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The calculation of the scaling properties of multifractal sets is presented as an eigenvalue prob-
lem. The eigenvalue equation unifies the treatment of sets that can be organized on regular trees—
be they complete or incomplete (pruned) trees. In particular, this approach unifies the multifractal
analyses of sets at the borderline of chaos with those of chaotic sets. Phase transitions in the ther-
modynamic formalism of multifractals are identified as a crossing of the largest discrete eigenvalue
with the continuous part of the spectrum of the relevant operator. An analysis of the eigenfunctions
is presented and several examples are solved in detail. Of particular interest is the analysis of inter-
mittent maps, which shows the existence of an infinite-order phase transitions, and of (Smale) in-
complete maps of the interval with finite and infinite rules of pruning of the multifractal trees.

I. INTRODUCTION

Ever since it has been recognized! ~* that fractal ob-
jects appearing in complex and nonlinear systems are not
well characterized by a single scaling exponent, but rath-
er by a spectrum of scaling exponents, there has been an
explosive interest in such objects, which were termed
multifractals.’> Multifractals play a dominant role as
strange attractors of chaotic dynamical systems,’ dissipa-
tion fields of turbulent flows,® in growth patterns,7’8 non-
linear resistor networks,’ etc. The aim of this paper is to
work out in detail a powerful technical tool for the study
of multifractals, a tool that allows calculations of relevant
scaling properties from solutions of appropriate eigenval-
ue equations. For dynamical systems, this tool unifies the
treatment of sets at the borderline of chaos with that of
systems in their chaotic regime.

The objects under study are usually fractals that sup-
port some measure. Thus for example in chaotic dynami-
cal systems one has a limit set—a strange attractor—
which is a fractal set. The natural invariant measure pro-
vides the probability that a typical orbit visits various re-
gions of the attractor.!® Having such “fractal measures”
one can consider a coverage of the set by a partition into
N balls of radii {/;}"_,, each of which having a measure
p;. If one introduces a partition function®*

N
L, qn= 3 pi/17, (1.1

i=1

it can be shown that in the appropriate N — oo limit this
partition function is either zero or infinity depending on
whether 7> 7(g) or 7<7(g). This defines 7(q). It has
been shown further that the function 7(q) furnishes im-
portant information about the scaling properties of frac-
tal measures. In particular a Legendre transform of (g’
yields the f(a) function, a very convenient representa-
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tion of the scaling properties of fractal measures.*

Simple and elegant theories to calculate 7(q) [or, in
fact, its inverse function g (7)], have been developed when
the partition is an equimeasure partition, i.e., where
D;=const= 1/N.1'=13 Such a situation occurs, for exam-
ple, at the accumulation point of period doubling, where
N =2" at the nth generation of refinement of the parti-
tion. Since in practice one calculates g (7) by requiring
that I'(¢g,7)=1, one can rewrite Eq. (1.1) in such a case as

N
ng(r) -7
2 T

i=1

(1.2)

In general, the number of balls in a partition is not in-
creasing with the generations necessarily like 2", but rath-
er like a”, where a can be any real number. Then Eq.
(1.2) turns to

N
anq(r)~ 2 li_’r .
i=1

(1.3)

Inspecting Eq. (1.2) or (1.3) one notices the resem-
blances to the statistical mechanical relation

PRUED P (1.4)

where G (f3) is the free energy (density) multiplied by the
inverse temperature 8. Indeed, this resemblance gave rise
to the development of the thermodynamic formalism of
multifractals.!*!® In particular a9 can be calculated as
the largest eigenvalue of a transfer matrix of an appropri-
ate spin model whose thermodynamics is equivalent to
that of the given fractal measure. Nonanalyticities in
g (1) could be interpreted as phase-transitions.'® ™!

If the partitions are not equimeasure partitions, g (7)
cannot be calculated in this way. Still, the rate of growth
of the sum 3;/,” 7 is an important piece of information on
the multifractal set, shedding light on its geometric re-
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scaling factors. To avoid confusion with q(7) we shall
adopt a different notation for this rate of growth, a nota-

tion that follows standard thermodynamics. We shall
write,
aﬂ
e "B = > 18 . (1.5)

i=1

G (B) might depend on the partition. For point sets or-
ganized on regular trees, we shall use the coverage
defined in Sec. II. We stress that for problems for which
p;=const there is a correspondence 7«—f, G(B)
<>—¢q(—pB)Ina. Otherwise, we are dealing with different
functions, cf. Sec. III D. In fact, for the generating par-
tition of hyperbolic systems, —G (f3) is a quantity called
pressure in the mathematical literature of thermodynam-
ic formalism and has extensively been studied.!*!> The
sum (1.5) has already been investigated for nonhyperbolic
systems, too, and it has been found that G () can have
nonanalyticities (phase transitions) as well.?

