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We study the statistical properties of the spin S and magnetic dipole u of a particle with two con-
stituents bounded by a harmonic force. We find the relation between g and S and also conclude

that (S2) ~#%

The gyromagnetic factor can assume any value depending on the charges and

masses of the constituents. In another example, we consider the case of a permanent magnetic di-
pole moving in an external magnetic field, under the influence of the fluctuations associated with the
zero-point and thermal radiations characteristic of stochastic electrodynamics (SED). We conclude
that the system contains paramagnetic features, and comparison with the experimental data shows

excellent agreement with SED.

I. INTRODUCTION

Quite recent studies have shown that stochastic elec-
trodynamics (SED) has reached an important point in its
development. We can see this not only in the reviews by
Boyer! and de la Pefia? but also in the new branches of
the theory, as, for instance, the so-called “stochastic op-
tics” recently developed by Marshall and Santos.3

As a classical theory able to describe microscopic phe-
nomena, SED is penetrating the domain of quantum
mechanics (QM). The main ingredient which allows this
is the well-known zero-point radiation background.!* It
has electromagnetic fields that are random and con-
sidered as a superposition of plane waves with all fre-
quencies. This is an hypothesis which perhaps could be
justified if we admit that the zero-point radiation is that
emitted by all the accelerated charges of the Universe.’

The electric field E(x,?) in a point x at the instant ¢ is
usually written as’*

2
E(x,)= 3 [ d% &k,\)H (o, T)
A=1

X cos[k-x—wt +v(k,A)], (1.1)

where o =c|k| is the frequency of the plane wave charac-
terized by the wave vector k. The function H (w,T) is as-
sociated with the wave amplitude and T is the tempera-
ture of the cavity in which some microscopic system is
immersed. The phases v(k,A) are completely random,"*
that is, they are statistically independent and vary uni-
formly within the interval 0 <v <2#. The polarization of
each wave is characterized by the unit vectors €(k,A)
such that k-€=0 and

2 kk;
S ei(k,A)eg;(k,A) =8, — ——-

P P (1.2)
It is easy to see that the ensemble average gives
(E)=0 (1.3)
and
39

2H (G),T)

= [ do

where p(w,T) is the spectral density. There is no
difficulty in showing that p(w,T) have the contributions
from both the zero-point and thermal radiation, that is, "2

f doplo,t), (1.4)

)= #ie® i+ 1
m2c? |2 explliw/kT)—1 |’

plo, (1.5)

where # is Planck’s constant divided by 27. Indeed,
Marshall,® Boyer,” and Jiménez® have shown that the ex-
pressions for p(®,0) and p(w,T >0) can be obtained
through entirely classical arguments from SED. Howev-
er, these calculations are not free from criticism. 6.8

Before we start the description of our model of a com-
posite particle, let us mention some of the main achieve-
ments of SED in the domain of microscopic phenome-
na.'? One example is the correct description of diamag-
netic properties of free and harmonically bounded
charges.*®° Another example is the analysis of van der
Walls forces.!%!! The more studied system is the har-
monic oscillator.’>* Many detailed discussions of this
system were published since the pioneering work by
Marshall® and others.'>~'* More recently a new branch
of SED, called stochastic optics, started to be developed
by Marshall and Santos.’> The new phenomena described
by this theory, for instance the anticorrelation observed
in both channels of a beam splitter in the experiment by
Grangier et al., 15 has challenged physicists to revise the
concept of the photon. In stochastic optics® photons are
considered as short pulses of electromagnetic waves.

The success of SED in describing the above microscop-
ic phenomena has encouraged us to investigate whether
the theory is able to give reasonable results for the prop-
erties of the spin S in a simple model of a composite par-
ticle. The particle was assumed to have two constituents
with charges ¢, and g, where g, +g,=Q is the total
charge of the particle and masses m; and m, with
m,;+m,=M (the total mass). The dominant force be-
tween the constituents is a harmonic force with frequency
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. With this model, we were able to describe the relative
motion of the constituents as we will see in detail in Sec.
II. We concluded that the magnetic dipole u of the sys-
tem is such that

p=g(Q/2Mc)S , (1.6)

where g is the gyromagnetic factor which depends, in a
simple way, on the charges and masses of the constitu-
ents. The spin S is such that

(82) =3 (1—&*/(1+&), (1.7)
where £=q,m,/q,m,. This result is independent of the
temperature and also does not depend on the frequency
g of the harmonic force.

