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Dynamical theory of the conversion among the state multipoles in the collisions
of hydrogenlike species with ions
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The time evolution formula of state multipoles for states of hydrogenic ions in interaction with
other ions is obtained in a rotating frame using an orthogonal-operator expansion. Our formula re-
lates final-state multipoles to state multipoles of hydrogenic ions at earlier times. The theory is ap-
plied to the n =2 levels of hydrogen.

I. INTRODUCTION

It has long been recognized that outgoing ions that
have excited atoms by collisions may give rise to postcol-
lisional eFects. The field of outgoing ions causes transi-
tions, in general, among the multiplets of close-lying
states and alters the electron cloud distributions of excit-
ed atoms. Analyses of such phenomena are needed to ex-
tract information on the dynamics of collision because a
comprehensive understanding of collision dynamics must
incorporate the manifestations of the shape of electron
clouds. In the present paper, we study such final-state in-
teractions for hydrogen atoms excited by ion impact.
The excited states of hydrogen have received considerable
attention and coincidence data have become available
within the last decade. The atomic charge cloud in this
case exhibits geometric and dynamical anisotropies in-
cluding static dipole moments as measured recently by
Havener et al. for the H +He electron capture reac-
tion.

Impact excitation of atoms generally leaves them in an-
isotropic states and the fields of outgoing ions will cause
redistributions of these anisotropies. These anisotropies
and their time evolution are most conveniently described
by state multipoles. Specifically for hydrogen, we
have two convenient choices. One set of multipoles is
suggested by Blum and Kleinpoppen who adapted earlier
work by Fano in nuclear physics and employed state
multipole operators with mixed angular momenta
T(" (n;1'1). 6 The other set T " (j;k, k2), discussed re-
cently by Burgdorfer, ' is based on the dynamical sym-
metry group O(4) of a nonrelativistic hydrogen atom.
The latter set is convenient for processes where there is
an axis of symmetry, such as atoms in external, possibly
dynamical fields. However, it seems that the former
scheme is more intuitive since the hydrogen atom is more
commonly described in a mixed angular scheme nlm )
instead of pseudospin eigenstates

~ j,u, jzuz ). The nlm )
scheme is also more appropriate in the collision complex
region. There exist definite linear relations between the
two sets since both are complete bases for hydrogen mul-
tiplets. Therefore one can perform calculations in either
scheme, and then make transformations to the other rep-
resentation if desired.

The objective of this paper is to obtain the general con-
version coefficients G„[(L'I. )KQto, (I'l)kqt], which de-
scribe the conversion of state multipoles ( TP(n;
L'L)+), at time to to (T(")(n; I'1)+), at time t under

the influence of the field of an outgoing ion. In Sec. II we
briefly review the Coulomb degeneracy and associated
tensor operator sets, and prove that the time evolution
coefficients G~ [(K,K2 )KQto, (k, k2 )kqt] of the O(4)
scheme and G„[(L'L)KQto, (l'1)kqt] of the L scheme are
related to each other by a linear transformation with
coeKcients given in terms of recoupling coefficients of
four angular momenta. The physical model is described
in Sec. III. The main task of the present paper, obtaining
explicit expressions for the conversion coefficients, is
done in Sec. IV. In Sec. V we shall apply our theory to
n =2 excitation for the process P++H~P++H'
(n =2), where P+ is a singly charged ion, and for the
problem of a fast proton passing by an initially excited
hydrogen atom at large impact parameter. The latter ap-
proach might be applied to the process of a proton pass-
ing through a crystal.

II. GENERAL THEORY

A. Coulomb degeneracy and multipole operators

The orbital angular momentum, L=r Xp, and Rung-
Lenz vector, A = ( p X L —L X p ) /2 —Zr r /r, are two con-
stants of motion in the hydrogenic species. Here we anti-
cipate applications to collisions where a target T of
charge Z~ interacts with a projectile P of charge Zz and
the population of the excited states of the target are al-
tered by the interaction. Our results also apply to states
populated by electron capture provided the subscripts T
and P are interchanged. Within the subspace of bound
states of energy E„we introduce K= A(Zr/2~E„~)'
and define the pseudospins J, and J2,

J, = ( L+K ) /2, J, = ( L —K ) /2 .

