-
though the number of electrons increases as one proceeds
through the sequence these additional electrons form the
antibonding orbitals and so make no contribution to S,~.

Practically all electronic energy lost in the collision
comes from the electrons which make up the bonding
molecular orbitals; the contributions to S,~ by these
electrons is independent of the electronic population of
the antibonding orbitals.

At these low collision velocities most of the stopping is
due to the valence orbitals 2s+2p+3d for the free-atom
basis, and o. 2s+o. 2p+m. „2p for the molecular case.
These results are in general agreement with those of Sa-
bin and Oddershede and Cruz, Cisneros, and Alvarez
for the free-atom basis.

The significance of the differences in S,~
and S&„, can

be seen in the comparison of experimental data with
theoretical values. Figure 4 shows the experimental S, 's
for C+C over a range of energies, and compares these
to the predicted S,&

and S&„,. The theoretical electronic
stopping cross sections are closer to the experimental
values when quasimolecule formation is included in the
calculations. As mentioned in Sec. II A, in making these
comparisons the Biersack-Ziegler potential was used in
the calculation of the collision trajectories, and bo was
determined from the experimental configuration. These
two measures, in addition to the process of locating the

TABLE III. Molecular orbital contributions to S l for some second-row homonuclear diatomics (with bo =2.5 a.u. , v=0.25 a.u. ).

Collision
pair

N+N
0+0
F+F
Ne+Ne

0'g 2$

27
27
28
30

Molecular orbital
contribution' (%)

o „2s ( 0 ~ 2p +m„2p )

72
70
71
70

(7T 2p+0 „2p ) 20 g2$ cT „2$

Number of
electrons in

orbital
(0~ 2p+~„2p ) (m~ 2p+o „2p)

'Contributions from o.
g ls and o.„*lsare negligible and are not shown.
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FIG. 4. Comparison of theoretical electronic stopping cross
sections with experimental values for C+C at several collision
energies: Solid line, experimental values from Ref. 24; 0, cross
sections based on free-atom wave functions; 6, cross sections
based on molecular wave functions.

IV. CONCLUSIONS

Modification of the Firsov model to take quasimolecule
formation and charge polarization into account requires
molecular orbital calculations at several internuclear sep-
arations. The operations necessary to obtain the molecu-

Firsov plane at the total electrostatic potential minimum,
constituted an attempt to place these usually adjustable
parameters on a realistic basis. It must also be pointed
out that the modifications in this study do not incorpo-
rate any collision velocity dependence into the extent of
charge polarization, i.e., the extent to which molecular
orbitals are formed is assumed to be complete over the
collision velocities of interest. Since charge polarization
(and differences in S,~

and Sr„„) are greater with de-
creasing internuclear separation, the smaller impact pa-
rameters at higher energies lead to greater dift'erences in

S,~
and Sf„,.

lar PWF's and electronic stopping cross sections are
analogous to those used for the free-atom case, except for
the additional treatment of terms resulting from the over-
lap of orbitals centered on di6'erent nuclei.

Calculations were carried out for several collision pairs
involving second- and third-row elements. It was found
that the Kishinevskii equation cannot predict the posi-
tion of the Firsov plane in the molecular basis.

Correlation was observed between changes in the elec-
tron density in the internuclear region and the electronic
stopping cross section. It was found that, in the molecu-
lar basis, electrons in antibonding orbitals made negligi-
ble contributions to the cross section. Formation of mul-

tiple chemical bonds between collision partners resulted
in S

&
)Sf„, but no general relation between the ab-

sence or formation of single bonds and S, was seen.
Theoretical electronic stopping cross sections for C+C

were calculated in the absence of adjustable parameters
and compared to the experimental values. The inclusion
of quasimolecule formation brought about an improve-
ment in the agreement of these quantities.
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