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It is supposed that a single particle moves in lR in an attractive central power-law potential
V' '(r)=sgn(q)r, q ) —2, and obeys nonrelativistic quantum mechanics. This paper is concerned
with the question: How do the discrete eigenvalues E„I(q) of the Hamiltonian H = —6+ V' ' de-
pend on the power parameter q? Pure power-law potentials have the elementary property that, for
p (q, V' '(r) is a convex transformation of V' '(r). This simple fact makes it possible to use "kinet-
ic potentials" to construct a global geometrical theory for the spectrum of H and also for more gen-
eral operators of the form H'= —4+ g A' 'V', A'"HR. This geometrical approach greatly
simplifies the description of the spectra and also facilitates the construction of some general eigen-
value bounds and approximation formulas.

I. INTRODUCTION

This article is concerned principally with the following
simple question: If a particle moves in a pure attractive
power-law potential V(r)=sgn(q)rq, how do the
Schrodinger eigenvalues depend on the power parameter
q? Here the sign factor sgn(q) is included to guarantee
that the potential is attractive when q (0, that is to say,
so that V'(r) &0.

After over 60 years of quantum mechanics the hydro-
genic atom q = —1 and the harmonic oscillator q =2 may
perhaps be described as the most important two examples
of physical systems which are well understood in terms of
the theory. Although the discrete energy spectra are very
different, we usually group these problems together be-
cause of their physical importance for atomic and molec-
ular physics, and because they are soluble. In this paper
we shall use geometrical methods to recast these prob-
lems in such a way that the spectra appear very similar.
Since our approach is global with respect to the power
parameter q) —2, we capture at the same time the
discrete spectra of other problems such as the linear po-
tential q=1, which has recently become important for
the construction of models for systems composed of
quarks.

Fortuitously, the representation for the discrete spectra
introduced by our geometrical theory allows us to treat
not only pure powers but also arbitrary linear combina-
tions. This means that important physical problems in-
volving, for example, anharmonic oscillators or the
linear-plus-Coulomb potential can also be accommodat-
ed. Meanwhile, by exploiting the exactly soluble prob-
lems q = 1 and q =2, we are able to construct convenient
global-approximation formulas for this whole range of in-
teresting physical problems.

We consider now a single particle which moves in
three spatial dimensions, is bound by an attractive central
power-law potential, and obeys nonrelativistic quantum
mechanics. If units are chosen so that %=1 and m =

—,',

E(U)(q) v2/(q+2)E(1)(q) y())(v) (1.2)

The function F(f'(v) is called an energy trajectory and
tells us how the eigenvalue depends on the coupling con-
stant; this functional dependence will be important later.
Since (1.2) completely solves the problem of the depen-
dence on v, it is convenient to simplify our notation by

then such a system will have the Hamiltonian H" given
by

H'"'= —b, +v sgn(q)r~, q & —2, q&0,
where r =

~
r

~
and v & 0 is a constant coupling parameter.

For most physical situations the restriction q ~ —1 is ap-
propriate, but from a mathematical point of view' we
can allow q & —2. In this paper we shall study the
dependence of the discrete spectrum E„t'(q) of H' on
the power parameter q. Here, I =0, 1,2, 3, . . . , is the
usual angular momentum quantum number, and
n = 1,2, 3, . . . , is a radial quantum number which
enumerates the discrete eigen values in each angular
momentum subspace; that is to say, E„t"'(q) ~E t(q),
n (m. For q & —2 and q&0, all these discrete eigenval-
ues exist. With our labeling convention, the eigenvalue
E„t"(q) always has degeneracy of precise1y 21+ l.

We can determine the dependence of the eigenvalues
on the coupling parameter v by the use of elementary
scaling arguments. Once we have dealt with this aspect
of the spectrum we shall be able to simplify our notation
and concentration on the dependence of the spectrum on
q alone. If we replace r or o.r, where o. &0 is a scaling
constant, then the Hamiltonian has the form

H"= —cr I(. +vo~sgn(q)r~ .

