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The diffusion-limited aggregation (DLA) model of cluster growth and aggregation has been ex-
tended to include both a finite and variable diffusion length for the particle’s random walk. The new
model generates a variety of different structures similar in geometry to the DLA model; however,
they lack the fractal scaling indices normally expected from the DLA model. It is postulated that
the DLA and Eden models of cluster growth are both limiting cases of the finite-diffusion-length
model where the diffusion length approaches infinity and zero, respectively.

INTRODUCTION

In recent years considerable effort has been directed to-
wards developing models for growth and aggregation
processes. Two important and useful models which have
received considerable attention are the Eden' and
diffusion-limited aggregation’ ® (DLA) models. Both
models describe nonequilibrium, kinetic depositions in
terms of rate-limited steps where the origin of the rate-
limiting step is assumed to differ in both models. ‘For the
Eden model, the growth of a cluster is assumed to be re-
stricted by the reaction kinetics at the surface of the
growing cluster, while the rate-limiting step for the DLA
model is assumed to be the diffusion of a necessary reac-
tant to the surface of the cluster. Important fractal scal-
ing relationships have been found in both models, i.e., re-
lationships of the form X (N)« NV, where X(N) and N
are structural properties and v=1/d where d is the frac-
tal dimension. In addition to the theoretical significance
of the fractal dimensionality, the concept has been suc-
cessfully applied to a variety of other physical phenome-
na.””!! Until now the Eden and DLA models have been
generally considered as similar, but independent theories.
In this paper we present a Finite-Diffusion-Length (FDL)
model which unifies both models, and shows the Eden
and DLA models to both be limiting cases of the more
general FDL model.

In a generalized diffusion process, a particle initiates an
n-dimensional random walk down a concentration gra-
dient from Cy, to Cy where Cy,, represents the concen-
tration of the particle at r = © and C, is the concentra-
tion at » =0. Ideally, the length of the diffusion zone, i.e.,
the concentration gradient, develops monotonically with
time ¢ according to
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where D is the diffusion constant.!> A diffusion length L
can be defined from Eq. (1) by taking the distance at
which the concentration is 99% that of the bulk:
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However, in any real diffusion process L is limited in
its spatial expansion by randomizing thermal motion and
convection, etc.'>!3 After a sufficient time, a steady-state
condition develops in which L is virtually constant and
serves to define an isoconcentration surface where the
concentration of particles is essentially equal to that of
the bulk. In a diffusion-based computer model, the iso-
concentration surface represents that surface from which
there is equal probability to start a particle on its random
walk towards the cluster surface. Clusters grown using a
finite, constant, and predefined diffusion length would
more closely represent reality and would extend the al-
ready successful fractal approach of growth and aggrega-
tion to encompass a broader spectrum of physical events.
It is from this concept that the FDL model was
developed. Recent attempts to mimic diffusion-length
effects have been reported by Voss et al.!*!® in which a
modified DLA cluster grows in a ‘“sea” of randomly
walking particles. By altering the particle density in the
“sea,” varying cluster topologies were obtained. Howev-
er, the computer logistics of the model still mimic the
time-dependent diffusion length of Eq. (1). In FDL the
diffusion-length effects are addressed in a considerably
simplified computer algorithm which relates the relevant
physical properties of the structures to a single indepen-
dent variable, L [which can also be a function of time as
in Eq. (2)]. In addition, the simplification of the model
provides a framework in which DLA and Eden models of
cluster growth are easily unified.

