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Adhesive hard-sphere colloidal dispersions: Fractal structures
and fractal growth in silica dispersions
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Silica particles coated with octadecyl chains and dispersed in linear alkanes (dodecane and higher
alkanes) show gelation upon cooling. The structure of these gels can be characterized in terms of a
fractal dimension df =2.1. Aggregation and gelation at temperatures just below the cloud point
(the temperature at which phase transition occurs) have been studied by light scattering and are de-
scribed in terms of the finite linear cluster size (cluster radius) ( of the growing fractal. This size is
found to increase linearly with time. The influence on df of quench temperature, volume fraction,
particle size, and solvent type is discussed.

I. INTRODUCTION

In the last few years there has been growing interest in
the field of fractal structures. Since the formulation of
the fractal concept by Mandelbrot' there have been
numerous publications in which random structures of ag-
gregates and gels are described in terms of this concept.
In dendritic growth where a single particle (monomer)
sticks to a central cluster, one can see quite clearly from
photographs that the total mass contained in a spherical
shell diminishes with increasing distance from the center
of the cluster. For a homogeneous sphere, mass is pro-
portional to R . The mass of a fractal cluster contained
in a sphere with radius R is proportional to R, where
df is smaller than 3 in three dimensions. However, the
fractal concept cannot be applied at all length scales in a
collidal cluster. There is usually a lower cutoff length
which is set by the size of the monomeric unit, i.e., mole-
cules or (colloidal) particles. The upper cutoff length is
set by the "average" size of the clusters which may be re-
stricted by the size of the container. Provided upper and
lower cutoff lengths are separated by several orders of
magnitude, the fractal concept can be used for length
scales in between. For small values of df the average
density of a cluster is small. The power-law relation be-
tween mass and length scale (radius) is characteristic for
a fractal cluster. A good example of the scale invariance
characteristic for fractals is found in the study of aggre-
gation of gold sols by Weitz and Huang. It is seen that
the shape of the clusters is not affected by the
magnification factor, i.e., the clusters are scale invariant.

Soon afterwards, models were developed which relate
the fractal morphology to the mechanism by which the
structure is formed. Computer simulations are widely
used to set up and test these models. Usually three main
categories of mechanisms are distinguished.

In the Witten-Sander model or diffusion limited ag-gre-
gation (DLA) the fractal dimension, relating the mass
within a certain radius to this radius [M(r)-r f], is
found to be about 2.52 (Ref. 8) in three dimensions. The
open structure is due to the fact that monomers cannot

enter the interior of the growing fractal since they stick
irreversibly to this structure upon contact. In this model
only a single cluster grows, which is not very realistic.
However, Sinha et aI. studied compacted vapor-phase
aggregates of silica by means of small-angle neutron
scattering. From these experiments they could deduce a
fractal dimension of 2.52 which is close to the value
found for diffusion-limited aggregation.

In cluster-cluster aggregation one allows more than one
cluster to form; growth is due not only to monomer addi-
tion but also to the sticking of the clusters to each other.
One obtains a fractal dimension of 1.75—1.80. This
cluster-cluster aggregation is still diffusion-limited, i.e.,
there is a high sticking probability. The lower fractal di-
mension indicates that this mechanism leads to a much
more open structure. Weitz and Oliveria' performed
transmission electron microscopy measurements on ag-
gregating gold sols and found df =1.75. Almost the
same value (1.77) was found by Aubert and Cannell" who
studied silica under rapid aggregation conditions. These
values are in perfect agreement with the cluster-cluster
model. The relation between cluster radius and time is
found to be'

1+df (1—a) —d]
Ui l

where v; is the velocity of a cluster consisting of i parti-
cles (monomers).

Chemically limited agg-regation (CLA) occurs when
there is a low sticking probability. The origin of the low
sticking probability is often of a chemical nature and
therefore aggregation is said to be chemically limited.
Clusters formed by this mechanism are more dense and
computer simulations show a fractal dimension of 2.11
(Ref. 6). Schaefer et al. ' studied colloidal silica aggre-
gates using both light scattering and x-ray scattering.
From these experiments they obtained a value of
df =2. 1. A value for df =2.08 was found by Aubert and
Cannell" who studied slow aggregation of silica by
changing the pH and by adding salt. Aggregation kinet-
ics has not been studied very much theoretically. Recent-
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ly, however, Ball et al. attempted to model CLA. ' Ex-
periments' '' and theory indicate that cluster radius in-
creases exponentially with time.