The theory developed below is aimed at calculating the
function G (B). It will be seen that one can write eigen-
value equations using an operator whose largest eigenval-
ue is ¢ 9. The eigenfunctions are interesting, and
their analysis will shed light on the free energy G () and
on other eigenvalues in this formalism. The theory
developed below is valid for sets that can be organized on
regular trees—binary, ternary, or higher-order trees.
There is no requirement that the trees be complete; the
number of legs can grow at a rate slower than 2", 3", etc.
In such cases we shall need the rules of pruning of the
trees in order to write a close-form theory.

In Sec. II we derive the eigenvalue equations for com-
plete trees. Section III discusses applications to dynami-
cal systems which are (Smale) complete maps of the inter-
val. In Sec. IV a detailed discussion of the singularities of
the eigenfunctions is performed. It yields an understand-
ing of the space of functions in which the eigenvalue
equations operate, and the nature of the discrete and con-
tinuous components of the spectra. Section V is devoted
to the study of intermittent maps and the interesting
phase transition in their thermodynamic functions. It is
shown that this phase transition is identical to the one
found in the context of mode lockings of quasiperiodic
systems, and that it has an equivalent number theoretic
representation. The eigenvalue equations allow us a solu-
tion of the phase transition, which turns out to be of
infinite order. Section VI treats incomplete maps of the
interval where the pruning of the trees is vital. It is easy
to accomplish a calculation of the thermodynamic func-
tions when the itinerary of the critical point is periodic or
preperiodic. However, when the itinerary is aperiodic
one has to resort to indirect methods. The method sug-
gested in Sec. VI relies on calculations at parameter
values for which the itineraries are periodic, but with in-
creasing length of the period. It is shown that such cal-
culations converge. Section VII is a summary and discus-
sion.

II. EIGENVALUE EQUATIONS

We consider here point-sets that can be organized on
regular trees, such that at the nth level there are exactly
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k" points in the set, with k integer, K =2. Then every
point in the nth generation can be given an address
(e,,€,—1,-..,€), where €; is an index that takes on k
values (0,1, ...,k —1). (See Fig. 1 for a binary tree ex-
ample.) This address can be also converted into a num-
ber t 11,12
n .
— n—
t= 3 k"

j=1

(2.1)

Assume also that there are k given functions F,, that can
be used to find the points of the (n + 1)th generation from
the points of the nth generation

xt(n):_ s (n+1)

(2.2)

Fk-l

(n+1)
> Xikr+(k—1) -

Finally, assume that there exists a unique ‘“‘seed” point
x* of the zeroth generation, from which all points of the
nth generation can be constructed. This choice of gen-

eration through the functions F,, called elsewhere?! “pre-

FIG. 1. An example of a binary tree and the labeling used in
this paper. A transition from generation to generation is associ-
ated with shifting the €;’s as shown. Each point of the set is
obtained from the seed x* as a result of a composition of the
presentation functions F,., in the order shown, i.e.,
x"(e,, ... ,€)=F.o - OFEn(x"’). Note, however, that the x

values obtained in this way need not be ordered along the x axis.
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sentation functions,” has dynamical foundations which
are expounded in Ref. 21. These connections ensure that
the machinery developed in this paper is directly per-
tinent to a large variety of significant dynamical prob-
lems. Given the functions F,, we can write

( .oFen(xt)’

- - )
xM=x"A€,, €51, ...,€)=F,0F o

(2.3)

Where the symbol o denotes a composition, Fo F(x)
=F(F(x)). We shall assume that a partition at the nth
generation is obtained from balls of diameter ['"(7,

€1 -r€1),

I'"(n,€, 15 ... 5€)

=|F oF 0 "oF, (F,(x*)