Consequently, by choosing the scale cr so that vo. + =1,
we see that o. H"=H'" and therefore the eigenvalues ofH" are o. =v ' + ' times the eigenvalues of H"'.
Thus, in terms of our (still uncomfortable) notation, we
find
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defining the Hamiltonian H=H'" and the corresponding
spectral functions E„&(q)=E„'I '(q). Thus we have

H = —5+sgn(q)r~, q ) —2, qAO . (1.3)

E„i(—1)= —[2(n + I ) ] (1.4)

and

E„I(2)=4n +2I —1 . (1.5)

If we set q =0 in (1.3), the corresponding Hamiltonian H
has no discrete eigenvalues. However, the bottoms of the
spectra of the shifted kinetic energy operators —5+1
are, respectively, +1, and the eigenvalues E„I(q) all ap-
proach (one of) these limits as q approaches zero, respec-
tively, from positive or negative values. It is therefore
convenient to define the value of ~E„I(q)~ for q =0 to be
1. The principal goal of this article then is to study the
family of continuous functions of q given by ~E„I(q)~. We
shall sometimes omit the labels nl when our arguments
apply equally well to any particular representative of this
class of functions of q.

We are fortunate in having some exactly soluble special
cases at our disposal. For the well-known hydrogenic
atom q = —1 and the harmonic oscillator q =2 we have
the formulas

P„i(q) =

This is not a numerical problem, for the eigenvalues near

q =0 are very easy to find numerically with high accura-
cy. The difBculty arises because of the extremely slow ap-
proach to infinite slope as q approaches zero. An elemen-
tary function which behaves like this is y = ~x ~', with
the assigned value of 1 at x =0; for this function, y'(x) is
unbounded as x —+0, but even when x = 10 ' we reach
only the value y'(x)= —22.03. Such pathology is, of
course, usually invisible on a graph drawn with the aid of
a computer. One of our goals is to find a representation
for ~E„&(q)~ which is smoother and less complicated, and
therefore easier to approximate. We base our work on a
nonperturbative geometrical theory which describes how
the spectrum of H is altered under a smooth transforma-
tion of the potential.

In Sec. II, we outline the theory of kinetic potentials. '

With the aid of this geometrical theory we are able in
Sec. III to analyze the family of power-law potentials in
terms of one another. For example, a harmonic-
oscillator potential may be viewed as the envelope curve
of a family of hydrogenic potentials. If such an envelope
representation is constructed locally, for every power-law
potential, then the functions P„&(q) given by

lE„,(q)l
q & —1, qAO (1.7)

i)(q)

E„o(1)=—z„, Ai(z„)=0, n =1,2, 3, . . . (1.6)

To these we may add the linear potential which, for S
states, is exactly soluble in terms of the zeros (z„) of
Airy's function Ai(r) We ha. ve

where
q/(q+2)

2+1
2

q&0, rj(0) = 1, (1.8)

In Fig. 1 we exhibit graphs of the functions ~E„o(q) ~
for

n = 1,2, 3,4, 5, 6. Since, as q ~ ~, the potential ap-
proaches an infinite square well with width 1, we know
that lim~ „E„o(q)~=(nn. ) Near q .=0 the figure must
be interpreted with care, since, as we shall see in Sec. III,
the graphs actually have infinite slopes at that point.

emerge naturally from the theory and we can prove that
these functions are monotonically increasing functions of
q. The limiting values lim o[p„&(q)] are finite and we
assign P„I(0), respectively, to these limits in order to
make the P functions continuous.

Graphs of P„o(q) for n =1,2, 3,4, 5, 6 are shown in Fig.
2. The slope pathology in the corresponding graphs of
~E„I(q)~ has now been factored out by g(q) and the new
graphs do not cross over each other at q =0. Moreover,
although ~E„&(0)~/g(0)=1, the values P„&(0) vary with n

and I so that the degenerate collapse at q =0 of all the ei-
genvalue curves to the value 1 has been removed by the
transformation.