The most interesting situation appears when we study
the motion of a rigid magnetic dipole u, withg =2, in an
external magnetic field B,. This analysis was done before
by Boyer'® and we simply give a summary of the calcula-
tions and approximations used. Boyer was able to find a
stationary solution of a Fokker-Planck equation for the
probability distribution P(6), where 0 is the angle be-
tween S (or p) and B, Taking B, in the z direction,
Boyer showed that

(s, 7S
= coth
S #icoth(#fiuB, /2SkT)
# fiuB,
25 coth 2SkT | (1.8)

where S =|S| and u=|p|. Next we assume that g =2,
that is, u=QS /Mc, and also S =N#, where N is the only
free parameter that can depend on the internal structure
of the particle or atom. By doing a comparison between
(u,)=(Q/Mc){S,) and some experimental data,'” we
conclude that there is a very good agreement with SED
predictions in the case where N =2, 3, and 4. A confron-
tation with the corresponding QM predictions is done.!”
We present a detailed comparison between the Brillouin
functions, characteristic of the observed paramagnetism,
and the corresponding Boyer functions defined in Sec.
III. Our conclusions are left to Sec. IV of this paper.

II. SIMPLE MODEL OF A COMPOSITE PARTICLE

Despite the success in describing many properties of
the above-mentioned systems, there are few attempts to
understand properties of microscopic particles like elec-
trons and nucleons, for instance. Boyer*!'® and de la
Pefia and co-worker?!® tried, independently, to describe
some properties of the spin and magnetic dipole associat-
ed with the electron. We have to recognize that the
present work was inspired by the quite interesting efforts
of these and other authors.!>2°

We are going to study here some properties of spin and
magnetic dipole of very simple composite systems. The
first example is a particle composed of two constituents.
This is the simplest model of an ‘“‘elementary” particle.
We keep ourselves to this model because in this case the
results are more easily interpreted and the conclusions
more definitive.
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We shall assume in the first example that the constitu-
ents are pointlike charges ¢, and g¢,, such that
Q =gq, +q, is the total charge of the composite particle.
Besides this, the masses will be m | and m, in such a way
that M =m, +m, is the total mass. We also assume that
the internal motion is nonrelativistic, as we have men-
tioned in Sec. I. We shall consider that the constituents
do not have intrinsic angular momentum. With this the
spin of the composite particle can only be attributed to
the orbital motion of the constituents.

Another approximation is that the dominant force is
the harmonic attraction (frequency w,) between the con-
stituents. This means that the average distance between
them is large enough to consider the Coulomb force
negligible. In other words, the centrifugal force is much
larger than the Coulomb attraction or repulsion. This
approximation will introduce restrictions to the parame-
ters (charges, masses, frequency wg) of the system. These
restrictions will be discussed below.

Previous experience>® with harmonic oscillators
shows that a resonance with radiation at frequency w,
will be reached in the stationary regimen. Since the
motion is nonrelativistic we can imagine the charges at
“rest” but separated by the distance x. If the wavelength
is large as compared to x we can have xwqy/2mc <<1.
This is true for the harmonic oscillator within SED, so
that the approximation E(x,?)~E(0,¢), for the random
electric field, is fine.2!"2

In this way the constituent particles, located at the
points r; and r,, will obey the following equations of
motion:

2

q
mllr'xzmwtz)(rz—fl)"‘g_l'fl+‘11E(I)

3 @.1)
c

and
2

m,t,= —mmg(rz—rl)+33§—“r'2+q213(t) .

3. (2.2)

Here m =m ;m, /M is the reduced mass, g;E(t) are the
random forces, and %(q,«z/c3)'f',- is an approximation®* for
the radiation reaction force over the particles 1 or 2. In
writing (2.1) and (2.2) we have assumed that the particles
irradiate independently.”*> Another hypothesis is that
m T, ~mayr, where r=r,—r,, which implies that the ra-
diation is emitted mainly in the direction perpendicular
to r. This is in accordance with our assumption that the
charges are emitting independently. The above approxi-
mations and hypothesis deserve more comments. Equa-
tions (2.1) and (2.2) are not exact. The radiation reaction
force above is the first approximation of a more compli-
cated expression.?? Another point is that (2.1) and (2.2)
are justified only if we have E(#). We cannot eliminate
the external interaction taking E(z)=0. The reason for
this is that we have neglected the Coulomb force and the
noise is needed to justify this approximation (the random
field E shakes the system and gives the energy necessary
to maintain the charges far from each other).