—F.oF.o - 'OFEH*‘(Fg(x‘))I , 2.4
J
S(n,B)~ - 2)»_‘(13)|F'E’(F€’+l ) S ATUBIF
€, € —1
To proceed, adopt the following notation:
'/)(rﬁ)(FeroFe,+l° )
= 52 A“(ﬁ)lF;r_lweroFE’Ho ) (2.8)
r—1
and
x=F, o--oF oF (x*). 2.9

With this notation the terms shown on the right-hand
side of (2.7) yield precisely ¢'#) (x). Also, written explic-
itly, these terms read

YA (x)= S ATUBIFL(x)PYPAF (%)) . (2.10)

Finally, assuming convergence in the limit » — oo, we can
write the functional eigenvalue equation

ABWB(x)=3 |FL(x)|[Pp'P(F (x)) .

€

(2.1

The number A(B) is an eigenvalue. Defining the linear
operator L via

LPY%(x)= 3 |FL0)|PY(F (x)) ,

€

(2.12)

we realize that A(fB) is the largest eigenvalue of L‘#’. On
the other hand, the statement that for large r, ¥, ., ~¥,
is equivalent to requiring that 3;A~"|I{”|f~1, or [cf. Eq.
(1.5)]

MB)=e~GB (2.13)

where G (fB) is the thermodynamic function associated
with the coverage (2.4). We shall be interested both in
the eigenvalues A(B) and in the eigenfunctions ¥'%(x).
We have to study now the space of functions that we ex-

where n=1,...k—1land §=n—1.

This calculation of a ball diameter relies on the fact
that F, is contractive. Thus distances between nearest
points are naturally obtained by Eq. (2.4) as a conse-
quence of the exponential growth of stability of a compo-
sition of F.’s. For n sufficiently large Eq. (2.4) behaves
asymptotically according to the chain rule as

I'"(n,€, _ 15+ -+ 5 €1)

~|F (F oF, ~+)Fc(FeoF, ~=-) " . (.5

We are now in position to derive the eigenvalue equa-
tion. Consider the sum

SnB= 3 ATUBNI™(n€,_y, ..., ). (2.6)
[/ NN €,y
Using Eq. (2.5) we can estimate S (n,83) as
,er~l(F€r*1F€r+l T )|B-.. . (2'7)

[

pect ¥'#(x) to occupy, and what kind of spectrum A(B)
belongs to it. To this aim we turn now to some concrete
examples.

III. APPLICATIONS TO DYNAMICAL SYSTEMS:
COMPLETE MAPS OF THE INTERVAL

A. Preliminary details

Consider the family of one-hump maps f(x) which
map the interval onto itself (Smale complete maps) and
generate chaotic dynamics. A particular branch of this
family is given by the maps

x'=1—|1—2x|?, 3.1

on the interval [0,1] for z> 1. A set that conforms with
the assumptions of Sec. II is the set of all the preimages
of the critical point x, =1, x*=x_. The two functions
F, and F| which transfer x, into x,, and x,, ,, are the
two inverses of the function f(x). For the family (3.1)
the functions F(x) are

F(x)=1+(e—1)(1—x)!"%, 3.2)
where € takes on the two values 0 and 1.

To write the eigenvalue equation in this case, we have
to find F (x). For the problem at hand these derivatives
can be written as

1
F,="——F——— | 33
¢ fUFJAx)) G-3)
Accordingly, Eq. (2.10) takes on the form
P(x)
ABWEL =3 L4 (3.4)

cef iy F)E
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Once written, this equation is immediately recognized
as a generalization of the Frobenius-Perron equation??
which is obtained in the limit B=1, A(1)=1. Different
extensions of the Frobenius-Perron equation have been
used in the context of transient chaotic behavior.?> For
nonhyperbolic maps Eq. (3.4) has been introduced in Ref.
24 where it was shown that for smooth initial functions
Y, there exists one and only one coefficient A(f3) so that
the series of ¥'? converges (exponentially fast) toward a
finite ¥‘®(x), i.e., both A(B) and ¢ are unique, and
furthermore, that for hyperbolic maps A(B) yields the
spectrum of generalized entropies®® for both permanent
and transient chaos. [We call a map hyperbolic if
1<|f'(x)] < o holds.]