Computer simulation can be used to model many other
types of mechanisms. In recent research, models have
been devised in which the sticking conditions are
modified. Meakin and Jullien' studied effects of particle
rearrangement after sticking due to deformation of the
clusters. Reversibility in the aggregation process can also
be obtained by the introduction of a finite lifetime of the
bonds between the particles and by the introduction of a
probability of bond formation p (being smaller than
l). ' '' For these models two time scales are dis-
tinguished. At early times the number of bonds that are
formed is much larger than the number of bonds that are
broken. This stage corresponds to irreversible aggrega-
tion. For long times a dynamic equilibrium is reached
between the formation and breaking of bonds. This stage
corresponds to reversible aggregation and computer
simulation shows that df =2.03+0.05.

As already indicated, there are several ways of deter-
mining the fractal dimension of gels and aggregates.
Weitz and Huang found the fractal dimension from elec-
tron micrographs by determining the mass of the clusters

d
as a function of their radius M(r)-r f. Scattering tech-
niques are often used to characterize fractal structures.
One can use static light scattering' (SLS), small-angle x-
ray scattering, and small-angle neutron scattering. ' A
clear review paper on scattering from fractals has been
written by Martin and Hurd. Turbidity measure-
ments and dynamic light scattering ' have also been
used recently to determine fractal dimensions.

Many authors have reported on aggregation in col-
loidal systems. Weitz and Huang studied the kinetics of
aggregation of gold colloids by adding pyridine and
found a fractal dimension of 1.75. Cluster radius was
found to increase as t for short times and as t for
long times. Schaefer et al. ' studied the aggregation of
charged silica particles in solutions by the addition of
salt. They determine the fractal dimension both by light
and x-ray scattering and found a value of 2.12. Freltoft
et al. ' performed small-angle neutron scattering mea-
surements on silica powders and found a fractal dimen-
sion of 2.61 for the dry samples and 2.34 for the water-
suspended samples. Schaefer and Keefer studied poly-
merization of charged silica under different conditions.
They found different fractal dimensions depending on the
particular preparation method used. Fractal dimensions
ranged from 1.9 to 2.8. Pusey and Rarity" determined
the fractal dimension of polystyrene aggregates by dy-
namic and static light scattering. Aggregation was in-
duced by the addition of salt. They found df =2.08. Us-
ing dynamic light scattering, Martin studied dilute ag-
gregates of colloidal silica and found df =2.05, which is
in agreement with previous results. In his study aggre-
gate growth was found to be exponential with time.

Fractal properties of colloidal aggregates are usually
studied in charge-stabilized systems and aggregation is
induced by the addition of salt or by changing the pH. In
most cases particle interaction is not well controlled and

can be changed only from (highly) repulsive to (highly)
at tractive.

We, on the other hand, studied silica particles coated
with octadecyl chains and dispersed in n-alkanes. In-
teraction between the particles is governed by the free en-
ergy of the mixing of chains and solvent. In these steri-
cally stabilized dispersions attraction between the parti-
cles can be induced by reducing the solvent quality. Sol-
vent quality can be changed by changing the tempera-
ture. Attraction between the particles then leads to
phase separation of the gas-liquid type or to gelation. In-
teraction between the particles in our system can be
tuned by fixing the temperature of the dispersion. At
high temperatures interaction is repulsive but at low tem-
peratures attraction between the particles occurs. One
can observe this change in interaction by measuring the
turbidity as a function of temperature. At a certain tem-
perature called the cloud point, there is an abrupt in-
crease in turbidity (see Appendix A). Here attraction be-
tween the particles is sufficient to induce a phase transi-
tion. For silica dispersions in long n-alkanes (C, 2, C&4,
and C&6) cooling just below the cloud point leads to a
phase separation. Depending on volume fraction and
quench depth the systems show aggregation (sample still
Rows) or gelation (sample is rigid). Also, there is a gradu-
al transition from aggregates to gel if the system is kept
at the quench temperature long enough. Light scattering
from the aggregated system or gel phase is similar; there-
fore, we do not make a sharp distinction between them.
Gelation is reversible, i.e., raising the temperature re-
stores the initial (monomer) situation. No sign of per-
manent clusters is observed in the reheated solution.