At this point we can make an estimate of the Coulomb
force q,q,/r’~Q?/r* between the constituents. The
harmonic force is of the order mw3{r?)!/% Since
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(r?) ~#%/muw,, the inequality
Q 4

o |’

(m?i(r?)) '=—=—5 1
(r?) Y m2w8<r2)3
should be valid if the Coulomb interaction is less impor-
tant than the harmonic force. The above expression can
be rewritten as

(2.3)

Q 4 ﬁ(l)o
2

<1, (2.4)

#c? mc

where the last inequality was imposed based on the as-
sumption that the motion is nonrelativistic. The above
relation (2.4) must be satisfied by the parameters of our
model in order that the approximations we used be valid.
We shall return to this point later on.

The equations of motion (2.1) and (2.2) are more con-
veniently expressed in terms of the center of mass and rel-
ative coordinates, namely,

MR=mr,+myr,,
(2.5)
r=r,—r, .
In terms of r and R the equations of motion (2.1) and
(2.2) take the form

r,. T,. §
t=— i+ — i+ —R+LE

(2.6)
g (O M
and
.. I'i;.. T
R=—2R+ 2+ g0, @.7)
[On [On M
where
p_2m |4, 45
1:3c3wo m? m3 |’
L_29 |4 _ai |_ ML
2T33 | my, mp |T m %’
5 (2.8)
2 @
3—§Mc3<q%+4§),
O=M 9 4
m, m

In (2.7) we see that the center-of-mass motion depends
on the internal coordinate r. This is not strange for us,
since we know that composite systems have more compli-
cated motion due to the effect of radiation reaction.??

It is easy to see from (2.4) that the constants I'; above
are such that

2 fiw
I“,-/a)o~% Mc"z S1073<«<1 .
This means that Eq. (2.6) and (2.7) decouple approximate-
ly if the motion is nonrelativistic. These equations, which
are linear in R and r, could be solved exactly in the case
in which E(¢) is given by (1.1). Here, however, we prefer
to discuss an approximate solution using the fact that the

(2.9)
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ratios I'; /w, are very small as well as the assumption that

the harmonic force is dominant in (2.6). This means that
T~ —odr, T~—oi (2.10)

and Egs. (2.6) and (2.7) can be decoupled. In this way the
resulting equation for the relative coordinate r is

I —T,T 5
fo—wdr 1+ —— 24 iy Lp
o T e i M (1)
Or;—Qr
+ (25780 g, @.11)
M(OO

In the stationary (resonant) regime we have E~on
and, since I, /w, < 1073, we can simplify the above equa-
tion to

i —olr—Toit+ 2
f~—wir— I i+-=E() . (2.12)
M

This equation governs the relative motion that is the
most interesting for us. We shall ignore the center-of-
mass motion in what follows.

The stationary solution of Eq. (2.12) is known from

many other works"?* in SED, namely,
2 = A . .
r—=Re S _A% f 4’k €k, A )H (0, T) exp[ ta)t+zv(k,7x)].
A=1

oy— o +iol,

(2.13)

From the above result we can extract many properties
of the spin S (orbital angular momentum) and magnetic
dipole u associated to the composite particle. The first
conclusion is that, as far as the internal or relative motion
is concerned, the linear momentum p=mt is such that

(p)>=(r)={(r;p;)=0,

5 (2.14)
(pH)=mXi*)=m}(r?) .
The probability distribution W (r,p) in phase space can
be obtained from (2.14) and the central limit theorem,
and is given by!2*

exp[ —2(r2/(r?) +p?/(p*))]
[27/3)X ) {(p?) ]2

where we only need the expression for {r?) in order to
complete the calculation of W (r,p). The mean-square
value {r?) of the relative coordinate can be obtained
from (2.13) by taking the average over the random phases
v(k,A). The results is well known, since similar calcula-
tion was done by many authors.""?>* The only difference
is the presence of the constants Q and I';, defined in (2.8),
which implies that

W(r,p)= ) (2.15)

3 #i (1—§)? fiw,
=—— . 2.16
() 2 mwy (1+£%) oth 2kT 2.16)
The new factor depending on
m
g="2 2.17)
q,m,
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introduces new features, since the usual result (see
Boyer®) is obtained by putting £=0, that is, ¢, =0 or
m; — o, which corresponds to the traditional analysis of
the harmonic oscillator in SED.