The invariant group for a bound-state multiplet of hy-
drogen is SO(4), isomorphic to 03 X 03, with J, and J2 as
the group generators of corresponding 03 space. In this
group space, j,=j

&
=j(j + 1), and the following useful

relation holds
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r= A(3ZTI4~E„~)=K(3n/2ZT) .

The states of hydrogenic species are thus described in
two different ways. One way is to use ordinary eigenvec-
tors ~nlm ) which are the eigenstates of H, L, and L, .
The other is to use

~ ju, ju z ) which are the eigenstates of
H, J„, and Jz, (i.e., the eigenstates of J, , Jz, J„, and

Jz, ). Since L=J&+Jz, the change from one description
to another is accomplished by the addition of two angular
momenta. Similarly, multipole operators for a multiplet
can be constructed in two alternative ways. The first set,
the L multipole operators, are constructed from the state
vectors nlm ) with the definition

T "
( n; I'I) = g (

—1) ( I'm 'I —m
~

I'Ikq )
m, m'

The two types of operators Tq" (n; I'I) and T "(j;
k

&
kz ) are related by the recoupling transformations

T('l(n;I'I)= g ((jj )I', (jj )l, k~(jj)k, , (jj)kz, k )
kl, kz

X T( l(j;k, kz)

and

T( )(j;k&kz) =g ((jj )I', (jj )I, k ~(jj)k&, (jj )kz, k )

XT (n;I'I) .

B. Perturbation coefficients
X ~l'm') (lm ~, (3)

and the second set, O(4) multipole operators, are defined
through pseudospin states

~ ju, juz ) as

T "(j;k&kz)=[T ' (j)X T ' (j)]l

(k&q&kzqz ~k&kzkq )

The general orthogonal-operator expansion technique
is used to expand the density operator p(t) of the system
at a time t in terms of the O(4) tensor set, i.e.,

p(t)=g g (Tq" (j;k&kz) ) T "(j;k&kz),
k, q k), kz

with the expansion coefficients, the O(4) multipoles, given
by

[k)] [kz]where j =(n —1)/2, and T ' (j) and T ' (j) are mul-
tipole operators defined in the corresponding 03 space.
These operators form an orthogonal set and satisfy the
orthogonal relation

Tr[T(" l(j;k', kz) T("l(j;k,k )z]=5„, 5„,„5„„5
1 1 2 2

( T " (j 'k k ) ), =Tr[P(t)T " (j k, kz) ] . (9)

The time evolution operator U(t, to) of the system relates

p( t ) and p( to ) through the relation p( t ) = U ( t,

t )p( t ) Ut( t, to ), thus the multipoles ( T(" (j;k
~ kz ) ), at

0 0 y O

a time t relate to multipoles (Tf (j;K,Kz) ), at to, ac-

cording to

( T(" (j;k&kz) ), =Tr[p(t)T "(j;k&kz) ]=Tr[U(t, to)p(to)U (t, to)T "(j;k&kz) ]

(T (j;K&Kz) ), G [(K1Kz)KQto (klkz)kqt]
K, Q K[,Kz

where the perturbation coefficients are given by

G.[(K,Kz)KQto, (k, kz)kqt]= Tr[U(t, to)T("i(j;K,Kz)U (t, to)T("i(j;k,kz) ] .

Alternatively, the density operator at a time t can be also expanded in terms of the tensor sets of Eq. (3). The pertur-
bation coefficients in this case are obtained by using the transformation of Eq. (6) in Eq. (11);we have

G„[(L'L)to,(I'I)kqt] = g g ((jj )L', (jj )L,K ~(jj )K, , (jj )Kz, K )
K, , Kz k, , kz

X ((jj )I', (jj )l, k ~(jj )k, , (jj)kz, k ) G [(K,Kz)KQto, (k, kz)kqt], {12)

and inversely

G [(K
~ Kz )KQto, ( k

&
k z )kqt ]= g g ( (jj )L, (jj )L,K

~ (jj )K &, (jj )Kz, K )
L', L I', I

X ( (jj )I', (jj )I, k
~ (jj )k, , (jj)kz, k )G„[(L'L)KQto, (l'I )kqt] . (13)
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Calculation of the coefficient G„[(L'L)KQto, (/'l)kqt]
proceeds in three steps. Firstly, we compute the time
evolution matrix U(t, to) using a model described in Sec.
III, then evaluate the coefficients in the O(4) representa-
tion using Eq. (11) and finally transform to the L repre-
sentation using Eq. (12).