Aggregation and gelation in silica dispersions in these
long n-alkanes can thus be achieved by suddenly lowering
the temperature to below the cloud point. In this paper
we are concerned with the structure of these aggregates
and gels. We will study the influence of quench tempera-
ture on df. The influence that particle radius, volume
fraction, and the kind of solvent have on the fractal di-
mension is examined. Aggregation kinetics is studied
too. One would expect aggregation to be diffusion con-
trolled if the solvent quality is so low that already a few
particle collisions lead to sticking, whereas it will be reac-
tion controlled if there is not a strong attraction between
the particles and many collisions are necessary for stick-
ing. Since attraction between the particles can be
influenced by temperature, there may be a crossover be-
tween the two mechanisms going from high to low tem-
peratures. It turns out that at the temperatures studied
the clustering kinetics must be described by a reaction-
limited process. We analyzed the fractal nature of the ag-
gregates and gels using light scattering.

II. THEORETICAL BACKGROUND

A quantitative description of the mass distribution in a
gas or a liquid, as well as inside a cluster, is given by the
Van Hove distribution function G (r) (Ref. 30)

(p(0)p(r) )
P
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where p(r) is a particle density (5) function and p is the
average density. The angular brackets indicate an ensem-
ble average over all positions in the cluster and over all
orientations. G(r) is related to the radial distribution
function g (r) by

G (r) =5(r)+pg (r), (2)

where 5(r) is the "self-correlation. " For a fractal the
definition of G (r) must be treated with caution since one
has to avoid edge effects. It was shown by Martin and
Hurd that scale invariance of the fractal structure im-
plies a particular form of G(r) for these systems. Since
the form of G(r) must be insensitive to a magnification
factor m, we can formally write

G(mr)=m "G(r) .

Taking m = 1/r results in

G(r)=G(1)/r" .

The mass within a fractal structure is related to G (r); '

M(g)= f G(r)d r —f r G(r)dr —g
0 0

where g is the radius of the fractal. Since for fractal
d~structures we have M(g)-g ~, it is clear that 7) =3—d/,

thus

G(r)=G(1)r "-r (3)

Consider a suspension of fractal clusters consisting of
aggregated monomer particles. We assume that the num-
ber density of clusters is so low that there is no correla-
tion between the centers of the clusters. The intensity of
the scattered light per unit volume of the sample R (K)
can be expressed as

S(K)=4m f [G(r)—p] r dr
0 Kr

—4~K f Kr f
0 Kr

X(Kr)'d («)
sin(Kr) 2d—4mp rdr.

0 Kr

Since the last integral vanishes for K&0 it follows that

S(K)= AK

This equation shows scaling of the structure factor and
thus, since P (K)= 1, also of the scattered intensity with
wave vector. Thus measurement of the scattered intensi-
ty as a function of wave vector provides a way of deter-
mining the fractal dimension of the aggregate.

In practice one always deals with a finite cluster radius
g and a finite size of the monomers ro. This causes a
breakdown of the power law for the structure factor as a
function of wave vector at high values of K since length
scales of the order of the size of the monomers are
probed. At small K, length scales of the order of the ra-
dius of the fractal cluster are probed and scaling no
longer holds. Figure 1 shows the different K regions. To
account for the finite size of the clusters Freltoft et al. '

used a scaling function F(r/g) in g(r). The function
F(r/g) must allow for a breakdown of scaling of struc-
ture factor as a function of wave vector beyond a certain
correlation length, i.e., K &g '. They used an exponen-
tial function for F(r/g):

F (r /g) —exp( r lg), —

G(r)=5(r)+
3 &

exp( —r/g) .
B

f

Here, B is a constant. ' Using this form of G (r) gives the
following expression for S(K):

R(K)=zcM P(K)S(K) . (4)

where n is the refractive index of the suspension, A.0 is the
wavelength of the light in vacuum, and 0 is the scattering
angle. The form factor P(K) accounts for the interfer-
ence of light scattered from different parts within the
monomer particle. The structure factor S(K) accounts
for interference of light from the different monomers in-
side the fractal cluster. The light scattering intensity is
proportional to the structure factor S(K) which is the
Fourier transform of G(r) p For an—in.finite fractal
cluster consisting of infinitesimal monomers, Eq. (3)
holds. One finds

~ is an optical constant that does not concern us here, c is
the weight concentration of monomers in the suspension,
and M is the molar mass of the monomers. K is the
wave vector

K = sin(0/2),4~n
Xp

Cl (dI —1) (i (f )/2—S(K)=1+ ( ~ (1+K g )K

X sin[(d& —1)arctan(Kg)],

where C is a constant and I is the gamma function. This—
d~expression redues to DK ~ for Kg)) 1 and Kro && 1, as

it should, since then one probes length scales well within
the fractal region. The expression is not valid for Kr0 ~ 1

because the finite size of the monomers is not taken into
account. Freltoft et al. were able to calculate an analytic
expression for S(K) in this case by assuming g(r)=0,
r ~2r0.