The spin, or intrinsic angular momentum of the com-
posite particle, that is, referred to a frame in which the
center of mass is instantaneously at rest, is defined by

S=rXp=mrXrt, (2.18)

where m is the reduced mass as we said above. The vari- .

ance associated to S is such that

(82)=2(?)(p?) =2im2W}(r?)?, (2.19)
since W (r,p) is given by (2.15).
Taking into account (2.16) we get
2y (=8 o | Ao
($*)=21# (1+£) coth kT (2.20)

Here we expect that #iw,>> 1 eV for any microscopic
particle (like a nucleon for instance), since fiw, represents
the energy which characterizes the internal motion of the
constituents.  This means that we can take
coth(fiwy/2kT)~1 even for very high values of the tem-
perature T because fiw,>>kT. Considering this approxi-
mation we obtain

() =2 U=E"
Pa+g)y
This is a quite interesting result in our model. As have

stated, there is in the literature”>* many analyses in
which m | >>m, or q; =0, that is, §=0, and consequently

<Sz>§=0=%ﬁ2 (2.22)

(2.21)

is the only possibility for (S?), as was discussed many
times. Here it is seen that we have more flexibility in this
model of a composite particle in which both constituents
are charged and have finite masses. As the value of &
varies we obtain different results for {S?), that is,

0<(S?)<6# or 0<((S*N)2<5%/2 . (2.23)

It is interesting to remark that the quantum-mechanical
version of an elementary particle with only two pointlike
(spinless) constituents cannot generate half integer spins,
due to the lack of one of the rotational degrees of free-
dom. Our model does not have this restriction and pre-
dicts a maximum (average) spin of less than 5%/2. The
variation of {S?) with £ can be appreciated in Fig. 1. We
have to exclude the neighborhood of £=1, because in this
case {r?)=0 and so the Coulomb interaction becomes
important.

The fact that our analysis does not apply to the case
§=qym,/q,m ;=1 is easily understood because, if
q,/m=gq,/m,, both particles have the same random ac-
celeration (g, /m)E. This means that the attractive har-
monic force will bring the constituents more and more
close to each other. This will cause the breakdown of this
study, since we have neglected the Coulomb interaction
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FIG. 1. (8?) as a function of the variable £=¢q,m, /q,m,.

between the charges.

Now we pass to discuss the properties of the intrinsic
magnetic moment p of the system. From the definition
we have

1 . .
y=—2;(q1r1><r1+q2r2><r2) . (2.24)
Since p is referred to the center of mass, we must have
r;=—(m,/M)r and r,= +(m, /M)r. With this it is easy
to show that

p=g-2s, (2.25)

where g is called gyromagnetic factor because Q is the to-
tal charge, M is the total mass, and S is the intrinsic or-
bital angular momentum or spin. The expression for g is

gim, 8§,m,
=" = 2.

g om, om, (2.26)
and was derived here within the context of purely classi-
cal mechanics and electromagnetism, without the necessi-
ty of introducing random fields. From expression (2.26)
it is easy to see that g can take any value, depending on
which values we attribute to m,, m,, q,, and g,, even
with constraints m, +m,=M and g, +g,=0.

The results (2.21) for (S?) and (2.25) for pu are the
main achievements of this section. Here we have shown
that under some circumstances (for instance, two charged
particles, radiating independently, under the action of a
harmonic force and the random radiation of SED) a sim-
ple system can have intrinsic angular momentum such
that (S?) ~#%. Another finding, which is in fact a very
early result?* of nonrelativistic classical physics, was that
the relation p=g(Q /2Mc)S is valid for the magnetic di-
pole p and the gyromagnetic factor g can take small as
well as very large values, negative or positive.