For example, in terms of the representation P„I(q), the
familiar but very diff'erent hydrogenic and harmonic-
oscillator discrete spectra now look remarkably similar.
More specifically, we have from (1.4), (1.5), and (1.7)

and

P„,(
—1)=n+I

P„l(2)=2n + I —
—,
' (1.10)

FIG. l. Graphs of the absolute eigenvalues ~E„,(q)~ for!=0
and n =1,2, 3,4, 5, 6. There are no discrete eigenvalues for q =0
but, in order to make them continuous, the graphs are all as-
signed here the value zero. The curves cross over at q =0 and
they have infinite slopes at that point.

Thus, with any fixed value of n, the ratio p t( —I)/p I(2)
tends to the limit 1 as I increases to infinity. These
analytical results and the representation (1.7) pave the
way for the construction of various approximate eigen-
value formulas for pure power laws in Sec. IV, and for
general linear combinations in Sec. V. In Sec. VI we
study the Coulomb-plus-square-root example with Harn-
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the sum of two potentials is, in general, not at all close to
the sum of the two individual spectra, the situation is
very different at the "intermediate stage" the kinetic po-
tential stage, of the min-max procedure; the kinetic po-
tential corresponding to the sum of two potentials is to a
good approximation just the sum of the component kinet-
ic potentials.

The final result concerns only the ground state estimat-
ed by a trial function with shape g and minimized with
respect to scale; here the "trial" kinetic potentials are ex-
actly additive and the result yields, of course, an upper
energy bound,

f '''(r)+ f (r)~f,o(s) ~f (s) =f"'(s)+f ' '(s) .

therefore, the following exact kinetic potentials:

f(r) = —r '~ f„l(s)= —s' /(n + I )

and

f(r) =r ~f„l(s) =s '(2n + I —
—,
' )2 .

(2.15)

(2.16)

The approximate kinetic potentials corresponding to
sums and smooth transformations of pure power-law po-
tentials can now be constructed by means of Eqs.
(2.6)—(2.9), and the corresponding approximate energy
trajectories for the composite potential are given by sim-
ply inverting (2.11), or, equivalently, rewriting (2.5), that
is to say, from the equations

(2.10) E„l=F„l(v)=s+ vf„l(s), v '= f„l(s), — (2.17)

The abstract definition (2.4) of kinetic potentials (or its
generalization, given below) is not used for finding the
component kinetic potentials. Instead, one inverts the
Legendre transformation (2.5) to obtain f„l(s}in terms of
the known energy trajectory E„l=F„l( v ). Thus from (2.5)
we can immediately derive the following general para-
metric form for f„l(s) in terms of the trajectory function
F„l(v). We obtain

s =Fnl(v} vFnl(v) fnl(s}=Fnl(v) . (2. 11)

f„,(s)= inf sup (P fg) . (2.12)
tteD„I

II&II
= ~

(g, —b, tti) =s
Fortunately, because of (2.11), we shall not have to work
with (2.12) directly in this paper.

In the case of the power-law potentials

The simplicity of (2.11) is important because the
abstract definition of the higher kinetic potentials would
seem to present some difFiculty if we wished to use it
directly. For completeness and clarity we now outline
the general definition of these objects. We suppose that
D„J is an n-dimensional subspace of the intersection of
the domain 2)(H) and the angular momentum subspace
of L (R ) labeled by the spherical harmonic I'l (8,$)
with, say, m =0. We now consider the union 2)„i of all
o-scaled transformations uER+ of D„&, in which each
wave function p(r ) in D„l is replaced by use of the rule
P(r)~g(r la). This large union. of subspaces is itself no
longer a subspace; however, because 2)„i contains all pos-
sible scales, we can always satisfy the constraint
(p, —bg)=s for some /ED„iC2)„l. The idea here is
that one first chooses the n-dimensional space D„I and
then generates the larger union 2)„i of all "scaled" ver-
sions of D„l. The general definition of f„l(s} is then as
follows:

which are, of course, simply the parametric equations for
the energy trajectory (v, F„l(v)) since v and F„l(v) are
each given as functions of the curve parameter s.