For small particles (radius less than 100 nm, actually
small values of Kro) the Guinier approximation for the
form factor can be used: P(K)=exp( Kro/5), where-
r0 is the optical radius of the particles. Substitution in
Eq. (4) of this expression for the form factor and of Eq.
(7) for the structure factor leads to
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R (K)=exp( K—ro /5) 3 &+ g (1+K g ) sin[(df —1)arctan(K()]

A, =ircM =R (K =0) (monomers), Az=ircM Cl (df —1) . (8)

III. EXPERIMENT

The silica particles were synthesized according to
Stober's method and coated with octadecyl alcohol fol-
lowing the procedure described by van Helden et al.
Experiments were done on three systems labeled SP23
(radius 24 nm), SJ9 (radius 31 nm), and SP45 (radius 33
nm). Characterization results for the particles dispersed
in cyclohexane are given in Table I.

Silica particles were dried from dispersions in cy-
clohexane at 70 C in a nitrogen How. Weighted amounts
of silica were dissolved in weighed amounts of solvent,
i.e., n-dodecane, n-tetradecane, and n-hexadecane. Parti-
cle volume fractions could then be calculated. In Table
II some physical constants for the solvents are given.
Dispersions were filtered through millipore filters with a
pore diameter of 1 pm to remove dust particles. Disper-
sions in n-tetradecane and n-hexadecane were filtered at
50'C since their cloud points are near room temperature.
All dispersions were kept in sealed tubes at 50'C in order
to prevent any aggregation prior to the experiments.

The scattered light intensity from the sample was mea-
sured with a Fica 50 photometer. We used the green

I

mercury line, i.e., 546 nm wavelength. The scattering an-
gles at which data were taken ranged from 15 —140'
(K -0.4X 10 to 3 X 10 m ') usually at 5' intervals.

Temperature was measured in the toluene bath using a
platinum resistance thermometer. The toluene bath was
temperature controlled by a water Bow from a thermostat
(Julabo, ultratemp 2000) through a coil placed in the
bath. Samples were allowed to equilibrate for tempera-
ture and aggregate size before data were taken. It was as-
sumed that equilibration was complete when the scatter-
ing signal was constant. When the temperature was sud-
denly lowered to a few degrees below the cloud point,
equilibration took about 10 min, after which the scatter-
ing signal remained constant for more than 1 day.
Quench experiments in which the time dependence of the
aggregate size was measured were done as follows. Tem-
perature in the toluene bath was set at the quench tem-
perature and allowed to equilibrate. Cuvettes were filled
with samples taken from the tubes which were stored at
50 'C. Cuvet tes were then put into the toluene bath of
the Fica photometer which resulted in a temporary in-
crease in temperature. The temperature was allowed to
stabilize again; this took about 5 min. This point (after 5

min) was taken as the onset time for aggregation.

IV. RESULTS AND DISCUSSION
OF THE FRACTAL DIMENSION

A. Light scattering from system SP45
dispersed in n-dodecane

When cooling a dispersion of silica dispersed in n-
dodecane from room temperature, both the hydrodynam-
ic radius [determined from dynamic light scattering
(DLS)] (Ref. 29) and the radius of gyration (determined
from static light scattering) increase as the cloud point is
approached. If the temperature is decreased below the
cloud point the dispersion becomes very viscous and, if
the temperature is lowered still further, a gel forms. Fig-
ure 2 shows a number of "Guinier" plots (ln[R (K)]
versus K ) as measured on SP45 dispersed in n-dodecane

TABLE I. Characterization results for silica particles
dispersed in cyclohexane.

InK

FIG. 1. Different K regions for structure factor of clusters.

Colloidal system

Electron microscopy
rEM (nm)
Standard deviation (nm)

Dynamic light scattering
rHy (nm)

Mass density

pz (gml ')

SP23

23.5
2.3

32

1.61

SJ9

30.9
4.0

38

1.75

SP45

32.8
4.2

1.63



39 ADHESIVE HARD-SPHERE COLLOIDAL DISPERSIONS: 5403

TABLE II. Physical constants for n-dodecane, n-tetradecane, and n-hexadecane.