The operator L'® of Eq. (2.12) which is now a special
case of Ruelle’s Frobenius-Perron operator,14 takes on
the form

LPoy)= 3

xef Wy

Q) (3.5)
()18
The largest eigenvalue of it A(B), is connected via Eq.
(2.13) with G (B) of the length scale partition sum (1.5) on
the coverage defined by (2.4). It is to be noted that (2.4)
provides a partial coverage of the attractor which, there-
fore, differs slightly from the coverage of the generating
partition used for one-hump maps.'*!> The thermo-
dynamics for these partitions are, however, expected to
be the same.

Below we shall find it advantageous to consider the
whole spectrum of L'?’ and eigenfunctions belonging to
eigenvalues other than the largest. Before we do that,
however, we examine some numerical solutions of Eq.
(3.4).

B. Numerical solutions

Equation (3.4) can be solved numerically in a straight-
forward way. Since the limit is unique, we can start with
an initial function ¢¥y=1. At all levels 1, is normalized
such that ¢,(X)=1 for some suitable X. We approach
¥P(x) through a sequence of functions ,(x) which
transform according to

Yy i 1(x)= 3 |FL()|PY, (F (x)) /A, , (3.6)
where
A= 3 |IFL)|PY,(F X)) . (3.7

€

The series of A, tends simultaneously to the largest eigen-
value A(B). This transformation is numerically accom-
plished through a recursive function call. In the next sec-
tion we discuss the eigenfunctions #'#(x) themselves.
Here we display the results for A(S) of the procedure de-
scribed above.

Example (i). As a first example we take z =2 in Eq.
(3.1). This parabolic case yields well-known thermo-
dynamics and we present it here as a check.

Figure 2 displays G () versus 3. The analytic solution
in this case reads!> 172
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-2

FIG. 2. G(B) vs B for the quadratic, complete map, as ob-
tained from A4(83) of Eq. (3.7). In the inset the vicinity of the
phase transition is enlarged and the dashed line is the exact
solution for —¢q (—p)log2.

2BIn2 B<—1

= 1(B=1)In2 B> —1 (3.8)

and the numerics agree very well. Convergence is fast ex-
cept near the phase transition point S, = —1 where the
difference between the numerics and (3.8) is still seen (and
is of the order of 4%) even after 16 iterations.

Example (ii). Here we take z =4. There is no analytic
solution for the whole B axis, and the numerical solution
is displayed in Fig. 3. Notice that the left branch appears
to be straight as in Fig. 2, whereas the right branch is
curved. The theory of Sec. IV will verify these numerical
findings.

C. Fair warning about measures

The natural invariant measures of maps of the family
(3.1) all have singularities at x =0, 1 such that for x ~ € or

G(3)

B

FIG. 3. G(B) vs B for the quartic complete map with z =4,

obtained from A4(B). The dashed line, which is simply
(B—1)log2, is put to stress the fact that the right branch is
curving.
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x~1—¢, p'V(x)~e 17172 (cf. Sec. IV). Thus any parti-
tion owns two boxes of size / at the extremes of the inter-
val whose measure P (/) scales as P(l)~1% with a=1/z.
All other boxes have nonsingular measures with a=1. In
the notation of Ref. 4, 7(q) of Eq. (1.1) reads (for z > 1)

qg>z/(z—1)
qg<z/(z—1).

q/z,

g—1, (3.9)

m(q)=qa—f(a)=
As noted before for cases where the partition is an
equimeasure partition, G(B)=—¢q(—fB)In 2. This is
indeed the case for example (i), but is not so for example
(ii). The reason for the different thermodynamics is that
the partition via the preimages of the critical point con-
tains boxes with singularly nonconstant natural measures
at both ends. We reiterate this fact to stress the
difference in general between G (f3) and g (7).

IV. SINGULARITY ANALYSIS
OF THE EIGENFUNCTIONS

The understanding of the thermodynamics and the ei-
genvalue equations calls for some careful examination of
the nature of the eigenfunctions, the spaces of functions
from which they are drawn, and the spectrum of eigen-
values which characterizes the operator (3.5). The in-
sight provided by analyses of the Frobenius-Perron equa-
tion (the 8— 1 limit) cannot be taken over in cases where
use is being made of the fact the ¢'(x) is a normalized
density. Rather, we shall see that in general the singular-
ities of ¥ (x) shed important light on the nature of
classification needed for these eigenfunctions. In addi-
tion, we shall see that eigenvalues different from the larg-
est one own eigenfunctions whose nature reveals aspects
of the thermodynamics in a very useful way.