III. MOTION OF A RIGID MAGNETIC DIPOLE

In this section we shall consider the second simple sys-
tem we mentioned in Sec. I, that is, a classical spinning
magnetic dipole 4 in an external (constant) magnetic field
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B,. This system was treated in 1979 by Sachidanandam?’
and with more details by Boyer!® in 1984. Therefore we
give here only a sketch of Boyer’s calculation, that is, the
starting point, the approximations, and the final result for
(u)=(ge/2mc){S,), where z is the direction of B,
Here e is the charge of a particle (mass m) which has spin
S and gyromagnetic factor g. We are assuming that
p=g(e/2mc)S, but we also consider the additional hy-
pothesis (as Boyer) of rigidity, that is, |S| is constant.!®

However, the direction of the vector S can change due
to the external torque applied by B, and B(0,¢), where
B(r,t) is the random magnetic field of SED. A con-
venient expression for B(r,?) isl6

2
B(r,)= 3 [ d’K&(K,VH (w,1)
A=1

X cos[K-r—wt +v(K,A)] . (3.1)

Here €(K,A) are the polarization vectors defined in the
Introduction and v(K,A) are, as before, random phases.
The function H (w, T) is also the same, that is,

mH* 0, T)=#io coth(fiw /2kT) . 3.2)

Since the magnetic dipole emits radiation, the equation
of motion for S must contain also the self-torque due to
radiation reaction. Then, according to Boyer,'® the equa-
tion of motion for our spinning magnetic dipole is that
given by Bhabha?®

) i
S=,u><[B(ﬁ-B(O,t)]—%‘yC—Ji ;

(3.3)

where the last term is the radiation reaction torque
(which can be obtained from energy conservation). This
term will be considered small, as well as u XB(?), which
is the random torque, when compared with g X B,

If the equation of motion were simply

S=uxB,, (3.4)
the solution would be a precession, with frequency
n=uBy/S (3.5)

around the z axis. The angle 0 that the spin S makes with
the z axis (direction of B;) should be constant in this ap-
proximation. However, the complete equation of motion
(3.3) is a nonlinear-stochastic differential equation. The
fluctuating torque, contained in (3.3), must be considered
and the effect is that we expect to find a probability distri-
bution P () for the spin orientation.

Boyer!® was able to obtain a Fokker-Planck equation
for P(0) by using a perturbative quasi-Markovian ap-
proximation of the equation of motion (3.3). We address
the reader to Boyer’s 1984 paper, which contains all the
details of the calculations required to obtain such an
equation.

In the stationary regime the Fokker-Planck equation
obtained was
(A0) L 1.3

T

1
—P(0)——— 269 P

=0, (3.6)
r

2
() $140) )]
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where (A8) is the average first moment and ((A6)?) is
the average second moment, for the change A6 in 6, due
to the perturbating torques during a small time 7. At this
point we must say a few words about what we mean by
small 7.

Boyer’s approximations'® are valid if

% «<7<1 sec, (3.7)
where 27 /7 is the period of the unperturbed precession.
Since n=eB,/mc we have 1/9~10""! sec if Bj~10* G
(a magnetic field attainable in the laboratories) and m is
the electron mass.

According to Boyer!®
sion for (A6) /7

(AB) 3 sinf mu? 2772

T — == 5t + 30352 cot(8)n°H(n,T) ,
where the first term is due to the contribution of radia-
tion reaction torque and the second is due to the fluctuat-

ing torque. Consistently with this, Boyer!® obtained for
((A6)?) the result

{((AO)?)

T

we can use the following expres-

(3.8)

2

E | v HY 9, 1),

=i
338

2
— (3.9)

where H%(n, T) is given by (3.2). Thus the Fokker-Planck
equation becomes

dP(0)
do

527]2
uBmH*n,T)

sin@— cotf [P(6)=0

(3.10)

in the stationary regimen.
The exact solution of the above equation gives for the
probability distribution,

P(6)= constsinfexp | —— cosé (3.11)
Hn,T)
In the Ilimit #—0 (or #An<<kT) we have
m*H*(n,T)~kT and since n=uB,/S we get
Sn _ uBo
mH*n,T) kT
and P (60) becomes the Boltzmann distribution
. uB,
P (0)= const sinf exp T | (3.12)

as is expected!® to be valid in the high-temperature limit.
The probability distribution P(6) can be used to calcu-

late the average component of the magnetic dipole u

along the z direction of the magnetic field B, that is,

(u,)=-5° —(s,)= geS(cosO) (3.13)