III. PHYSICAL MODEL

U, (t, to)= exp[ice(t, to)n&. J&],

U2(t, to) = exp[ice(t, to)n2. J2],

co(t, to)=[(3nZp/2ZT) +(bU) ]' JEo R (r)

(17)

(18)

H'=( ZFz+bv—L )/R (r), (14)

The physical process is illustrated in Fig. 1. An in-
cident ion excites the target hydrogen so that for t & to
the atom is in the nth level. After excitation the electron
cloud evolves under the inhuence of the field of the out-
going ion acting on the target. The evolution is described
by time-dependent state multipoles; in our discussion we
neglect the much less likely transitions among states of
different principal quantum number n. The projectile is
treated as a classical particle moving with a definite ve-
locity and impact parameter b in the central field of the
target. We choose the plane of orbit as the LZ plane, and
the rotating internuclear axis as the quantization axis of
the hydrogen wave functions. ' Thus, in the dipole ap-
proximation, the perturbation Hamiltonian is written as

n, =(3nZpz/2ZT bv—y)/[(3nZp/2ZT ) +(bu ) ]'~

(20)

and

n2=(3nZ&z/2ZT+buy)/[(3nZp/2ZT) +(bu) ]

(21)

U, (t, to)=exp[ia(t, to)J&, ]exp[iP(t, to)J, ]

X exp[ i a( t, to )J„], (22)

The operators U&(t, to) and U2(t, to) in Eqs. (17) and
(18) are written in the Euler angle representation accord-
ing to Eqs. (12.11.8) —(12.11.11) of Ref. 13,

where Zp is the charge of the projectile. In obtaining Eq.
(14), we have used the conservation of angular momen-
tum of the projectile, that is, R '(t)0(t) = bv. Subst—itut-
ing Eqs. (1) and (2) into Eq. (14) we have for the model
Hamiltonian the result

H' = [( —3nZpz/2Zz + bv y ).J,

+(3nZpz/2Z&+bvy) J2]/R (t) .

The interaction Hamiltonian H& in the interaction pic-
ture equals H'. Furthermore, J& and J2 commutate with
the unperturbed Hamiltonian. Thus we have the time
evolution operator in the interaction picture,

U(t, to ) = exp[ice(t, to )n, .J, ]exp[ —ice( t, to )ni.Jz]

U2(t, to)=exp[ —ia(t, ip)Jp ]exp[iP(r rp)J2&]

X exp[ i a( t, to )Jz,—],
with

—1 sin( co /2 )
t, to = —2sin

[1+(3nZ~/2ZTbu) ]'

and

—1 sin( co /2 )a t, to =sin
c os(P /2)[1 +(3nZ&/2ZTbu)2]'~2

(23)

(24)

(25)

where

:U/( rQr)U2(r rQ) (16)
Since 1/R ( t ) = —0( t ) /bu, we have thatf, =[0(t)—0(t ))o/bu .

Eo R (r)
(26)

The quantity 0(t) is determined by the particle trajectory.
For the Coulomb potential V(R)=ZpZr/R (t) the angle
0(t) is easily calculated. ' When to corresponds to the
distance of closest approach, this yields

Vp

co=[1+(3nZp/2ZTbv) ]'

7T 1
X ——sin

2 [1+(2b+/ZTZ ) ]' (27)

H (n)

FICx. 1. Classical description of collision process.

=Z
For energies of the order of 1 keV, Z~ZT —1, and impact
parameters of order of 1 a.u. the trajectory closely ap-
proximates a straight line so that the sin ' term above is
negligible.

With the time evolution matrix fully determined in this
model it is now possible to compute the perturbation
coeKcients of Eqs. (11) and (12) in closed form. This is
done in Sec. III.
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IV. CALCULATION OF THE PERTURBATION
COEFFICIENTS

A. General case

It is seen that the time evolution operator (16) is just a
rotation in 03XO, space with U, (t, to) and U2(t, to)

operating on different 03 spaces. Thus the O(4) scheme
affords a simple means to compute the perturbation
coefficients for our physical problem using standard an-
gular momentum algebra. Substituting Eqs. (4) and (16)
into Eq. (11), we readily obtain the perturbation
coefficients in the O(4) scheme,