A. Space of legal eigenfunctions

In this subsection we show that functions that have
different singularities at x =0, 1 belong to a special class,
which gives rise to a continuous component of the spec-
trum. Functions with identical singularities belong to the
discrete spectrum. The distinction will be shown to be
natural since initial functions which are smooth are or-
thogonal to the functions of the special class.

To see this, consider the general family of one-hump
maps on the interval. We shall assume that the max-
imum of the map at x =x_ is of the order z, i.e., near the
maximum f(x)=1—alx —x_|% a >0. In addition, the
slopes of the function at x =0,1 will be denoted by ¢,c;,
respectively, see Fig. 4. It will be seen that the qualitative
analysis depends solely on the order of the maximum and
the values of these slopes. Our analysis is an extension of
what was applied to the Frobenius-Perron equation.?® In
particular, to analyze ¥'#(y) via Eq. (3.4) we shall need
the inverse functions at y —0, 1.

(1) The inverse for y —1: For y —1 the two preimages
are

4.1)

X'=t-a [X-XZ7T N

f(x)

Ci (1-X)

CX

X e e e

0]
X

FIG. 4. A sketch of a typical one-hump map of the interval
(0,1). The theory depends crucially on the order of the max-
imum z and on the slopes c and c;.

The derivatives f'(x) at these points are
|f'Geyp)l=a'Zz|1—p|' !

(i1) The inverse for y —0: For y —O0 the two preimages
are

(4.2)

=2
xl c >
x,=1—2 (4.3)
€1
The derivatives at these points are
f'(xy)=c,
(4.4)
f'(x2)= —Cy .

With these pre]iminaries we can ask what is the fate of an
initial function ¥,(x), under L®’ with a given A. In par-
ticular, we want to know how ##(y) behaves for y —0, 1.

Using Eq. (4.1) and (4.2), we can conclude that if
¥'P(x) is smooth around x, then

20"y, (x
(B) ( —_ __"__C_(l_ )~ (1-1/2)8 4.5)
¢’ +1 y ol (ZG 1/2)
On the other hand, in the limit y —0, we find
vWiy/e)  pP—y/e))
8 R . 4.6
II’ l(y p—0 Cﬂ C? ( )

Allow now 9,(x) to have singularities of strength a,
and o, at the two ends,

YolX) ~ Ag(x) %, ty(x) ~ By(l—x) °  (4.7)
x—0 x—1
and watch what happens upon iterations.
n=1:
YP(y) ~ (=»7° (4.8)
y-\»
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where o =(1—1/z)B is what we call the “natural” singu-
larity,

vPy) ~ A1 4.9)

A —w B _
/o) =y /e
y—0 c c

In the last expression one of the singularities dominates
as y —0, and we write

VP ~ (»)
y—0

—

—a,

, a;= max(agyo,) . (4.10)

n =2: Upon the second iteration the singularity of
¥P(y) for y—1 is not changing; at the other corner we
find

PP () ~O(y)~", a= max(a;,o) . 4.11)
y—v

These types of singularities are not altered upon further

iterations.

We can thus conclude that there are two types of initial
functions ¥,(x), which we designate as follows.

Class A: a,; <o; this class of functions iterates to func-
tions having the same singularities at both ends.

Class B: a,> o; this class of functions iterates to func-
tions having two different types of singularities, a0 at
two ends.

Notice that since o is B dependent these classes are
also B dependent. In Sec. IV B we focus on class A. Here
we show that class B belongs to the continuous spectrum
of the operator (3.5).

To see this we consider #'#(y) obtained after many
iterations (n — ) in the limit y —0,

-1 -1
WP =gy s =2y By se) . @12
4 C

1

From Eq. (4.5) we know that the right-hand side has
singularity of strength o. The equation can be balanced
with a left singularity of strength a only if

A,—l

1= =55 =0 4.13)

or

ATl=cfme, 4.14)
Since A~! can be chosen arbitrarily, this eigenvalue, if it
exists, belongs to the continuous spectrum (The latter is a
new type of continuum different from what is called the
continuous spectrum of the Frobenius-Perron operator in
the mathematical literature.'*) On the other hand, if
a=c, A~ ! cannot be expressed in terms of ¢. These func-
tions, which belong to class A, belong to the discrete
spectrum.