2m
Using (3.11), (3.5), and (3.2) we get
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2mc (u.)= coth 28
ges M #icoth(#uB,/2SkT)
# fiuB,
3S cot 2SkT | (3.14)

which is Boyer’s 1984 final result.'®

Now, instead of discussing only the limits of high and
low temperatures, as was done before by Boyer, we are
going to make a detailed comparison between {u,) and
experimental data measured in a large range of B, /7. In
order to do this we introduce two additional hypotheses.
Firstly, we assume that g =2, which is the experimental
value of the electron gyromagnetic factor (we also take m
as being the electron mass). Secondly, we introduce the
hypothesis that S =N#, where N is an unknown number
(this is the only free parameter in what follows). These
hypotheses deserve some comment. To assume that g =2
is not a quantum hypotheses because we have shown in
Sec. II that g can take any value in classical elec-
tromagnetism. Also, to assume that S =N# does not em-
barass us because we have seen, at least in the simple ex-
ample of Sec. 11, that S ~# is possible within the realm of
SED. The only thing we have not discussed is the rigidi-
ty assumption (we left this point for a future project). We
only want to mention that a rigid magnetic dipole is not a
quantum concept in our opinion.

Returning to the expression (3.14) for {pu, ), introduc-
ing S =N# and g =2, we obtain

KoBo
kT

()
gHo

h 2N
coth(uBo /7kT)

— 1
5 coth

(3.15)

where p,=e#/2mc is the bohr magneton.

The comparison of this expression with the experimen-
tal data is shown in Fig. 2. The only free parameter is
N =S8 /%, which is adjusted to fit the experimental data
measured for the paramagnetic ions Cr’*, Fe3*, and
Gd**, respectively. In our model N is a parameter which
should depend on the detailed structure of the paramag-
netic particle (or atom). We have no means to calculate
N in the Boyer simple model of a rigid magnetic dipole.
However, it is quite surprising to see in Fig. 2 the impres-
sive agreement between the experimental data and
Boyer’s theory modified with our additional hypothesis,
namely, S =N#. The surprise is that within Boyer’s cal-
culation the angle 6 is a continuous variable. There is no
quantization of S, (which takes discrete values in quan-
tum mechanics). According to QM,

(S2Y=#T(J+1) (3.16)

and S, assume discrete values within —J# =S, <J#. The
magnetic dipole is g =(eg/2mc)S as in our calculation
based on SED. The quantum theory of Brillouin?’ is
more successful for explaining the data presented in Fig.
2. The reason is that there is a quantum theory for the
internal structure of the ion and therefore no free param-
eters.

It is interesting to compare the numerical predictions
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FIG. 2. Magnetic dipole variation as a function of By/T
(after Henry, Ref. 17).

of SED and QM. In QM the formula which corresponds
to (3.15) is?’

(p,) EoBo
o =W Hcoth |20 + D5
HoBo
— 4 coth T 3.17)

which is the well-known Brillouin function.

For the paramagnetic ions of Fig. 2 we have g =2 and
J=1 for Cr’*, J=3 for Fe’*, and J=1 for Gd3*.
These correspond to ({S?) /#?)!/2=1.94, 2.95, and 3.97,
respectively'”?’ In the rigid spin model of SED the pa-
rameter N =S /# is to be identified with ({8?) /#*)!/? of
QM. It was not a surprise that, in fitting the data by ad-
justing the free parameter N, we have found N =2, 3, and
4 for the paramagnetic ions Cr3*, Fe*t, and Gd**, re-
spectively, as we can see from Fig. 2.

In order to understand this more easily let us assume
that poB,/kT is small enough so that tanh(uyB,/
kT)~poBo/kT. Only an elementary calculation is re-
quired to show that Egs. (3.15) and (3.17) take the same
form, namely,

(u,)
8Ho

where C =J + 1 for the quantum theory and C =N for
SED.
Even for not so small u,B, /kT the agreement between

2CuoBy
kT

HoBo
kT

=C coth — 1 coth

2

, (3.18)
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FIG. 3. Variation of poA= {1, ) oyer = {12 ) Britiouin 3 a func-
tion of By /T (see text).

SED, QM, and the experimental data is so great for the
cases presented above that is almost impossible to distin-
guish the Boyer!® predictions given by (3.15) from the
Brillouin'”?” curves given by (3.17). For this reason we
decided to make another numerical comparison of the
two theories. In order to do this we defined an adimen-
sional number which is the difference between the Bril-
louin and the Boyer predictions for {u, ) /u,. Namely,

,qu(y) = <.u'z )Boyer_ (nu’z >Brillouin 4 (3.19)

where y =poB,/kT.

