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Nuclear polarization contribution to the Lamb shift in heavy atoms
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The energy shift of the 1sl&2 state in 92U due to virtual excitation of nuclear rotational modes is
shown to be a considerable correction for atomic high-precision experiments. In contrast to this,
nuclear polarization effects are of minor importance for Lamb-shift studies in 82Pb.

One of the fascinating aspects of highly ionized atoms
is that their study may provide new sensitive tests of
quantum electrodynamics in strong external fields. For
the analysis of proposed high-precision experiments'
with one-, two-, or three-electron uranium 92 U a precise
knowledge of the electronic spectrum is required. The
inhuence of the finite nuclear size as well as quantum
electrodynamical (QED) radiative corrections such as
vacuum polarization and self-energy effects on the bind-
ing energy of atomic states is well known.

At very high precision the additional energy shift of
E-shell electrons due to nuclear polarization may become
relevant. The interaction with internal nuclear degrees of
freedom has been extensively studied in the context of
rnuonic atoms, ' ' where the resulting energy correc-
tions can be relatively large since binding energies of
muons are of the same order as typical nuclear excitation
energies. Analogous calculations performed in the case
of electronic atoms' ' showed that the predicted energy
shifts are much smaller. However, the inhuence of this
contribution increases when the interaction with low-
lying nuclear rotational modes is taken into account.
One reason is that for heavy elements such as uranium
the electronic transition energies become comparable in
magnitude with nuclear excitation energies.

Our treatment of the energy shift of strongly bound
electrons is based on the introduction of an effective pho-
ton propagator containing nuclear-polarization inser-
tions. The effect of nuclear polarization thus appears as
part of the radiative corrections to the electron energy.
We are particularly concerned with the energy shift of
the ls, &2 state for a 92 U nucleus, which is the focus of
various planed experiments, because it has the highest
practically accessible nuclear charge.

Let us first give a brief description of our formal frame-
work. The nuclear charge is described by the electromag-
netic current

j "„„„(x)=j ",„,(x)+j ~z„,(x),
which consists of a static equilibrium (c number) part j,„,
corresponding to the nucleus in its ground state and a

second quantized, time-dependent part j~z„, characteriz-
ing intrinsic dynamics of the nuclear charge density. The
Dirac current j," interacts with the electromagnetic field

2 "(x)= 2",„,(x)+ 3"„d(x),
where the classical externa1 field A",„, is created by the
static nuclear source j",„,. The total radiation field A"„d is
written as the sum of the free photon field A~&„, and a
fluctuating field A~&„, generated by nuclear-charge Auc-
tuations j~z„,. The interaction between the electron Geld
and internal nuclear degrees of freedom is described by
the interaction Harniltonian

8;„,= f d xj,"(x)A„" (x) .

In the Furry picture (bound-state interaction picture) the
energy shift of a given electron bound state li ) is ex-
pressed by the Tomonaga-Schwinger equation

e '' '=i Texp —i dt '"'t i . 4
a

When performing perturbation expansion one is led to
Feynman diagrams with dressed photon lines represent-
ing an effective photon propagator defined as the time-
ordered product

tn„.(x,x') = &ol T[w„"'"(x)a"."(x')]lo) .

The vacuum expectation value here also implies that the
nucleus is considered to be in its ground state. The
definition (5) can be written as sum of the free photon
propagator D„and a polarization correction

2)„,( , xx)= f d xi f d x2D„(x —x, )

XII ~(x„x )Dts (x~ —x'),
which defines the (reducible) nuclear polarization tensor
H ~. One easily verifies that the polarization tensor is
given by the current correlation function

(, , )=&ol&[jfl ( )Jfl ( 2)]lo) .

We will neglect here possible distortions of the nuclear
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excitation spectrum due to the presence of the K electron.
Such effects, which occur in muonic atoms in the case of
accidental degeneracies are not expected to be important
here. Then the time evolution of the nuclear current fluc-
tuation is governed by the nuclear Hamiltonian 8„„„.
Since the nuclear Hamiltonian and the current j~&„, are
not known from basic principles, one has to apply a nu-
clear model in order to specify the current and thus the
modification 2)„ofthe photon propagator. For our pur-
pose here we further neglect the contribution of the nu-
clear vector current jz„, because the velocities associated
with nuclear dynamics are mainly nonrelativistic. Ac-
cordingly, we deal here only with the longitudinal com-
ponent $00. We are interested in the contribution to the
first-order self-energy shift of bound electrons ~i ) (see
Fig. 1) which is given by the expression

bE; =ia f d r d r'4, +. (r)

X IdE SF(r, r', E; E)—
X2)00(r, r', E)y,+, (r') .

The electron propagator SF satisfies the equation

(i 8 eA,—„,—m)SF(r, r', t —t') =5(r —r')5(t t'), (9)—

and the wave function 4, is a solution of the Dirac equa-
tion with external field A",„,and energy eigenvalue E, .