We are therefore immediately able to treat a potential
with shape given by the general linear combination

f(r)= g A'q'sgn(q)rq, q) —2, 3'q'&0.
q

(2.18)

Since we also have an overall coupling constant U in our
formulation, we obviously have one too many coupling
parameters. However, it is convenient to make the neces-
sary choice of which parameter to eliminate during the
course of an application. If we now use the more con-
venient parameter t =s ', we find from (2.9) and (2.14)
the following approximate parametric equations for the
energy trajectories corresponding to the general linear
combination of powers given in (2.18):

(q+2)/2

F„,(v)= +v g A' '

2+/ q

(q+2)/2
nlt'E ()

2+/

(2.19)

III. THE SPECTRAL GEOMETRY
OF POWER-LAW POTENTIALS

Generalizations of these results to include other types of
potential "components, " such as the log and Hulthen po-
tentials, may be found in Refs. 6 and 7. With certain not-
able exceptions, such as q = —1 and q =2, the missing
elements in this very general scheme are the pure power-
law eigenvalues E„l(q). It is the main purpose of this pa-
per to use our geometrical theory to supply approxima-
tions for these eigenvalues.

f'q'(r) =sgn(q)rq,

we obtain from (1.2) and (2.11)

J„,I"(s}=(2iq)lqE.,(q)~(2+q)l" +"'" '",

(2.13)

(2. 14)

The principal results of this section are a consequence
of the simple geometrical fact that if we write one power
potential as a function g of another, then g is either con-
vex or concave. Thus we have

where E„l(q) is the n, l eigenvalue of H = —b, +sgn(q)rq.
From the exact eigenvalues (1.4) and (1.5), we have,

sgn(p)r~=g(sgn(q)rq) =g(h), pqAO,

where, for each fixed p and q, pWq, we have

(3.1)
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g(h)=sgn(p)(h sgn(q))

and h sgn(q)=r~&0. Consequently, we find

(3.2)

g'(h)= —(h sgn(q)}~~~ '&0p
q

(3.3)

and

g "(h ) = (p —
q )(h sgn(q ) }i' 'iIpl (3.4)

(3.5)

If we now substitute the explicit forms for the kinetic po-
tentials (2.14) into (3.5) and cancel the nonzero factor
s from both sides, we obtain

(2/p ) lpE. t (p) &(2+p )I"+""
2

& sgn(p) —
I qE„t ( q) l(2+ q ) I

'

(3.6)

We now apply a sequence of two algebraic operations to
both sides of (3.6). We first multiply by sgn(p), and then
we take the 1/p power. In the case that p )0, both of
these operations leave the inequality in (3.5) unchanged;
in the case that p (0, the inequality is reversed twice.
Hence in both cases we conclude

P„t(p) & P„&(q), pq~O, p & q & —1 (3.7)

where, as in Sec. I,

P„t(q) = (3.8)

and
q/(q+2)

i}(q)= —+1
2 q

q&0, il(0) =1 . (3.9)

Thus, with the aid of the variational properties of
Schrodinger eigenvalues, we have generated the curious
functions P„I(q) and we have been able to prove that they
are monotonically increasing functions of q. These func-
tions capture the variation of the eigenvalues E„I(q) with

q in a particularly simple form. We already exhibited
some graphs of P„o(q) in Fig. 2 of Sec. I. In Fig. 3 here
we show graphs of P„l(q) for all I n, 1 I, such that
n+l ~ 6. These graphs show clearly how the degeneracneracy
of the hydrogen atom (q =1) transforms smoothly into
the degeneracy of the harmonic oscillator (q =2) as the
power q increases from —1 to 2. The correspondin
g aphs of E„t(q) are much more complicated.n

n ing

Hence, the function g is convex if p )q and concave if

Havaving established definite convexity properties for the
transformation function g, we can now exploit the varia-
tional implications by using kinetic potentials. Let us
suppose, for definiteness, that pq&0 and p )q, so that g is
strictly conuex W.e then have from (2.8)

j'„tI~'(s) &g(f„t "(s)), p &q .
FIG. 3. Graphs of P„,(q) for all In, l I, such that n+1~6.