This is presented in Fig. 3 for the values N =2 (J =3),
N=3 (J=3), and N=4 (J=7]). We see that A(y) is
small and becomes smaller for increasing values of S, as

was predicted by Boyer® in 1984.

IV. SUMMARY OF CONCLUSIONS

As many works based on the ideas of SED, this paper
represents another small step towards the understanding
of microscopic phenomena within classical electron
theory including classical electromagnetic zero-point ra-
diation. This classical theory (SED) has produced an in-
creasing number of results'~* usually thought to be ob-
tainable only within quantum mechanics.

In the first part of the present work we have shown
that the magnetic dipole p and the intrinsic orbital angu-
lar momentum (or spin) S are related by u=gQS/2Mc.
This relation is observed experimentally in many elemen-
tary particles such as the electron and the nucleons. The
above results were obtained by assuming that the particle
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is composed of two constituents in nonrelativistic motion.
Due to the calculational difficulties of classical elec-
tromagnetism and of stochastic processes, we have con-
sidered a very simple model in which the constituents are
maintained together by a harmonic force that is dom-
inant over the other ones acting on the charges. Despite
the simplicity of the model, we were able to show that the
gyromagnetic factor g can take any value. This is a gen-
eral result of classical physics which is independent of the
presence of the zero-point random electromagnetic radia-
tion. These stochastic electromagnetic fields are, howev-
er, responsible for the result {S?) ~#> we have obtained
for the spin in our simple composite particle model.
Another characteristic of this model is that g and S are
not rigid, but fluctuating quantities. Therefore we decid-
ed to study another example.

We considered a simple model of a rigid classical spin-
ning magnetic dipole proposed by Sachidanandam?’ in
1979 and discussed with great detail by Boyer'® in 1984.
When the magnetic dipole is in an external magnetic field
B,, the spin precesses and the system loses energy by em-
itting radiation. However, due to the presence of the ran-
dom (zero-point and thermal) electromagnetic fields, the
system absorbs energy and there is no complete align-
ment with the magnetic field B,. By using an entirely
classical treatment, that is, the angle 6 between S and B,
being a continuous variable, Boyer'® was able to calculate
the probability distribution P () for any orientation of u
or S, with respect to the z (or By) direction. The main
points of the calculation were sketched in Sec. III.

With the additional assumptions, namely, taking g =2
and S =|S| =N+, we introduce the only free parameter N
into the Sachidanandam-Boyer model.'® In this way we
were able to use the explicit analytical expressions for
(u,)=(eg /2mc){S, ) obtained by Boyer in 1984.

The comparison of the theoretical results with experi-
mental data was shown in Sec. III for a wide range of the
variable B /T, that is, mainly for high B, and low tem-
perature 7. The agreement with the experiments was
quite impressive. SED predictions were almost indistin-
guishable from the QM ones and quite different from the
usual (without zero-point radiation) Langevin theory.!”?’

However, we must recognize that the QM theory of the
observed paramagnetism is superior when compared with
the SED explanation presented here. As we explained in
Sec. III we have introduced the free parameter N =S /#
into SED calculations. This was unavoidable in the actu-
al development of SED because, due to mathematical (or
perhaps other more profound) difficulties,”? we do not
have a detailed stochastic explanation to the internal
structure of atoms and elementary particles. Neverthe-
less, some progress was obtained by SED as far as the
paramagnetic properties of matter are concerned. We
hope that this should encourage other researchers in this
direction. These additional efforts are important to phys-
ics because the concept of spin is both intriguing?® and
extremely difficult (according to QM the angular momen-
tum is related to the classical concept of rotation and to
the space quantization).

The first person to propose the possibility of the spin
seemed to be Compton?® in 1921. He considered the elec-
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tron as an extended charge spinning around an axis. The
goal of Compton was to explain the departure of x-ray
scattering data from Thomson’s predictions, using only
classical electromagnetism.’® Many people believe that
the last word was said by Dirac,’! in 1928, with the intro-
duction of his efficient relativistic wave equation for the
electron. According to Dirac, the electron is structure-
less but has spin, that is, “internal” quantum numbers.
To make the situation more puzzling,’? nowadays physi-
cists have discovered the muon and tau leptons. All these
particles are considered pointlike, have the same charge,
the same spin, and the same main interaction (elec-
tromagnetic) but have quite different masses. We do not
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believe that we have heard the final word about the spin
and magnetic dipole distributions3?~3* of elementary par-
ticles
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