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From the work of Slater, which was formally completed by Kohn and Sham, a one-body potential
V (r) can be constructed which will generate the ground-state density n (r) of a spherically symmetri-
cal atomic charge cloud. For the case of the Be atom, the 1s and 2s wave functions are written in
terms of the density amplitude [n(7)]'/? and a common phase angle 6. It is then shown that V' (r)
can be characterized solely by this phase angle, and this motivates the setting up of a variational
principle only in terms of the phase 6. As an illustration of the method, the Hartree-Fock ground-
state density pyp(r) is employed to numerically calculate Oyg(r), which is then used to calculate
Vur(r). This provides the practical completion of Slater’s proposal for treating exchange for Be.
The effect of electron correlation on V(r) is finally estimated using a correlated wave function for Be

due to Bunge.

I. INTRODUCTION

Since the pioneering work of Slater,! which was for-
mally completed by Kohn and Sham,? the generation of
the ground-state density n(r) of an atom or molecule
from a carefully constructed one-body potential V(r),
into which must be subsumed exchange and correlation
interactions, has remained of considerable interest. The
present contribution lies in this area, and focuses
specifically on the Be atom, following the earlier work of
March and Nalewajski.> Using a suitably constructed
equivalent one-dimensional problem, with ¥, «rR,
Y, < rR,,, r —x, their work is based on writing, following
Dawson and March,*

2124, =p""%cos0 (1.1)

and

2124, =p!%sinb , (1.2)

with p=1?+4?. The normalization and orthogonality
conditions on ¥, and 1, then require

fp(x)coszedx=fp(x)sinzf)dx=2 (1.3)

and

[ p(x)sin(26)dx =0 . (1.4)

What will be demonstrated in the present work is that
the problem posed above can, in fact, be formulated sole-
ly in terms of the phase 8. The method will then be illus-
trated by presenting numerical results for the (assumed)
underlying potential ¥ (r) starting from the Hartree-Fock
ground-state electron density for the Be atom. An esti-
mate of correlation corrections to ¥ (r) is also attempted
using the correlated wave function of Bunge.’

II. CHARACTERIZATION OF THE Be-ATOM
GROUND STATE BY THE PHASE 0

Following Ref. 3, one has for the relation between elec-
tron density p and phase 6:

0”+%9’=2§sin(29) , @2.1)
where £=(g,—¢,)/2, with g, and ¢, the eigenvalues cor-
responding to the wave functions ¢, and v,, respectively,
generated by the one-body potential V. Equation (2.1),
viewed as a first-order differential equation for p, can be
integrated by introducing the function A (x):

hio= [0 gy 2.2)
The result is readily verified to be

Inp=2&h —In6’ , (2.3)
which may be rewritten as

p= B}Texp(Zgh ). (2.4)

The integration constant appearing in Eqgs. (2.2) and (2.4)
can be determined from the normalization condition
[ p(x)dx =2.

The one-body potential can now be expressed solely in
terms of 0, by using Eq. (2.8) of Ref. 3. Writing

f=p'/p=[2&sin(26)—6"1/6",
that result is readily rewritten as
V=1f2+1f" +r+Ecos(20)—1(6'), (2.5
where A=(g,+¢€,)/2.
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FIG. 1. Hartree-Fock phase 0 for the Be atom.

In the Appendix, Eq. (2.5) is formulated as the Euler
equation of an equivalent variational problem. However,
for the calculations to be reported below, we merely need
note that knowledge of p(x) used as input into Eq. (2.1)
will allow 6(x) to be constructed numerically. This, to-
gether with the information thereby gained on &, can be
inserted into Eq. (2.5), which allows ¥V to be determined
to within the constant A.

III. NUMERICAL RESULTS FOR V'VIA PHASE ©
FOR THE HARTREE-FOCK GROUND-STATE
DENSITY OF Be

The above program has been implemented numerically
using the approximate representation of Clementi and
Roetti® of the Hartree-Fock results. Inserting p’/p using
these Hartree-Fock data, Eq. (2.1) was integrated numeri-
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FIG. 2. Hartree-Fock potential V for the Be atom.
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FIG. 3. Shows the relative difference between the Hartree-
Fock phase Oyr and the phase 6 obtained from the correlated
wave function of Bunge (Ref. 5).

cally, and results for the phase Oyg(x) are plotted in Fig.
1. These data have then been used in Eq. (2.5) to con-
struct the quantity Vyge(x)—A which is displayed in Fig.
2. To within a constant, this completes the program of
work started by Slater! for the specific, and of course very
simple, case of the Be-atom ground state.