These graphs show clearly how the degeneracy of the h dro en

q —— ) transforms smoothly into the degeneracy of the
armonic oscillator (q =2) as the power q is increased from —1

to 2. It is proved in Sec. IV that these graphs are monotonically
increasing for all q ) —2; we conjecture that they are also con-
cave. The corresponding graphs of E„I(q) are much more com-
plicated.

By using logarithms in (3.8) and taking the formal limit
that is to say, the unproven limit) as q~O we find thn e
ollowing expression which we use as " g"as a wor ing

definition of P„t(0):

P„t(0)= lim [P„i(q))= [IE„t(q)Ilg(q)] (3.10)

IV. APPROXIMATIONS FOR PURE POWERS

Any approximation we obtain for the slowly varying
functions P„I&q& leads in turn to an approximation for
E ( ). Fo„& q). r example, our main result, the monotonicity
of P„&(q), along with the specific values (1.9) and (1.10),
immediately yield the following inequalities:

n+l ~P„&(q) ~2n+l ——' —1 ~q &2 . (4.1)

It is perhaps remarkable that, in this picture, the spectra
of the he ydrogenic atom and the harmonic oscillator ap-
pear very similar. However, in order to obtain numeri-

qr 0

It is perhaps intuitively clear that the wild behavior of
E„& q near q =0 has indeed been factored away by il(q),
and our graphs are consistent with this since ri(q) alone
does indeed have an infinite slope at q=0, whereas (nu-
merically) the P„,(q) do not. Some more analytical effort
would have to be brought to bear on the Hamiltonian
operator in order to make (3.10) mathematically secure.
However, since we have no intention of relying on this
expression in any technical way, we shall rest the matter
with (3.10'wit . 0~ which indicates from the mathematical
viewpoint how it could be that, although the E„t(q)
curves all cross over at q=0, the corresponding P„t(q)
curves shown in Fig. 3 are distinct there.
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cally useful results we must now devise a suitable interpo-
lation over some range of q values.

In this endeavor we are guided by the fact that all these
eigenvalues are in any case very easy to find today by
direct numerical methods. Consequently, although our
formulation is theoretically interesting, the only immedi-
ate practical outcome would be a simple formula, some-
thing which is easy to use for exploration.

We have performed what have come to be called "com-
puter experiments, " and on the basis of these investiga-
tions and the philosophy outlined above we have arrived
at the following conclusions. Firstly, although we are
still far from a theoretical proof, it is clear experimentally
that the curves P„I(q) are concave functions of q [that is

I

to say, P„'I(q) (0]. If this result could be proved
mathematically; then, by the use of tangents and chords
to the graph of P„&(q) we should immediately obtain a
large variety of new eigenvalue bounds; however, we do
not have a proof. We also found that for the interval
q C[—1,2] the graphs of the functions [P„&(q)], in
which n is a constant, become approximately straight
when a is between 3 and 4. We therefore choose a value
for the parameter a so that the linear interpolation of
[P„i(q)] gives the exact result for the ground state of the
linear potential, that is to say, for P,o(1). Therefore,
from (3.8), we see that this linear-interpolation approxi-
mation is given by the formula

P„"I(q)= [P„,( —1)] + I [P„I(2)] —[P„I(—1)] I

(n+I) + q [(2n+l ——') —(n+l) ]( +1)
3 2

' 1/a
(4.2)

Hence the equation we must solve for the parameter u is
given by

course, obtained from P„I(q) by inverting the definition
(3.8), that is to say, from

[ 1+—,
' [(—') —1]I

' E,o(1)
(3/2)2'

(4.3)

q/(q+2)

E "(q)=sgn(q) ++I — [P "( )]2~~~~+~~2

q

where, from (1.6), E,o(1)=2.338108. By solving (4.3)
numerically we find

a=3.239692 . (4.4)

This value of a completes the specification of the approx-
imation (4.2). The approximate energies E„I(q) are, of

(4.5)

Such formulas fit comfortably in the memory of a pocket
calculator.

It is of course interesting to compare the approxima-
tion defined by (4.2), (4.4), and (4.5), with some accurate
eigenvalues found numerically. We do this in the Table I,

TABLE I. Some eigenvalues E„I(q) and their corresponding approximations E„&(q) given by Eq.
(4.5). The percentage errors decrease with increasing I, and they increase with n and with the distance
from the special q values q = —1 and 2.