Melting point ( C)
Boiling point ('C)
Density at 20 'C (gml ')
Refractive index, nd

n-dodec ane

—9 to —10
215-216

0.748—0.749
1.4251'

n-tetradecane

6—8
252-254

0.762
1.429

n-hexadecane

17.5—18.5
287

0.772M.774
1.434-1.435

'Wavelength equals 546 nm, temperature equals 25 'C (Ref. 35)~

b See Ref. 36.

with a particle volume fraction of 0.012 at different tem-
peratures using SLS. At temperatures below 16'C the
Guinier plot starts to curve steeply at small E. Usually
this is ascribed to particle clusters in the sample and it is
not possible to derive a characteristic particle size from
the slope of the plot. Similar observations are made in
DLS. Near 16 C there is a large increase in the second
cumulant. This cumulant gives the deviation of single ex-
ponential decay of the intensity auto correlation function.
It goes to zero when only one time scale is present (mono-
disperse system).

In Fig. 3 we plot ln[R (K)] versus ln(K) for the same
data as in Fig. 2. Power-law behavior of R (K) and K is
observed at low temperatures. The fractal dimension ob-
tained from the plot at the lowest temperature is
2.08+0.05. The error also includes uncertainty with re-
gard to reproducibility. At higher temperatures the finite
size of the clusters causes a leveling off of the scattering
curves at low wave vectors. This also follows from Fig. 4
where we plotted measurements with smaller decrements
in quench temperature. From many quench experiments
(from room temperature to temperatures below the cloud
point) on the SP45 in n-dodecane sample, we found that
the fractal dimension varied nonsystematically between
1.98 and 2.08. These experiments also include some mea-
surements where samples were quenched in an ice and
water mixture after which light scattering was performed

at 12'C. This was the lowest temperature we could
achieve without condensation forming on the glass of the
toluene bath. The experimental values of df are close to
the value found for chemically limited aggregation. The
curves are similar in shape to the scattering curves ob-
tained by Freltoft et al.

B. DifT'erent solvents

Dispersions of SJ9 in n-dodecane, n-tetradecane, and
n-hexadecane with volume fraction 0.05 were quenched
to about 10 C below the cloud point (see Fig. 13 for
cloud points). All samples showed gelation and the
scattering curves [lnR (K)] versus ln(K) are shown in
Fig. 5. The scattered light intensity for SJ9 samples in
dodecane and tetradecane is very high at low angles.
This is caused by the refractive-index difference between
particles and solvent which increases in the order: n-
hexadecane, n-tetradecane, and n-dodecane. In hexade-
cane the particles are almost index matched and scattered
intensity is small. Data for dodecane and tetradecane
shown in Fig. 5 have been corrected for double scattering
(see Appendix B). The correction slightly changes the in-
tensity levels but not the slope and thus df. Power-law
behavior is observed in all three cases. The fractal di-
mension was determined from these curves using least-
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FICx. 2. Cxuinier plots for SP45 in n-dodecane at different
temperatures. Volume fraction is 0.012. +, T=20.7 C; 4,
T=17.0'C; +, T=15.8 C; 0, T=12.7'C. Curves are shifted
along the Y axis, preserving the sequence in scattering intensi-
ties.

FIG. 3. Power-law scaling of scattering curves for SP45 in
n-dodecane at different temperatures with large temperature de-
crements. Volume fraction is 0.012. +, T =20.7 C;
T = 17.0 C; +, T = 15.8'C; G, T = 12.7 C. The solid line has a
slope 2.08. Curves are shifted along the Y axis, preserving the
sequence in scattering intensities.
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used: 0.01, 0.02, 0.03, and 0.05. The scattering curves
are shown in Fig. 6. Data were taken at scattering angles
~30' and corrected for double scattering. The curves
show power-law behavior, although the scattering curve
for the highest concentration shows a slight bending.
The fractal dimensions that were found from the curves
are 2. 17+0.05 (P =0.01), 2. 14+0.05 (P =0.02),
2. 11+0.05 (/=0. 03) and 1.99+0.05 (/=0. 05). In Fig.
7 we plot the values of df as a function of volume frac-
tion. Although the value of df at the highest concentra-
tion may not be correct, it is seen from these data that
fractal dimension tends to become smaller when volume
fraction is increased.

FIG. 4. Power-law scaling of scattering curves for SP45 in
n-dodecane at different temperatures with small temperature de-
crements. Volume fraction is 0.012. +, T = 15.8 C;
T= 15.5'C; o, T= 15.0'C; Cl, T = 14.6'C; +, T = 14.1'C.
Curves are shifted along the Y axis, preserving the sequence in
scattering intensities.

squares methods. We find df(n-dodecane) =2 07+.0 05, .
df ( n-tetradecane) =2. 14+0.05, and df ( n-hexadecane)
=2. 15+0.05. The slight bending at low K in the SJ9-
dodecane data makes it more difBcult to determine the
fractal dimension, but it is safe to say that the fractal di-
mensions for the three samples are the same within ex-
perimental error. These values for df again are close to
the value found for chemically limited aggregation.