RESULTS AND DISCUSSION

In the FDL model presented here, a finite and constant
diffusion length is used to grow planar structures at vari-
ous magnitudes of L. A planar configuration was used
here, rather than the radial geometries normally used in
the DLA and Eden models, because of the applicability
of the planar geometry to additional physical phenome-
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na.!® Definition of the FDL model proceeds as a series of
computer simulations which were performed on a period-
ic, square lattice with an initial surface of 100 lattice
points, i.e., the lattice was arranged in a modulo 100,
“wraparound” configuration. Simulations proceeded by
releasing a particle at a distance of L lattice sites from the
surface. The release site of the particle was chosen at
random from the locus of all points L lattice units away
from the surface. The particle was then allowed to
diffuse towards the interface with an on-lattice two-
dimensional random walk. When the particle contacted
an active site, defined here as an on-lattice site immedi-
ately adjacent to the interface, the walk was terminated,
the particle was added to the growing structure at the hit
site, and the structure’s surface was extended by one lat-
tice unit. The process continued with the release of
another particle from the newly generated locus of
release points L lattice units from the new surface. This
process was continued until N particles had been added.
N was typically between 10° and 10* particles. Particles
which diffused a distance of more than 2L lattice units
away from the interface were aborted and a new particle
started. Figure 1 shows a typical computer structure
generated from the FDL model using a diffusion length
of ten lattice units. The line located ten lattice units
above the top of the structure is the diffusion surface and
represents the locus of points from which the next parti-
cle would initiate its random walk. The conformal shape
of the diffusion surface in relationship to the structure’s
interface demonstrates the dynamic interplay between the
diffusion length and the growing structure.

The scaling relationships of the FDL-generated struc-
tures are best demonstrated in the linear density, p,
versus distance, r, graphs such as the one shown in Fig. 2.
Although Fig. 2 presents data for only one L =10 struc-
ture, all FDL structures showed similar behavior. It is
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FIG. 1. Typical computer simulation showing a structure
formed by the FDL model. The line at the top of the structure
is the diffusion surface from which the next diffusing particle
would start its random walk. This structure was generated us-
ing a diffusion length L of ten lattice units.
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FIG. 2. Typical plot of density vs distance for a FDL struc-
ture produced with an L value of ten lattice units. The density
is presented as the fractional area occupied by branches between
r and r +1 lattice units and plotted as a three-point moving
average.

clear that, except for the interfacial regions, at » =0 and
within the active region, the density remains constant
throughout the entire thickness of the structure. Using
the standard scaling relationship for a constant density
structure of 100 lattice points wide and containing a total
of N particles gives

N’=100pr , 3)

where v =1. An integer value of v implies that a nonfrac-
tal scaling relationship exists between the density and N
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FIG. 3. log-logo plot of the average thickness of the FDL
structures, r, vs the number of particles added to the structures,
N. Plots are shown for L =2, 3, 5, 10, and 20 using averages of
between three and six samples. All plots were linear with slopes
equal to 1, except for small r where interfacial effects were
present. Samples with L =20 were performed on a 200-lattice
unit base.
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with 100p as the constant of proportionality. Figure 3
demonstrates the validity of Eq. (3) by graphing the
log,o-log,o plots of a selected number of FDL structures
with L values ranging from 2 to 20. All demonstrate the
functionality of Eq. (3) with slopes v equal to 1.01+0.09
and extrapolated N intercepts equal to 100 times the frac-
tional density of the FDL structures. The structures gen-
erated by the FDL model are clearly nonfractal despite
the similarity in appearance to DLA structures [compare
Figs. 1 and 6(a)], and the similarity in the computer algo-
rithms. Other common DLA scaling relationships were
also investigated including density-density correlations,
branch or cluster height, etc., but all lacked the expected
fractal dimensionality. Although none of the standard
DLA fractal scaling relationships applied to FDL struc-
tures, one interesting fractal scaling relationship between
the diffusion length and density did appear. Shown in
Fig. 4 is the log,y-log,y plot of density versus diffusion
length. It is clear, at least for the decade change in L
shown here, that the graph is linear with a slope of
—0.461. A correlation factor of 0.91 indicates that al-
though a strong correlation exists, the error and small
statistical sampling is sufficient to suggest that a trivial
(nonfractal) scaling exponent of —0.5 might also be possi-
ble.

Complete details of the FDL growth characteristics are
given elsewhere.!® However, it is easy to envision the
processes responsible for the constant density structures
shown in Figs. 1 and 2. In FDL a dynamic “feedback”
exists between the conformal diffusion surface and the
growing cluster which favors a continual radial expansion
of each branch until it fills up all of the available space.
However, when two branches begin to approach each
another at a distance of about 2L, the diffusion surfaces
begin to “pinch off”” and the branches cease to grow fur-
ther. This implies that one would expect the average in-
terbranch distance to be on the order of 2L for FDL
structures. This assumption is verified in Table I, where
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FIG. 4. log o-log;o plot showing the relationship between the
density of FDL structures and the value of the diffusion length
from which they were formed. A least-squares line is shown
drawn through the data points with a correlation coefficient of
0.91.
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TABLE 1. Average interbranch distance for a number of
computer simulations with diffusion lengths between 2 and 20.
The mean interbranch distance is given as the average of 13-20
samples and the error is given as the standard deviation from
the mean.