E„I

Eio
EA

Ezo
E2o
Eso
Es'o

EA

E2l
E2"1

Esl
EA

Els
EA

E2s
EzsA

Ess
EsAs

q= —0.5

—0.4380
—0.4375
—0.2632
—0.2621
—0.1386
—0.1378
—0.2866
—0.2878
—0.2098
—0.2103
—0.1264
—0.1260
—0.1413
—0.1417
—0.1249
—0.1256
—0.094 78
—0.095 14

q =0.5
1.8334
1.8338
2.5506
2.5462
3.7934
3.7806
2.3005
2.2937
2.8543
2.8458
3.9627
3.9513
3.4424
3.4355
3.7704
3.7569
4.5743
4.5580

q=1

2.3381
2.3381
4.0880
4.0730
7.9441
7.8965
3.3613
3.3489
4.8844
4.8634
8 ~ 5152
8.4723
6.4930
6.4759
7.6370
7.6020

10.692
10.640

q=1.5

2.7081
2.7076
5.5857
5.5676

13.142
13.077
4.2508
4.2400
6.9660
6.9430

14.337
14.277
9.7662
9.7478

12.171
12.132
19.028
18.958

q =2.5

3.2422
3.2443
8.3133
8.3620

25.205
25.409

5.6389
5.6592

10.938
10.997
28.144
28.343
16.067
16.112
21 ~ 884
21.988
40.055
40.289
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which exhibits the eigenvalues E„i(q) and the corre-
sponding approximations E„i(q) for n, 1(5, and

q = —0.5,0.5, 1.0, 1.5, 2.5. By construction, the formula
gives the exact energy whenever q = —1 or 2, and also for
the ground state with q=1. In this table the highest-
percentage error is 0.81% for the case E~~(2. 5); the error
is often much less. From the inequality (4.1) we know
that, for any fixed n, the percentage error in the approxi-
mation decreases to zero as l is increased without bound.

results which we have discussed earlier for linear-plus-
Coulomb potential and the quartic-anharmonic oscilla-
tor; now the various energy bounds and the approxima-
tion apply to any linear combination of power-law com-
ponents.

VI. THE POTENTIAL f(r) = —1/r+A, r'

As an example with linear combinations we consider
the Hamiltonian given by

V. GENERAL LINEAR COMBINATIONS
OF POWERS

&=—ah P/—r +y r 'i (6.1)

By serendipitous good fortune it turns out that the
P„i(q) functions, which emerged naturally from our
geometrical theory in Sec. III, greatly simplify the sum
approximation (2.19). This is most convenient since it is
actually the P„i(q) rather than the E„i(q) that we have
been able to approximate.

If we substitute the P„i(q) from their definition (1.7)
into (2.19) we obtain the following approximate paramet-
ric equations for the energy trajectory associated with the
linear combination f(r) =g A '~'sgn(q)r~:

u 'F„,(u) = g sgn(q)(1+1/q ) A ' '[tP„,(q)]
q

(5.1)

u
' = g —3 ''t'[tP„, (q) ] t

q

We recall that F„i(v) is the nl eigenvalue of the Hamil-
tonian H= —6+vf(r). We know that, for the bottom
of each angular momentum subspace (that is to say,
n =0, for each 1), this approximation is in fact a lower
energy bound. Furthermore, if the sum over q is from q,
to q2, then, by using, respectively, either P„i(q, ) for every
occurrence of P in (5.1), or, alternatively, P„i(q2) for
every P, we obtain, respectively, lower and upper energy
bounds which are valid for all n and I. This follows from
(2.8) and the fact that every term in the potential sum is

both a convex function of sgn(qi )r ' and a concave func-
tion of sgn(q2)r '. lf we use the approximations P„",(q)
given by (4.2) for the P„i(q), then we get a convenient ap-
proximation which is not, however, known to be an ener-

gy bound. What we have here is the generalization of the

where the coefficients a, P, and y are all positive. If the
eigenvalues of & are given by 6'= C(a, P, y ), then, by ele-
mentary scaling arguments, we can show that