C. Inhuence of volume fraction

We studied the inhuence of particle volume fraction on
aggregation by quenching samples of SP23 dispersed in
n-dodecane to 11.6'C, which is well below the cloud
point of the dispersions. Four volume fractions were

D. Particle size

We can summarize the measurements in n-dodecane as
follows. For SP45 with volume fraction equal to 0.012
we find df =2.05+0.05. The fractal dimension for the
SJ9 sample with volume fraction 0.05 was 2.07+0.05.
From the experiments on SP23 in which we used volume
fractions ranging from 0.01—0.05, a mean value for df can
be deduced equal to 2. 1+0.1. It can thus be concluded
that fractal dimension does not depend on particle radius.
This conclusion may not be general, however, since we
have only studied a limited particle size region. All mea-
surements can be well described with df =2. 1+0.1,
which covers the range that is found in literature for
chemically limited aggregation.

V. RESULTS AND DISCUSSION OF FRACTAL
GROWTH EXPERIMENTS

It has been recognized that knowing the fractal dimen-
sion of a system does not enable one to identify the mech-
anism by which aggregates are formed. Before assuming
that a particular mechanism is involved one should also
study aggregation kinetics. An exception can be made
for aggregation processes based on the Smoluchowski
equation, for which good quantitative descriptions exist

O. -
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p +
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I ~ (K) (m ')

+
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FIG. 5. Influence of solvent: scattering curves for SJ9 in

different alkanes with volume fraction equal to 0.05. n-

dodecane (+), n-tetradecane (Cl), n-hexadecane (+ ). Samples
were quenched well below the cloud point. Curves are shifted
along the Y axis, preserving the sequence in scattering intensi-
ties.

17
In (K) (rn")

FIG. 6. Influence of volume fraction: scattering curves for
SP23 in n-dodecane at 11.6 C. Volume fraction 0.01 (+), 0.02
(U), 0.03 (D), and 0.05 (+ ). Curves are shifted along the Y
axis, preserving the sequence in scattering intensities.
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FIG. 7. Fractal dimension as a function of volume fraction
for SP23 in n-dodecane. Samples were quenched to 11.6'C.
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16 17
In(K) (m')

0

-2
15 16 17

In(K) (m')

FICx. 8. (a) Growth kinetics: scattering curves for SP23 in n-
dodecane as a function of time during aggregation at 16.3'C.
Volume fraction is 0.02. Solid curves are fits using a finite clus-
ter radius and dI =2.1. A, t = 146 min, g'=61 nm, +, t =416.2
min, /=93 nm;, t =663.2 min, /=120 nm; +, t =1461.2
min, )=198 nm). (b) Cxrowth kinetics: scattering curves for
SP45 in n-dodecane as a function of time during aggregation at
15.2 C. Volume fraction is 0.012. Solid curves are fits using a
finite cluster radius and d& =2. 1. , t =30 miu, g'=62 nm; E,
t =90 min, (= 150 um; +, t = 150 min, (=243 nm.

that give unique relations between kinetics and struc-
ture. As described in the Introduction, each mecha-
nism implies a specific relation between aggregate radius
and time. Combination of the fractal dimension and ki-
netics by which the fractal is formed can help one to de-
cide which growth mechanism is appropriate for the ex-
periments at hand. In Sec. IV we found dI =2.1+0.1 in
this section we study the cluster growth.

Aggregation of SP23 dispersed in n-dodecane
(/=0. 02) was studied at 16.3 C. At this temperature ag-
gregation is slow since it is only —1 C below the cloud
point. Scattering curves were measured as a function of
time during one day. Temperature remained constant to
well within 0.1'C. Corrected scattering curves (see Ap-
pendix B) are shown in Fig. 8(a). We analyzed the
scattering curves using the expression for R (K) given in
the theory section, assuming that clusters with fractal di-
mension 2. 1 are formed and that during aggregation only
the size of the clusters changes. The value 2.1 is an aver-
age value obtained from the experiments described above.
The size of the monomers ro was determined from a
Gulnier plot at 25'C. From this experiment we found
ro =34.7 nm, R (K =0)=0.562 m '. The value for
R (K =0) was corrected for the temperature dependence
of the refractive index of the dispersion to find R (K =0)
for the monomers at 16.3'C. This value equals 3, and
was found to be 0.379 m '. In Eq. (8) we also need A~,
which is found as follows. For g

' (K (ro ', Eq. (8) can
be approximated by

R (K)=exp( Kr l5)(A, +—3 K ~) .