G [(K,K~)Kgto, (k, kz)kqt]

k fiK k g g &KigiK2Q& lKiK2KQ & &KiQiK2Q2 lKiK2kq &

Q', , Q' Q& Q2

(K) ) (K~)XD, ' (a,P, a)D, '
(
—a, P, —a) (28)

=&~,k, &~,k, X X DM M«& &)
K' M', M

'&K, Q, K2Q2IK, K,KQ &&K, giK2 —g2IKiK K'M
&

Q', , Q' Q& Q2

X &Ki Q'iKpg,'lKi K2kq & &Ki 0'iK2 Q2lKiK2K M (29)

and

G, [(k, k2 )kqto, (K, K~ )Kgt ]

=( —1)~ ~G, [(K,Kz)Kgto, (k, kz)kqt] . (31)

When k, =k z, Eq. (30) restricts the perturbation
coefficients with K+k even to be real, and those for
K +k odd to be imaginary.

Our results are quite general and apply to situations,
e.g. , triple coincidence geometries which lack even a
plane of symmetry. When there is a plane of symmetry,
taken here to be the XZ plane, this symmetry and Hermi-
ticity of the density matrix implies relation among the
state multipoles, '' but no simplification of the pertur-
bation coefficients follow this higher symmetry. Alterna-
tively, when there is cylindrical symmetry some
simplification ensues, which will now be discussed.

B. Cylindrically symmetric system

The Hamiltonian (14) consists of two terms. The term—Z z/pR (t) represents the electric field interaction, and
bUL !R ( t) is a Coriolis term present because we work in
a rotating frame. This term has the same form as a mag-
netic contribution. Both terms are cylindrically sym-
metric, but with respect to z and y axis, respectively.

When the internuclear axis does not rotate for t & to, or

where we have used Eqs. (4.2.7) and (4.3.1) of Edmonds. "
The symmetry of the system yields relations among

different perturbation coefficients. By noting
that D'

M ~(a, g, a)=( —1) DMM(a, P, a) and

DMM (a, P, a)=( —1)' D~.M(a, g, a), one can prove

G, [(K2K, )Kgto, (k2k, )kqt]

=( —1) +"G [(KiK2)Kgto, (k&k2)kqt)*, (30)

approximately, when the incident energy is so low that
the adiabatic approximation holds, the magnetic term
vanishes. In this case only coefficients with g =q are
nonzero and we have

G [(K,K, )Kgt'„(k, k, )kqr]

&KigiKzg2lKiK2KQ &

Q) Qp

X &K, Q, K,g, lK, K,kq &

Xexp[2i (Qi —Q2)a], (32)

which represents the Stark effect. If we have cylindrical
symmetry so that & Tf 1(j;K&Kz) &, =0, then by restrict-

0

ing Q =q =0 and P(t, to) =0, we reduce Eq. (28) to

We notice that the electric term will, in general, also con-
tribute to the conversions among the multipole com-
ponents even with q =0 when the z-axis symmetry is bro-
ken, i.e., when the magnetic term is not negligible.

The other special symmetric case, which occurs when
the incident energy or impact parameter goes to infinity
so that the electric term disappears, namely, a(t, to ) =0,
is also of interest. This gives

G~ [(K
& K~ )Kgr() ( k i k~ )kqr]

~K)k)~K~k~~Kk( ) Qq
(34)

G [(K,K, )KQt, , (k, k, )kqt]

=5+ k 6~ k g exp[i4g, a(t, to)]
Ql

X &K, g, K, —Q, lK, K,K0&

X &K, Q2K, —Q, lK, K~k0& . (33)
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Accordingly, the contribution of the magnetic terms are
confined to transfers among the multipole components of
the same rank. This remain true even when the electric
term does not vanish. alum has discussed this property
of the magnetic type of interaction for sharp angular
momentum states.

In the extreme limiting case a(t, to}=p(t, ro)=0, the
preceding three equations (29), (33), and (34) give identi-
cal results

~(2p) g (det}

&TI' (', »)') =(TI' (j;»}'&=-
cr(2s)+cr(2p)

cr ( 2p }g ~ d et ~

( TP)(n;11) ) = ( TP (j;1 1 ) ) =
o.(2s) +o (2p)

(35e)

(35f}

[(/200~12'q]K~k ~Kg/C2KkQI7

that is, there is no transfer among the multipoles. This is,
of course, reasonable since a(t, to ) =p(t, to ) =0 means
that the outgoing ion and the target do not interact ~

Equations (10) and (11) relate the O(4) multipoles at a
time t to their initial values. The transformation relation
(12) and (13) bridge the two schemes, and enable us to in-
terpret the results in the I, scheme. These equations, to-
gether with Eq. (29), represent the main results of this
work. In Sec. V we apply the theory to n =2 excitation
of hydrogen.