IV. DISCUSSION AND SUMMARY

It seems clear that for Be the exchange contribution to
V (x) will dominate the correlation correction. In princi-
ple, the correlated wave function of Bunge® can be used
to construct a p(r)-transcending Hartree-Fock, which
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FIG. 4. Shows the relative difference between the Hartree-
Fock potential Vye and the potential ¥V obtained from the
correlated wave function of Bunge (Ref. 5).
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one can then insert into Eq. (2.1) to construct a slightly
refined phase 8(x). Again ¥V (x)—A can then be calculat-
ed from Eq. (2.5).

The relative differences |0—0yg| /|04l and
|V —Vug!/|Vyg| are plotted in Figs. 3 and 4. The func-
tions O(x) and V(x) obtained from the correlated wave
function of Bunge are so close to the functions Oyg(x)
and Vyg(x) that if they were plotted in Figs. 1 and 2 they
could not be distinguished from the curves Oy and Vyg
with the exception of a small part of the curves. That is
why the relative differences [0—0ygl/|0yrl and
|V —Vyugl/|Vyg!| are plotted in Figs. 3 and 4. As the
boundary conditions (at x =0 and x — ) are the same
for both 6 and Oyg, it is obvious that the largest
difference between them can be found in the middle. (But
the difference is everywhere below 5.3%.) As the poten-
tials ¥ and Vg have large negative values around x =0,
the relative difference between them is very small near
the nucleus. Having the same asymptotic behavior. V
and Vyg are very close together far from the nucleus. As
in the middle part of the atom, the absolute value of the
potential is rather small; the relative difference between V
and Vyg is large.

Nyden and Parr’ have solved the Hartree-Fock equa-
tions for the Be atom using complex one-electron func-
tions. They have obtained integro-differential equations
for the density and the phase function 8. Their equation
for 0 is similar to Eq. (2.1); however, the equation for 8
contains n instead of p and a nonlocal term coming from
the Hartree-Fock exchange. Nevertheless, there is only a
small difference between 8 and Oyp.8

In summary, Eqgs. (2.1) and (2.5), and the variational

9!

where

p:::___p(f3_+_3ff:+fu) .
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principle constructed in the Appendix, show explicitly
how the one-body potential description of the Be ground
state, or indeed of any four-electron atomic ion with arbi-
trary nuclear charge Z, can be formulated solely in terms
of the phase angle 6.

APPENDIX: VARIATIONAL PRINCIPLE
FOR THE EULER EQUATION RELATING ¥V AND 60

The energy

E=T+ [ pVdx= [ p(G+Vx , (A1)
where

G=Llf'—1f"+16)7. (A2)
Taking into account the conditions f ¢;¢;=0;;, the
Lagrange function of the variational process is

L =p(6,0')[G(6,0',6",8'"")+V —acos’d

—PBsin’0—(y /2)sin(20)] , (A3)
and thus L is a function of 6, €', 6, and 0’’. Therefore
the Euler-Lagrange equation
2 3
OL d oL | d° 8L d° 3L =0 (A4)

30 dx 30" ' dx? 30" dx3 96"

is quite complicated. However, it can be verified to have
a solution which is precisely Eq. (2.5).

After a somewhat lengthy differentiation and algebraic
manipulation the Euler-Lagrange equation (A4) is given
by

L \pryofy— %ﬂ— — 2 £ cos(260) +4E0'sin(20) + £ [(E— a)cos20— (£ + B)sin20— (y /2)sin(20)]
p

—20'[(2£+B—a)sin(208)+y cos(260)] [=0, (A5)

(A6)

An appropriate choice of the Lagrange multipliers leads to the equation

V’+2fV=%%+2f§cos(29)—4§6'sin(29)+2fk .

(A7)

It can be easily seen that the potential V of Eq. (2.5) satisfies Eq. (A7).
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