By choosing ln(K)=16. 6 (K =1.62X10 m ') we find
the (constant) value of A z

=2.4 X 10' m '. With these
values for ro, dI, A &, and Az, we fitted the scattering
curves using Eq. (8) and taking g as an adjustable param-
eter. The calculated curves describe the data very well,
as can be seen from Fig. 8(a). It should be emphasized
that for one particular system all scattering curves can be
described with a cluster radius g, which is a function of
time. Small deviations occur at high wave vectors, since
here length scales near the order of the monomer size are
probed and the expression for R (K) is no longer valid.
This explanation is supported by the observation that at
high-wave-vector scattering data are the same at all ag-
gregation times. Calculated curves are quite sensitive to
the value of g, especially for small values of this parame-
ter. This is illustrated in Fig. 9, where we have plotted
two calculated curves and the scattering data at t =341.2
mins. gt is 76 nm and gz is 80 nm. It was found that, in
general, g could be determined within 1 nm. In Fig. 10(a)
we plotted cluster radius g as a function of aggregation
time. The plot is linear throughout the time region
which indicates that aggregation kinetics is linear with
time.

Aggregation kinetics of SP45 in n-dodecane
(/=0. 012) was studied at 15.2 C in the same way.
Again we used a fractal dimension equal to 2.1. We
found ro=45 nm, A, =0.195 m ', and A&=8. 5X10'
m '. Figure 8(b) shows calculated and experimental
scattering curves. The calculated scattering curves de-
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FIG. 9. +, scattering data for SP23 in n-dodecane for a
quench at 16.3'C. t =341.2 min. Solid curve is calculated us-

ing /=80 nm; dashed curve is calculated using g'=76 nm.
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scribe the data rather well. Small deviations occur at
high E values where the data are systematically below the
theoretical curves. This is again due to the fact that at
these high K values length scales of the order of the

monomer size are probed and the expression for R (K) no
longer holds. As can be seen from Fig. 10(b), we again
find a linear dependence of aggregate radius on time. It is
thus found that aggregation kinetics is linear for both
SP23 in n-dodecane and SP45 in n-dodecane. Aggrega-
tion can be described for both systems in terms of a grow-
ing fractal cluster with df =2. 1, the radius of which in-
creases linearly with time. We think that this indicates
that cluster growth proceeds via the chemically limited
mechanism.

In theoretical work, relations between the mean cluster
size s(t) and time are used. In the nongelling region
one obtains s(t) —t'. Since s(t)-g f, for our experi-
ments we find that z =2. 1.

Figure 11 shows a plot of cluster radius as a function of
time for aggregation of octadecyl-coated silica dispersed
in n-dodecane at three temperatures. It is emphasized
that aggregation is faster at lower temperatures, which
cannot readily be explained with a diffusion-limited pro-
cess. From the slope of the curves in Fig. 11 a reaction
constant k is calculated defined by

We plot ln(k) versus I/T (Arrhenius plot) in Fig. 12.
From the slope the "transition enthalpy" is calculated:
hH ——1800 kJ mol '. Hence the reaction proceeds
with a high exothermic enthalpy change. Such a behav-
ior is typical for a process involving a "freezing" transi-
tion. We, therefore, suppose that this enthalpy change is
caused by a "solidlike" or "nematiclike" ordering of ei-
ther chains on the surface of the particles or solvent mol-
ecules in "necks" between the particles. The enthalpy of
melting of hexadecane is —50 kJmol . This implies
that per particle about 40 chains or solvent molecules are
freezing or undergo a nematic ordering. When the over-
lap volume is calculated from V„„&, =~A o. /4, then
about 16 chains per two particles are involved. The
cross-sectional area of their overlap volume is vrAo. /2.
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FICx. 10. (a) Cluster radius as a function of time for aggrega-
tion of SP23 in n-dodecane at 16.3'C. Volume fraction is 0.02.
(b) Cluster radius as a function of time for aggregation of SP45
in n-dodecane at 15.2'C. Volume fraction is 0.012.