Diffuse length Mean interbranch

L 2L distance
2 4 3.9+2.1
3 6 6.5+3.7
5 10 9.8+3.8

10 20 16.5+5.4

20 40 39.4+9.5

the average interbranch distances are shown to correlate
well with twice the diffusion length.

In addition to the bulk scaling characteristics, the ac-
tive region of DLA and Eden clusters are known to pos-
sess different scaling relationships.16 In fact, Meakin
et al. have shown that the surfaces of fractal and non-
fractal objects possess scaling relationships which can be
described as an infinite hierarchy of critical exponents,""17
while Plischke and Racz have performed Monte Carlo
calculations for the DLA and Eden interfaces and con-
cluded that the interfacial “hit” distribution of sites is
Gaussian.'*!® From Fig. 2 one can see that the active re-
gion of the FDL is clearly different than that of the bulk
structure, and functional relationships within the active
region are important. However, because of the small size
of the computer sampling and lattice, it was not possible
to determine a definitive functional relationship for the
active region and continued work in this area is needed.
However, the widths of the active region are easily ob-
tained from the linear density versus distance graphs
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FIG. 5. Relationship between the diffusion length L and the
width of the active region of FDL structures formed at various
values of L. The width of the active region was taken as the
number of lattice units between the largest occupied value of r
and the point at which the density became constant. Samples
with L =15 and 20 were performed on a 200-lattice unit base.
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such as the one shown in Fig. 2. These active region
widths are shown graphed in Fig. 5 as a function of the
diffusion length from which the structure was generated.
Figure 5 shows a minimum in the active region width at
L approximately equal to 4. Interestingly, at higher-L
values the graph approaches linearity with a slope of 2,
suggesting that the width of the active region follows the
same functional relationship as that found for the average
interbranch distance, i.e., the active region is equal to 2L.

Figure 6 shows a sequence of FDL structures ‘“grown”
using values of L ranging between 10 and 2. In addition,
typical DLA and Eden structures are reproduced at the
beginning and end, respectively, for comparison.>?° The
DLA and Eden structures were intentionally placed in
their positions relative to the FDL sequence to emphasize
their proposed relationship within the FDL model. The
single variable L serves to define the topological transi-
tion between the various FDL structures, and it is noted
that as L decreases, the FDL simulations progress from
structures closely resembling DLA morphologies to more
dense and compact structures reminiscent of an Eden
growth process. From this gross comparison, it is tempt-
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ing to postulate that the DLA and Eden models are limit-
ing cases of the more general FDL model as L ap-
proaches the limiting values of infinity and zero, respec-
tively.

A more convincing argument for the unification of the
DLA and Eden growth models within FDL comes from
the equivalence between the computer algorithms used to
generate DLA or Eden structures with the algorithms of
FDL at L =« or 0, respectively, i.e., identical computer
algorithms will generate identical structures. In compar-
ing DLA with FDL the only difference in the models is
the choice of initial conditions as to where to start the
particle’s random walk. The actual random walk of the
particle, definition of active sites, and ‘‘sticking” proba-
bilities are all defined identically in both models. In FDL
the particle begins its random walk from a dynamic
diffusion surface that is finite and conformal to the inter-
face of the growing structure. As L tends toward infinity,
the diffusion surface tends towards a straight, parallel
line with equally straight and parallel isoconcentration
surfaces all the way up to distances approaching the
structure’s interface. Hence a FDL structure at L =

4 (b) (C)
(a) r‘
— R
£ | 7 2
5 B
8 8
8 e 8
: i @
N 300 LATTICE UNITS e b 5L F o F 1. N(AEES
L O O T
L=10 100 lattice units L=5 100 lattice units
)
I |
— |
— !
o -
F -k
=] k] ]
et £
s g |
2 2 | -
— EDEN 2D
M=10000
L=3 100 lattice units L=2 100 lattice units 140 LATTICE UNITS