In the case of nuclear surface excitations, such as vi-
brational and rotational modes, the deviation of the nu-
clear density from the equilibrium density (here taken as

I

e S,

FIG. 1. Modified self-energy as a nuclear-polarization
correction.

a homogeneously charged sphere with radius R o) is given
by

ps„,(r, t) =p, R,5(R, —r)

X g YLM(r )aLM(t)+ 8(a ), L ~ 2
LM

pa„,(r, t) =p, [—36(R, r)—
+R,5(R, —r)] Yoo(r )aoo(t), L =0

where aLM denotes the multipole operators of the nuclear
surface. The time evolution of the operators ELM is
governed by the collective Hamiltonian

~+
B„n= ,' QBt aLM—aLM+ ,' QCL, aL—MaLM (10)

LM LM

Evaluating the density correlation function II of Eq. (7)
we obtain the effective photon propagator X)00 in
Coulomb gauge

2)oo(r, r', E)= g g (0~ QL~ ~v) ( v~ Qz ~ ~0)F&(r)FL (r') YLM(r ) Yt*,M, (r'),
LML'M' ~ E E&+&1

3
QLM = ZeR, aL,M (12)

where we have introduced the electric multipole opera-
tors

states ~v) =~LMK), whereas one chooses ~v) =LM) in
the case of collective surface vibrations. The propagator
2)00 due to virtual excitation of rotational states thus
takes the form

and v runs over a complete set of collective states. The
form of the propagator (11) is rather model independent.
Only the radial dependence carried by the functions

4m' 7FL(r) = 6(R, r)—R'(2L +1) ' R'+'

2)oo(r, r', E)= g
LAC E —ELZ+ & n

XB(EL;LK~0)FL(r)FL(r')

x Y,M(r) Y,*M(r'

with the reduced transition probabilities

(14)

R
+6(r —R,), , L ~2

T
(13)

1 (0(/Q //LK & I'
B(EL;LK~O)=

2L+ 1
(15)

2% TF (r)= 6(R —r) 1—,L=O
R R0 0

reflect the sharp surface approximation and the fact that
the equilibrium charge density was assumed to be homo-
geneous and spherical.

In the case of pure rotational excitations the electric-
multipole matrix elements have to be evaluated with

Considering collective vibrations one is led to the analo-
gous expression with corresponding transition probabili-
ties B (EL;L~0). Let us note that in the same manner
the propagator can also be derived for giant resonance
excitations. Based on the hydrodynamical model' one
obtains somewhat different radial functions FL (r).

We are now in the position to calculate the energy shift
(8). For the electron propagator we insert an expansion
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TABLE I. Energy shift of the 1s, ~2 state due to various col-
lective excitations in 82'Pb.

TABLE II. Energy shift of the 1s&&2 state due to low-lying
rotational states and due to giant resonances (GR) in 92 U.

Ei (Me V) B(EL;L~O) (e b ) IbEI 'I (meV) transition E (MeV) B(EL;L~0) (e'b ) IbE~, 'I (meV)

Eo = 13.5
E, =13.7
Eq = 12.0
E, =4.086
E3 =2.615

0.199
0.072
0.106
0.060
0.096

.23.58
40.30
36.40

7.89
5.65

+ +
2gs ~0gs
2+ 0+
OR (L=1)
GR (L=2)

0.0411
1.0583

13.0
10.0

2.38
0.025
0.135
0.195

748.4
3.2

189.7
66.9

in terms of eigenfunctions that are solutions of the Dirac
equation in the presence of the static external field of a
homogeneously charged sphere. In particular, for K-shell
electrons the resulting energy shift reads as

&E„=——g B (EL;LK~0)Af „(Et~),
LK, x.

I &» IF, I «& I'
At„(Et,tr ) = Iirl J dE E —E1,+EL

I & Is IFt. Inly & I+g
n n~ E1s +ELK

1s FL E~+ dE E —E —E1s LK

(16)

with j= IirI —,' =L+—,
' for —the intermediate states.

The first two terms in A, „are equivalent to the usual
expression derived in second-order perturbation theory.
They mean that a E-shell electron can be excited into a
higher unoccupied intermediate state by a virtual photon.
The third term has to be understood in the charge-
conjugated, or time-reversed picture, where a K-shell
hole can be demoted into the negative-energy continuum
(Dirac sea) by emission of an eff'ective photon. This vacu-
um contribution was not taken into account in previous
calculations.

To check our formulation we first considered a candi-
date for a nuclear vibrator, namely ~~ Pb, and calculated
the contributions to the energy shift caused by the virtual
excitation of the 2+ state at E2=4.086 MeV and of the
low-lying 3 state at E3 =2.615 MeV. We took experi-
mental values for the corresponding reduced transition
probabilities. ' For completeness we have also calculated
the contribution of a monopole vibrationa1 state
Eo=13.5 MeV and of the dominant giant dipole reso-
nance at E, =13.7 MeV with B(EL) values taken from
Ref. 20. The energy shift due to the giant quadrupole
resonance at Ez -12 MeV again is based on experimental
data obtained recently. ' The results are given in Table I.
They are in a convincing agreement with those obtained
by Baur et al. , ' ' who did not consider octupole (L=3)
states.