V. APPLICATIQNS

In this section we apply our result to the n =2 level of
atomic hydrogen when there is a singly charged ion in
the final state.

(TI,')(n;10)t) = —(Tt')(j 11) )+—,'(T)')(j;10) )

—,'(TI,'}(j;01)'&=p„ (35g)

( T(') (n;10)t) = —( TI'l(j;11)t)+ —,
' ( TI'l(j; 10)t)

—
—,'(TI' (j;ol) ) =p (35h)

where c(r2s) and o.(2p) are the differential cross sections
for 2s and 2p states. Note that there are only eight in-
dependent L, multipoles for n =2 excitation as a conse-
quence of Hermiticity of the density matrix and reflection
symmetry of the system through the scattering plane.
The others are obtained from the relation
( T$ ()n/ l)t)=( 1)k+~+i+i'(T(k}(p7 l l)+) 5

dition, two non-diagonal elements of the density matrix
have been used to describe coherent 2s-2p states.

A. Relations between multipoles and the Fano-Macek
parameters for n =2

The Fano-Macek orientation and alignment parame-
ters are commonly used to describe the atomic anisotro-
py' so it would be useful for the application of the
theory to present the relations between the state mul-

tipoles and these parameters. From Eq. (4.4.6) of Ref. (6)
and Eq. (8), we obtain the relations for the n =2 levels,

(Tf (n;00}+)=—'(Tj )(j;00) )+ (TP(j ll)t)v'3

B. Perturbation coe%cients for n =2

For n =2 the values of k, and kz in Eq. (4) are either ()
or 1 since j = ( n —I ) /2 =

—,'. The perturbation coeff-
icients in the O(4) scheme are obtained from Eq. (29), and
the coefficients in the I. scheme are then computed using
Eq. (12). In the following, we present the O(4) perturba-
tion coefficients of interest. The others can be retrieved
with the help of Eqs. (30) and (31). At the same time, the
perturbation coefficients in the I. scheme are written as a
linear combination of those of O(4) scheme.

o (2s)
cr (2s) +cr(2p)

(35a)

& TI,')(; ll)+) =
& TI,')(j oo)'& —-'(TI,"(j»)'&v3

1. Transfers among the multipoles of the same rank

(i) For O(4) multipoles, we have

GJ[(00)ooto, (k, k2)kqt]=5k O5k O5k05 o,

cr(2p)
o(2s)+cr(2p)

(35b)
Gz[(ll)ooto, (11)oot]=—,'cos p+ ~sin pcos2a

(36a)

( TI'1(n;11)+ ) = ( TI')(j;10) )1

v'2

+ & TI'}(j;01)'&
V2

io (2p)O, '"
v'6[o (2s)+o (2p)]

j/2

( TP(n;11} ) = ( TP(j;11) ) =

(35c)

~(2p) ~,'""
cr(2s}+cr(2p)

(35d)

+ ( 1 —cosP) + ( 1+cosP) cos4a,

(36b)

(36d)

+(1—cosP)cosa],

(36e)

G [( 10)1oto, ( 10)1 I t] = —sinP exp( ia ),1

v'2

GJ[(10)11to,(10)lit]=—,'(1+cosp) e p(ix2a),

G (11)loto, (11)11t]= —sinp[(1+cosp)cos3a1

2 2



550 LEI XING AND JOSEPH MACEK 39

GJ [(11)20to,(11)21t]

—sinP[( 5 cosP —1 )cosa+ ( 1+cosP)cos3a],
1

2 6

3. Transfers from monopoles to k =2 multipoles

(i) For O(4) multipoles, we have

6, [( 11 )00to, ( 11 )20t]

G [(11)20to,(11)22t]= — sin p(1+ —,
' cos2a),1

(36f)

(36g)

1 —[(1—cosP) —4cos P —2sin Pcos2a6&a

+ ( 1+cosP)cos4a ], (38a)
G [(11)21to,(11)22t]= —,

' sinp(1+ cosp)cosa . (36h)