FIG. 6. Figures showing the structural topology obtained in the FDL model for an ordered sequence of L values from 2 to 10.
Also shown with the FDL structures is a DLA structure (a) formed on a similar planar substrate as that used in the FDL model
(reproduced with permission from Ref. 3), and an Eden model cluster (f) produced from a single-point substrate (reproduced with
permission from Ref. 20) for comparison. (a) DLA model. (b) FDL with L =10. (c) FDL with L =5. (d) FDL with L =3. (e) FDL
with L =2. (f) Eden model.
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could be approximated by using a straight diffusion sur-
face which is parallel to the initial surface. In the com-
puter simulation of the DLA model, the initial starting
position for the particle’s random walk is determined by
randomly selecting a lattice position at some arbitrary
distance from the upper bound of the cluster. With an
isotropic random walk, such a choice is tantamount to as-
suming a straight and parallel isoconcentration surface
and, hence, implies an infinite diffusion length. DLA is,
then, best considered as the finite computer approxima-
tion of the unobtainable, FDL, L = oo limit. The physi-
cal density of the L = o, FDL structure can be obtained
from Fig. 4 by extrapolating L to infinity. In the limit
the density of the FDL structure becomes zero, which is
consistent with the density of a DLA cluster in the limit
of large N. In addition, extrapolation of Fig. 5 to L = o0,
with the assumption of the previously discussed 2L rela-
tionship, indicates that the active region or penetration
depth of a FDL structure also tends to infinity, which is
consistent with that found for DLA.'®!” The DLA
structure, then, can best be characterized as the active re-
gion of a partially formed FDL structure when L is equal
to infinity. For finitely formed structures as are normally
found in real physical examples, the normal DLA mor-
phologies are applicable to structures whose thickness is
much less than the diffusion length (or whose diffusion
length is a function of time).

At the other end of the spectrum, the Eden growth
model represents the limiting case of the FDL model for
when L becomes vanishingly small. Ignoring for the mo-
ment the discrete nature of the growth lattice, a zero
diffusion length corresponds to a conformal diffusion sur-
face coincident with the cluster surface. Random selec-
tion of any point along the diffusion surface would au-
tomatically place the particle at an active site and
diffusion, i.e., the random walk, would not occur. Such a
condition is exactly the definition of the computer
mechanics for a reaction controlled growth at the surface
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of the cluster, i.e., the Eden growth model, indicating
that the Eden and FDL are equivalent structures at the
limit of L =0. The graph of Fig. 5 shows the width of
the active region in FDL increases as L approaches zero,
consistent with the expected surface scaling properties of
the Eden model as N becomes increasingly large. In real-
ity, however, a FDL zero diffusion length implies that the
lattice spacing also tends towards zero. If a finite,
nonzero lattice spacing is considered, a condition that
more closely resembles nature, then a value of one lattice
unit would represent the smallest value of L obtainable.
Extrapolation of L to one lattice unit in the graph of Fig.
4 (log,oL =0) shows that the density for a structure gen-
erated with L =1 is 0.595, in close agreement with the
density of Eden clusters grown on an infinite percolation
network at threshold, 0.593.1:16

SUMMARY

The FDL model of cluster growth represents a realistic
and general representation of physical growth and aggre-
gation phenomena and contains within its framework the
already successful DLA and Eden models as limiting
structures. In addition, the FDL model presents the pos-
sibility that nonfractal objects of constant physical prop-
erties (such as density) may possess an inherent but hid-
den fractal nature in their generation or existence. Cer-
tainly, the density versus distance graphs of Fig. 2 strong-
ly suggest a generalized phase transition between
differing dimensional spaces which could possibly
represent such diverse phenomena as the electron or en-
ergy state distribution at an interface, or the penetration
of electromagnetic radiation into an opaque object.
Clearly, more work is required, particularly on the func-
tional relationships in the active region, before any such
analogies can be regarded seriously. However, the FDL
structures are interesting in their own right and deserve
further attention.
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