Turning now to 92 U, since we are mostly interested in
the effect of low-lying rotational states, we consider the
following E2 transitions: (a) the transition 2+, ~0+,

within the ground-state band (K=O); (b) the transition
from the 2+ state in the y band (K=2) to the 0+, state of
the ground-state band. The corresponding contributions
to the energy shift again calculated with experimental
B (E2) values are displayed in Table II. It also contains
the results of a model calculation for the giant dipole and
giant quadrupole resonances, respectively.

Obviously the energy shift due to virtual excitation of
the 2+ rotational state of the ground-state band is dom-
inant. It is about 2 orders of magnitude larger than the
one due to the E2 transition in 82 Pb. This is not surpris-
ing in view of the large B(E2) values. Again one has to
add the contribution of giant resonances to the total ener-

gy shift. It should also be mentioned that for the types of
collective excitations considered here the results do not
significantly depend on the explicit form of the radial
functions FL. We conclude that our results presented
here will give at least the right order of magnitude for po-
larization effects in 92 U due to virtual excitations of low-

lying rotational states.
To summarize, we have presented an alternative

method to treat nuclear-polarization eff'ects within QED
by means of effective-photon propagators. Explicit ex-
pressions for the modification of the propagator, i.e., the
residual interaction between electrons due to virtual exci-
tation of collective nuclear degrees of freedom have been
presented. We considered the energy shift of the 1s, &z

state and found fair agreement with results obtained ear-
lier for 82 Pb. On the basis of our result we conclude that
in 92 U the polarization effects due to low-lying rotational
modes will not be negligible in experiments with extreme-
ly high precision. Each nuclear excitation contributes
additively to the total energy shift. Thus one expects a
total energy shift for 8z Pb of about 0.1 eV while nuclear
polarization effects in 92 U yield much larger energy
corrections in the order of 1 eV, which should be com-
pared with the total 1s Lamb shift of about 458 eV. The
measurement even at the 1% level of this fundamental
and highly nonperturbative quantity is an important goal
and would provide a striking test of our understanding of
QED in intense Coulomb fields. The fact that uncertain-
ties due to nuclear polarization enters at the 0.2%%uo level
may be considered as of secondary importance. However,
we propose to perform future Lamb-shift experiments,
aiming at utmost precision tests of quantum electro-
dynarnics, with Pb ions rather than with uranium.

We thank G. Baur for helpful discussions.



39 BRIEF REPORTS 5431

H. Gould, Nucl. Instrum. Methods B9, 658 (1985).
C. T. Munger and H. Gould, Phys. Rev. Lett. 57, 2927 (1986).
H. F. Beyer, R. D. Deslattes, F. Folkmann, and R. E. LaVilla,
J. Phys. B 18, 207 (1985).

4P. H. Mokler, Phys. Scr. 36, 715 (1987).
~R. D. Deslattes, R. Schuch, and E. Justiniano, Phys. Rev. A

32, 1911 (1985).
E. S. Marmar, J. E. Rice, E. Kallne, J. Kallne, and R. E. LaVil-

la, Phys. Rev. A 33, 774 (1986).
A. P. Georgiadis, D. Muller, H. -D Strater, J. Gassen, P. von

Brentano, J ~ C. Sens, and A. Pape, Phys. Lett. A 115, 108
(1986).

J. P. Briand, P. Indelicato, M. Tavernier, O. Gorceix, D.
Liesen, H. F. Beyer, B. Liu, A. Warczak, and J. P. Desclaux,
Z. Phys. A 318, 1 (1984).

P. J. Mohr, At. Data Nucl. Data Tables 29, 453 (1983).
W. R. Johnson and G. Soff, At. Data Nucl. Data Tables 33,
405 (1985).
G. Soff and P. J. Mohr, Phys. Rev. A 38, 5066 (1988).
W. Greiner, Z. Phys. 164, 374 (1961).

W. Pieper and W. Greiner, Nucl. Phys. A109, 539 (1968).
' E. Boric and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982).
~~B. Hoffmann, G. Baur, and J. Speth, Z. Phys. A 315, 57 (1984).

B. Hoffmann, G. Baur, and J. Speth, Z. Phys. A 320, 259
(1985).

'7S. S. Schweber, An Introduction to Relatiuistic Quantum Field
Theory (Harper & Row, New York, 1961).

' J. M. Eisenberg and W. Greiner, Nuclear Models (North-
Holland, Amsterdam, 1970)~

' A. M. R. Joye, A. M. Baxter, M. P. Fewell, D. C. Kean, and
R. H. Spear, Phys. Rev. Lett. 38, 807 (1977).
G. A. Rinker and J. Speth, Nucl. Phys. A306, 360 (1978).
J. Barrette, N. Alamanos, F. Auger, B. Fernandez, A. Gilli-
bert, D. J. Horen, J. R. Beene, F. E. Bertrand, R. L. Auble, B.
L. Burks, J. Gomez del Campo, M. L. Halpert, R. O. Sayer,
W. Mittig, Y. Schutz, B. Haas, and J. P. Vivien, Phys. Lett. B
209, 182 (1988).
V. P. Varshney, K. K. Gupta, A. K. Chaubey, and D. K.
Gupta, Can. J. Phys. 60, 1461 (1982)~