(ii) For L multipoles, we have

G„[(00)00to,(00)00t]=
—,'(1+3G, [(11)00to,(11)00t]),

(36i)

G„[(00)00to,(11)00t]=—,'(1 —G [(11)00tQ,(11)00t]),

G.[(11)00to,(11)21t]= —sinp(1+cosp)
1

2 2

X (cos3a —cosa),

GJ [(11)00to,(11)22t]= — —sin p sin a,1

3

(ii) For L multipoles, we have

G„[(00)00t,( 11)2qt] = —
—,
' G [(11)00t,(11)2qt]

(38b)

(38c)

G„[(11)00t0,(11)00t]= —,'(3+ G, [(11)00,( 11)00t]),

G„[(10)10to, ( 10)1 1 t] =
—,
' G [( 11 ) 10to, ( 11 ) 1 1 t]

(36k)
(q =0, 1,2) . (38d)

4. Transfers from k =I to k =2 multipoles

G„[(10)1gt0, ( 11 ) 1 1 t]

+ —,
'
G, [(10)10t, , ( 10) 1 1 t]

+ —,'G [(01)10to,(01)lit], (361)

(i) For O(4) multipoles, we have

G [(11)10to,(ll)20t]= —[(1+cosp) sin4a
4&3

—sin Psin2a], (39a)

—[G [(10)lgto, (11)lit]1

2 2

—G, [(01)lgt, (01)lit]] (Q =0, 1), (36m)

G„[(11)2gto,(11)2qt]=G [(11)2gto,(11)2qt]

G~[(11)10to,(11)21t] = —sinp[(1+cosp)sin3a
2&2

—(1—cosP)sina],

(Q =0, 1,2; q=0, 1,2) . (36n)
G [(11)10to,(11)22t]= —sin Psin2a,

2 2

(39b)

(39c)

2. Transfer from the monopoles to k =1 multipoles

(i) For O(4) multipoles, we have

G, [(11)00t,, (11)10t]

G.[(11)1 lto, (11)20t] = — —[(1+3cosp) sinpsina
2 2

+(1+cosP) sin3a],
(39d)

sin2a[sin P+(1+cosP) cos2a],v'6

GJ [( 11 )00to, ( 11 ) 1 1 t]
I —sinP[(1 —3 cosP) sina

2 3

+(1+cosP) sin3a] .

(ii) For L multipoles, we have

G„[(00)00to,(10)lqt] = —GJ [(11)00to,(11)00t]
v'3

2 2

(37a)

(37b)

G [(11)1 lto, (11)21t]= —(1+cosP)cosP sin2a,

G [( 11 ) 1 1 to, ( 11 )22t] = —
( 1+cosP) sinf3 sina .

(ii) For L multipoles, we have

G„[(10)lgto, (11)2qt]= —G [(11)lgto,(11)2qt]
1

J

(Q=0, 1; q=0, 1,2),

(39e)

(39f)

(39g)

G„[(00)00to,( 11)1 1t]:—0,

G„[(11)llto,(11)2qt]—=0 (q =0, 1,2) .
(q =0, 1), (37c)

(37d)

(39h)

6„[(11 )00to, ( 10)1qt] = — G, [( 11 )00to, ( 11 ) 1qt]
1

2 2

(q =0, 1) . (37e)

C. Numerical results

We consider a projectile of charge + 1 passing a hydro-
gen atom in an n =2 level. Three perturbation
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coefficients G.[(k,kz)KQto, (k„k2)kqt] are shown in the
Fig. 2 as a function of the incident energy. The projectile
is chosen to be He and the impact parameter is b =8 a.u.
The existence of nonzero perturbation coefficients indi-
cate that conversions among the multipoles occur.