FICx. 11. Cluster radius as a function of time: +, SP23 in n-

dodecane, P =0.02, T = 16.6 'C; +, SP23 in n dodec-ane

P =0.02, T = 16.3 'C;, SP45 in n-dodecane, P =0.012,
T = 15.2'C.
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FIG. 12. Arrhenius plot for aggregation of octadecyl silica
dispersed in n-dodecane. FIG. 13. Cloud point as a function of carbon number for

dispersions of SJ9 in n-alkanes. Volume fraction is 0.05.

Each chain or solvent molecule has a cross-sectional area
of 20—30 A . Therefore, in this case, about 170 molecules
are involved. The experimentally calculated value is in
between these limits. Although this reflection is by no
means beyond any doubt, it nevertheless explains the or-
der of magnitude we find for hH.

dispersions as a function of temperature. The volume
fraction of particles was 5%%uo. All dispersions show phase
separation upon cooling. Dispersions in alkanes with
carbon number ~ 10 showed phase transition in two fluid
phases with different particle concentration. Dispersions
in alkanes with carbon number ~ 12 showed gelation.

VI. CONCLUSION APPENDIX B

The aggregation of sterically stabilized silica particles
dispersed in linear alkanes can be described by a chemi-
cally limited cluster aggregation model. Using the
description of Freltoft et al. our experiments can be de-
scribed satisfactorily in terms of a fractal cluster dirnen-
sion of 2. 1+0.1 and a linear growth of the clusters with
time. For the exponent z in the relation between mean
fractal size and time, we find a value of 2.1. The observed
growth kinetics suggests nematic ordering of the stabiliz-
ing chains or solvent molecules upon contact of two par-
ticles.

Since aggregation in these systems is reversible, we sys-
tematically probed the influence of alkane solvent, parti-
cle volume fraction, particle size, and quench depth.
None of these parameters, except the volume fraction,
has a systematic influence on the results. The fractal di-
mension seems to decrease with increasing volume frac-
tion.

Here, we briefly discuss the influence of multiple
scattering on the scattering curves. Since scattered inten-
sity at low K values can become very large [R (K)) 10
m '] multiple scattering may influence the scattering
data. On the basis of his calculations on multiple scatter-
ing ' Dhont has written a computer program that uses
an iterative correction procedure to correct scattering
data for double scattering. To use the program,
R (K =0) has to be known; this is usually obtained by ex-
trapolation of R (K) against K . Since our Guinier plots
are very steep for small IC, this extrapolation is diScult.
However, it turned out that correction for double scatter-
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APPENDIX A
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In Fig. 13 we plotted the cloud point (the temperature
at which phase transition occurs) as a function of the
number of carbon atoms in the n-alkane solvent for silica
particles with radius 31 nm (code SJ9). Cloud points
were determined by measurement of the turbidity of the
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FIG. 14. Influence of double scattering on scattering data of
SJ9 in n-dodecane, volume fraction is 0.05, temperature is 14 C.
+, data before correction; +, data after correction.
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ing was not very sensitive to the precise value of
R (K =0). Therefore, although the values of R (E =0)
may not be very accurate, the corrections are reliable. In
Fig. 14 we show two sets of data taken on SJ9 in n-
dodecane (tb=0. 05) at 14 C: one is before correction the
other is after correction. From this figure we see that
correction essentially shifts the data to lower values of
ln[R (K)] and affects the K dependence of R (E) only to a
minor degree. We corrected the scattering data for SP45
in n-dodecane at 12.7'C and found df =2. 10, which is
the same value as found before correction. In the analy-
ses of scattering curves in terms of finite aggregate size,
we always used corrected data.

APPENDIX C

Martin and Ackerson ' have shown that the fractal di-
mension as determined by light scattering may not be the
correct value. This fractal dimension is influenced by
power-law polydispersity, i.e., N(R)-R '. They found
the following relations:

R (E)—'

Especially in the case of gelation where ~ is known to be
larger than 2 there is a large effect of polydispersity on
the power-law behavior of R (E) and IC. Then the fractal
dimension as measured by light scattering is smaller than
the actual fractal dimension of the clusters. In the
nongelation region r is smaller than 2 and polydispersity
of the clusters does not affect the fractal dimension.
From the experiments presented here, we cannot con-
clude that there is a significant difference between the
gelation and the nongelation region. Fractal dimensions
as determined in both regions are the same. The decrease
in df with increasing (b for the quench experiments on
SP23 in n-dodecane can, however, be explained by an in-
crease in polydispersity. The viscosity of the samples in-
creases for higher volume fractions and the sample with
/=0. 05 formed a gel. This may indicate that r increases
with volume fraction, which in turn may lead to lower
apparent fractal dimensions.
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