N(a, P, y) = 6'(I, I, A, ), A, =y(a/P')' (6.2)

H = —6—1/r+kr' (6.3)

If we apply the theory of Sec. V to this problem by set-
ting u= 1, 3' "=1,and 3" '=k in (5.1), then we ob-
tain the following parametric equations for E„& as a func-
tion of the r' coupling A.:

E„i= —
—,
' [t(n+ I )] '+ —'A[tP„i(1/2)]'

1=—'[t(n+I )] '+ —'A[tP, (1/2)]'
(6.4)

where the coefficients P„"i(1/2) are provided by the gen-
eral formula (4.2) with q= —,'. The results we obtain in
this way are compared in Table II, with some accurate
data found by direct numerical integration of
Schrodinger's equation.

VII. CONCLUSION

The purpose of this paper has been to explore some
geometrical aspects of the Schrodinger eigenvalue prob-
lem. Each potential shape f (r) leads to a family of ener-
gy trajectories F„l(u) which describe how the eigenvalues
depend on the coupling constant. If a transformation is
applied to f, one would like to know how the trajectory

In view of (6.2) we need only consider the simpler one-
parameter Hamiltonian H given by

TABLE II. Some approximate eigen values E„i given by Eq. {6.2) for the Hamiltonian0= —6—1/r+ A.r ' ', along with accurate values computed numerically.

A, =0.01
Approx. Num. Comp. Approx.

A, =1
Num. Comp.

A, = 100
Approx. Num. Comp.

—0.2339
—0.0331

0.0613
—0.0291

0.0172
0.0725
0.0628
0.0726
0.0983

—0.2334
—0.0325

0.0616
—0.0296

0.0176
0.0731
0.0610
0.0723
0.0990

1.1107
1.9282
3.2945
2.1626
2.5827
3.6310
3.6026
3.8003
4.4615

1.1275
1.9413
3.3025
2.1630
2.5962
3.6465
3.5986
3.8093
4.4800

69.082
89.153

135.89
99.088

111.70
148.78
149.41
156.36
180.85

69.211
89.468

136.18
99.268

112.07
149.33
149.82
156.81
181.52
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functions F are transformed. The approach we have used
is geometrical and global and is complementary to the
large amount of work which has been done in perturba-
tion theory to study the effects of small changes to f.

In a curious self-referential fashion, we have analyzed
the power-law potentials as convex or concave transfor-
mations of each other. By the application of kinetic po-
tentials this led to a new representation P„t(q) for the ei-
genvalues of H= b, +sgn—(q)r~ which is smooth, momo-
tonically increasing, and straightforward to approximate.
On the basis of computer experiments, we conjecture that
the P functions are concave. However, in spite of the in-
teresting concavity results in Sec. 3.5 of the book by Thir-
ring, and also of the convexity results of our own con-
cerning kinetic potentials, we have not been able to
prove this conjecture. If indeed it were true, then by us-
ing chords and tangents to the P curves, one could im-
mediately generate a large variety of lower and upper en-
ergy bounds for the spectra of pure power-law potentials.

Another advantage of using kinetic potentials is that
they "almost" mimic the potentials themselves under
linear combinations and convex and concave transforma-
tions. The kinetic potentials then lead immediately to the
spectrum, by means of the Legendre transformation (2.5).
For example, if the potential shape is given by

then the corresponding kinetic potentials are given ap-
proximately by

and the approximate spectrum follows in turn from (2.5).
We have here an approximate global answer to the very
difticult question: How does the spectrum depend on the
composition of the potential? In the special case of sums
of pure power-law potentials this leads to the general ei-
genvalue formula (2.19). It then turns out that this gen-
eral formula is greatly simplified if, instead of the com-
ponent eigenvalues E„t(q) themselves, one uses their rep-
resentations P„t(q) and obtains finally the simple formula
(5.1). Moreover, these smooth and monotonic P func-
tions are precisely what we have been able to approxi-
mate so readily.
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