From Ec(s. (35) it is clear that the orientation mul-
tipoles (TI')](n;11) ) are superposition of two O(4)
multipoles with k] = 1, kz =0 and k] =0 k2 = 1. On the
other hand, the monopoles of 2s and 2p, and the align-
ment multipoles relate only to the O(4) multipoles with
k

&

=k 2
= 1 . Therefore the selection rules k

&

=K ] and
kz =K2 in Eq. (29) strictly prohibit transfers to (from) the
2p orientation (TI' (n;11) ) from (to) the 2s and 2p
monopoles (TIi )(n;00) ) and ( TP(n;11) ), and from
(to) the 2p alignment multipoles ( T~~ )(n;11) ). Further
investigation shows that this limitation is actually a
consequence of symmetry requirements on the collison
system. We have written Eqs. (37d) and (39h) to em-
phasize these restrictions. Nevertheless, the mixed mul-
tipoles (TI' (n;10) ) of 2s —2p and the 2p orientation
(TI')(n;11) ), can transfer each other, with the
coefficients given by Eq. (36m). Since circular polarized
light is related to the orientation of the excited states, '

an obvious result of preceding arguments is that the de-
cay radiation after the projectile goes away is not circular
polarized unless the excited states at time I, to are
oriented or the density matrix connecting the 2s and 2p
states is nonzero.

Alternatively, all multipoles are allowed to transfer to
the 2p alignment states except the orientation multipole;

0.5

V)

43

4
4
h30 p

O

CQ

D
~ -0. 5

41
0

as illustrated by Eqs. (38) and (39). Therefore we expect
that the radiation may be linear polarized as long as the
atom is not in the pure 2p orientation state at beginning.
For instance, we could observe linear polarized light after
collision even when the target is initially in the isotropic
2s state. We shall now investigate this process in more
detail.

Consider that the 2s state is initially excited, that is,
( TI (n;00) ) = 1, all other multipoles are zero at
t = —ao, and a proton goes by at a large impact parame-
ter. The collision excites transitions from the 2s to the 2p
state. This is basically a Born-type excitation for degen-
erate states. Evidently, all preceding formulas are valid
except that we need to set the lower limit of integration
in Eq. (19) to —ao so that Eq. (27) is replaced by
co=[1+(3/bv) ]', where we have used a straight-line
trajectory approximation. The final-state multipoles are
then determined by substituting the co into Eqs. (24} and
(25) and then into (36)—(38). The values of the resulting
seven nonzero independent L multipoles versus incident
energy are plotted in Fig. 3. Since

Tr(p ) =g g ~
( T " (n;l'I ) ) ~

=1,
k, q 1'I

we realize from these curves that the population is
transferred from ~2s ) to ~2p ) partially or totally depend-
ing on the incident energy of the proton. It is somewhat
surprising that at some energies, the isotropic 2s state is
totally transferred into 2p state. At these energies,
( T[ (n;11)t) =1 and

( Tj l(n;00) = ( TI' (n; 11)t)= ( T ' (n; 10)t }=0 .

The shape of the electron cloud is now completely de-
scribed three alignment multipoles ( T (n;11} ). It is
also interesting that at some energies ( TP(n;00) )
takes its original value of unity and all other multipoles
are zero. In other words, the hydrogen atom goes back
to its original 2s state at the end of the collision, as if
nothing happened. Of course, this is an integrated effect
and by no means implies that there is no change in the
states of the hydrogen during the collision process. We
notice that ( Tj (n;00) ) gradually approaches its limit
value of unity as the incident energy increases. Thus the
2p charge cloud disappears in the high-energy ranges. In
fact, there are almost no significant transfers at the ener-
gy of the order of a few hundred keV. This is what we
expected since the magnetic-type interaction, which is the
leading term at high energy, cannot induce the transition
among the multipoles of different ranks.

The polarization

-1
0. 1

ENERGY (kev)
10 10p

P =(11 IJ )/(1(~+It )

=(I+v'3(Tj (n;11)t}/(TP(n;11) ) )

FIG. 2. Energy dependence of the perturbation coef-
ficients: curve a, G„[(10)11to=1, (11)11t=+ ca ]; curve b,
G„[(11)21to=0, (11)22t=+ oo ]; and curve ct G„[(00)00to
=0, (11)20t =+ ca]. The projectile is He+. The impact pa-
rameter is b = 8 a.u. In these and following figures, the logarith-
mic scale for the energy has been used because of the violent os-
cillation of the coefticients in the very-low-energy range.

of the decay radiation is a measurable quantity, and pro-
vides a way to check present theory. The energy depen-
dence of polarization after the proton goes by is depicted
in Fig. 4. Note that here we have included the depolari-
zation effect of the spin-orbit interaction. The fine struc-
ture cannot be ignored during the decay, although it can
be ignored during the process of excitation and multipole
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17, 18conversion.
Knowledge of the state multipoles amounts to the

knowledge of charge cloud distributions. A direct appli-
cation of our calculation is to make qualitative discus-
sions on various features of the charge cloud by using ob-
tained values of the state multipoles. For illustration, in
the remainder of this section, let us And the symmetric
axis of the 2p charge cloud after collision. This parame-
ter has recently been emphasized in connection with

