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Comment on "Squeezing and frequency jump of a harmonic oscillator"
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The relevance of the conclusions of a paper by Fan and Zaidi [Phys. Rev. A 37, 2985 (1988)] con-
cerning the possibility of generating squeezed states of a harmonic oscillator by sudden change of its
frequency is analyzed.

In a recent paper' (hereafter referred to as paper I) the
results of our previous work were criticized. There we
showed that during a sudden frequency change of a quan-
turn osci11ator it mav become squeezed.

In Ref. 2 toe normally ordered characteristic function
of a quantum oscillator was found after a change of the
oscillator frequency for the case when before the frequen-
cy jump the oscillator was in a state corresponding to a
superposition of a coherent signal with equilibrium
thermal noise. The variances of the Hermitian field
quadratures were evaluated and the effect of thermal fluc-
tuations on squeezing was discussed. It was shown that
at temperatures T =0 any sudden change of the oscillator
frequency leads to squeezing. The considerations of Ref.
3 confirm this result. Graham discussed the possibility
of generating squeezed states from coherent states by
external changes of the oscillator frequency and explored
two limiting cases of an adiabatic and a sudden change.
He found that only the latter results in squeezing, while
in the former case symmetrical uncertainties of the field
quadratures turn out to be adiabatic invariants.

On the other hand, the authors of paper I state that the
suddenness of the frequency change is unessential to
squeezing and also that the results of our paper on this
subject are based on an incorrect interpretation of the
squeezing transformation. We cannot agree with such a
statement and the purpose of the present Comment is to
clarify the origin of this discrepancy.

The behavior of a quantum oscillator with time-
dependent frequency and unit mass is described by the
Hamiltonian (6=1)

H(t)= —,'P + —,'co (t)Q

Here Q and P are the coordinate and momentum opera-
tors. The corresponding evolution operator in the
Schrodinger picture satisfies the integral equation

(2)

ing Hamiltonian is

H(t) = ,'P + —,'[—co',+e(t)(co —co2)]Q2, (3)

where e(t) is 1 at t &0 and 0 at t &0. From (3) we have
the following Heisenberg equations of motion:

dQ
dt

dP = —coQ, t&0 (4)

d dP
dt ' dt

=P, = —co2Q, t &0 .

To solve these equations we need a condition for t =0.
The Heisenberg operators Q(tz) and Q(t, ) are connected
(t, &t, ):

Q(t, )=U(t, , t, )Q(t, )Ut(t„t, ) . (6)

From Eqs. (2) and (3) for the operator

U(+0, —0)—= lim U(r, —r), r & 0 (7)

Q( —o)=Q(+0)=Q(0), P( —0)=P(+0)=P(0) .

we have U(+0, —0)=1. This fact for a sudden excita-
tion is well known in quantum mechanics. This is the
principal difference between the problem concerning the
sudden change of the oscillator frequency and the situa-
tion considered in paper I where the squeezing operator
is the evolution operator of the system.

Using (7), from (6) and an analogous expression for the
momentum we can see that the right and left limits of the
coordinate and momentum operators coincide at t =0:

In Ref. 2 we considered a harmonic oscillator having
frequencies cu& at t &0 and co2 at t &0. The correspond- Introducing the creation and annihilation operators
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at= — (ro )' Q
— P, j =1 2

Q2 1
( )

I /2
J

aj = — (coi)' Q+, P, j =1,21 1/2
J Q2 ( )1/2

(9)

a2(t) = — (coq)' Q (0)+
i

P (0) e2 Q2 2
)
1/2

from (4), (5), and (8) we find the solution for the operator
a2(t) at t )0 in the Heisenberg picture,

tainties for the operators Xz and Yz.
Of course, the sudden change of the frequency is an

idealization of the frequency change for small but finite
time. One can consider, for example, a linear frequency
change. For this purpose we substitute B(t) in (3) with a
function t'1(t) =0 at t & —

w, 8(t) =1 at t ) r, and
t'1(t) =

—,'(1+ t /r) at
~

t~ & r. For small enough r the evolu-
tion operator U(r, —r)=1. Using the method described
in Ref. 5 for the value of w for which the sudden change
is a good approximation we have the estimate
r «min(co„coq)/~co) —cog.

If we compare our expression (3) with the Hamiltonian

= [ua, (0)+Ua, (0)]e (10)
H =coa a+ V(t)e ' '(a ) + V*(t)e' "2' a2, (16)

CO~+ CO
~ CO~ CO]u- u —

U =1.
2(co,co )' 2(co co )'

b,X2=(co~/ro, )', AI'~=(co, /co2)' (13)

1
b, Q=, [1+cos(2co~t)]

2(co~ )

CO)+ [1—cos(2co2t ) ]
CO~

( )1/2

[ 1+cos( 2co2t ) ]
2 M2

COp+ [1—cos( 2co2t ) ]

1/2

1/2

(14)

while for t &0 bQ =1/(2co&)' and EP=(co&/2)'
It is clear from Eqs. (13) in accordance with the results

of Ref. 2 that at t )0 the oscillator is in a squeezed
state ' if co2&co&. It is also worth mentioning that at
t &0 the state ~0) is a state with unsymmetrical uncer-

1

Let us suppose now that just before the frequency
jurnp, i.e., at t = —0, the Heisenberg and Schrodinger
states coincided. Considering the simplest case from Ref.
2 when the oscillator at t = —0 was in its ground state
~0) defined by a, ~0)„=0for the variances of the quad-

1 1

ratures
leo f

p
leo. tX =ae '+a e ', j=12

(12)
I;= i(a e—' —a e '), j=12

and also for those of the coordinate and momentum we
findat t )0

used in paper I we can see that in paper I and in (2) com-
pletely different problems were considered. The authors
of paper I first obtain an important and very elegant rep-
resentation of the squeezing operator (see also Ref. 9).
Secondly, they postulate that this operator is the evolu-
tion operator of their system, and thirdly, they find a
Hamiltonian which satisfies this assumption. We think
that in the case of a sudden change of the oscillator fre-
quency their second step is not justified.

Unfortunately, the authors of paper I gave no example
of a physical process which could be described by the
Hamiltonian (16). We will try to do that: this Hamiltoni-
an describes a degenerate parametric amplifier or oscilla-
tor, with time-dependent coupling constant V(t). With
this example we do not want to exclude the fact that the
Hamiltonian (16) can describe a quantum oscillator with
a time-dependent frequency if some canonical transfor-
mation' and rescaling of the time variable is carried out.

Regarding our Hamiltonian (3) we gave an example of
a physical process in Ref. 2. This was the Franck-
Condon transition in molecules or crystals during which
the frequency of the vibration changes due to an electron-
ic transition. Here we would like to give another exam-
ple: a very fast change of the stiffness of a usual mechani-
cal oscillator. Let us make a Gedankenexperiment during
which the stiffness of a standard bar detector for gravita-
tional radiation, which can be treated as a harmonic oscil-
lator, ' " changes very quickly. Due to the sudden
change of the frequency the bar will be in a squeezed
state and one can measure the displacement of the oscilla-
tor resulting from the effect of the gravitational radiation
in the quadrature with reduced fluctuations using stra-
tegies proposed by Hollenhorst.
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