-0. 1

K
O
~ -0.2—

lX

-0.3

V)

C)
0

D

-0.4

0. 1

~ ~ I I ~ ~ I ~ ~ ~ I ~ I I

ENERGY (keV)
ipp

FIG. 4. Energy dependence of the polarization P in the ener-

gy range 0.1 —100 keV. The projectile is H and the impact pa-
rameter is b =—12 a.u.

0. 1

0.5—

~ ~ ~ I ~ I ~ ~ I

10

ENERGY (keV)
10p

19,20 anda ignmen an1' t and orientation in collision excitation,
is of physical significance.

The symmetric axis of the 2p charge cloud is the z' axis
of a new frame in whtch the ~ Ti (1 n ' l l }+) vanish. '

This new frame can be obtained through a rotation about
the y axis of the system. Considering the rotation proper-
ty of the state multipoles, the angle P between t e z' at
the z axis is found to be

2(TI 1(n;ll) )

&3/2(TI) )(n;11) ) —( TP(n;11) )

(40)

O
CL p

40

20

-0.5

0. 1

~ I S I ~ ~ I ~ ~ I ~ I I I

1p

ENERGY (keV)
1pp

FIG. 3. Values of the state multipoles:
curve a, (TP(n;00) ); curve b, ( TP(n; ll) ); curve c,

'(T('1( ' 10) ); curve d, i '(TI')(n;10)t); curve e,
(TP(n;11) ); curve f, (TI 1(n;11) ); and curve g, (
11) ) after the proton goes by in the energy ranges 0. 1 —100
keV. The target hydrogen is supposed to be initially in the pure
2s state. The impact parameter is b = 12 a.u.

o. i 1 10
ENERGY (kev)

100

FIG. 5. Change of the angle between the direction of the
symmetric axis of the 2p charge cloud and the beam direction as
a function of the incident energy. The projectile is H+ and the
impact parameter is b = 12 a.u.
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This angle is also the angle between the direction of the
symmetric axis of the 2p charge cloud and the incident
direction of the beam as t ~ + ~ since the rotating frame
xyz which we have been using coincides with the collision
frame XYZ as time goes to infinity in the straight-line ap-
proximation. The changes of the angle P versus the in-
cident energy is plotted in the Fig. 5. It should be point-
ed out that there actually exist two symmetric axes for
the 2p charge cloud which correspond to P and P+m. /2,
respectively. These two axes plus the y axis of the system
constitute three principal axes of the "ellipsoid of align-

& &21, 22

VI. SUMMARY

The calculation procedure used here is based on the
orthogonal-operator expansion of the density operator
and the choice of an appropriate orthogonal-operator
set. Rather than attempting to obtain
G„[(L'L)KQto, (l'l)kqt] for n excitation of hydrogen in
the I representation, we first obtained the coefficients
G [(K&Kz)KQt o(k, , k )2kqt], namely, Eq. (29), in the
O(4) scheme. Our transformation formula (12) makes it
possible to express G„[(L'L)KQto, (l'l)kqt] in terms of
G, [(K,Kz)KKQto, (k, kz)kqt] and to interpret the results
in the I, scheme.

The general formula (29) has been applied to n =2 ex-

citation. Two salient features are worth emphasizing
here. First, the isotropic 2s state can be totally or partial-
ly changed into 2p isotropic and alignment states under
the inAuence of outgoing ion, and the transfers are more
notable in the low-energy ranges. The transfer to a
specific multipole from 2s monopole (T[ (n;00) ) has
been found to oscillate with energy and can be over 50%
at some energies. Second, the 2p orientation multipole
(T(' (n;11) ) can be obtained only when the hydrogen
is initially excited to the states which contain components
of the first rank state multipoles ( Tq

'
( n; L 'L ) ) .

Transfers to this multipole from the monopole and align-
ment multipoles are forbidden.

Our discussion is presented in the context of the col-
lision process with He+ and H+ projectiles, but the ap-
proach is clearly of great generality. Similar phenomena
should also occur for other projectiles.
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