The last issue of analysis is the question when can one
reach functions of class B upon iterations starting with
o(x) belonging to the class. Denoting the eigenvalues in
the discrete spectrum by A;(f3), with A,(f3) being the larg-

est, we note that only if A of Eq. (4.14) is larger, i.e.,
c B> (B, (4.15)

then the function ¥,(x) remains within the class. Other-

FEIGENBAUM, PROCACCIA, AND TEL 39

wise, it turns automatically to a function of class A.
Then, also, starting with a function of class A the itera-
tion stays within the class. We turn now to an analysis of
the discrete spectrum, stressing that as a function of 8
one can observe transitions between solutions belonging
to the two classes. These transitions are strongly related
to phase transitions in the thermodynamic formalism.

B. Discrete spectrum and its eigenfunctions

The discrete spectrum belongs to eigenfunctions of
class A. Initial conditions ¥y(x), which are of this class
and are non-negative everywhere, remain in the class un-
der iterations.

The analysis of the discrete spectrum and the eigen-
functions is facilitated by studying conjugations to
different maps and in particular to hyperbolic maps?’
(i.e., maps which must have a maximum of order z =1).
The details of the conjugation and its effects on the eigen-
functions are presented in Appendix A. Here the main
results are summarized.

The complete maps f(x) and g(x) of the interval are
called conjugate if there exists a function 4 (x) such that

f(x)=h"logoh(x) . (4.16)

If 1/}}5)(x) and ¢(gB )(x) are eigenfunctions belonging to (3.4)
with f and g, respectively, then

PP x)=y¢Poh(x)|h'(x)|?, (4.17)

and the associated eigenvalues are invariant to conjuga-
tion. It is of particular importance that one can choose a
function A such that the conjugation leads from nonhy-
perbolic to a hyperbolic map as pointed out in Ref. 28.
Having a nonhyperbolic map f (x) whose invariant densi-
ty is #'!(x), one defines

hix)= foxlﬁ(”(y)dy

and then conjugating as in Eq. (4.16) leads to a hyperbolic
map g(x)=f(x). The discrete spectrum of hyperbolic
maps is always associated with smooth (i.e., nonsingular)
eigenfunctions z/;fgm. The conjugation maps the spectrum
of the hyperbolic map onto the spectrum of the nonhy-
perbolic map, while via Eq. (4.17) the eigenfunctions will
gain the singularities typical of class A. Since ¥'!’(x) has
singularities of strength (1—1/z), the eigenfunctions will
have singularities of strength (1—1/z)8 as calculated in
Sec. ITA.

The considerations above make it possible to establish
a relation between A,(B) and the generalized entropies
K 3.%* The latters can be expressed in terms of the conju-
gate map f.2"?° In the special case of hyperbolic maps,
the eigenvalue of (3.4) obtained by starting with any
smooth initial function has been shown to be directly re-
lated to K .2*#?"3% More generally, for any chaotic map
one obtains

InA(B)=(1—B)K; ,

where A,(B) is the eigenvalue of the operator
H=")"fL B (V)8 reached from a constant initial
function,?’ i.e., in the formulation of the present paper,

(4.18)

(4.19)
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A(B) is the largest eigenvalue of the discrete spectrum
(associated with functions of class A).

C. Observed thermodynamics

We are now in position to examine the thermodynam-
ics which is obtained upon iterating the functional equa-
tion with a smooth initial function. Of importance is the
competition between the discrete and continuous part of
the spectrum.

By starting with a smooth function y(x), its first
iterate will possess a singularity of strength o at x =1 as
explained in Sec. IV A, but will be constant at the left
corner. The singularity at x =1 will not be removed by
further iterations. Let us follow what happens to ¥/2(0).
By applying Eq. (4.6) for n =1 we see that the behavior
of ¥ at x -0 depends on the actual sign of o. For
o >0, the second term dominates on the right-hand side
and this leads to a singularity of strength o, also, at
x =0, which stays there forever. Thus, smooth initial
functions are mapped after two steps on class A and,
therefore, their evolution is governed by the discrete
spectrum. In particular, the asymptotic behavior is
characterized by A,(f) in the case where o >0 (8> 0 for
z>1).

The situation is quite different for o <0 since ¥{¥(x)
then does not diverge for x —1, but rather vanishes.
Therefore, ¥¥¥ will stay constant at x =0. Its further
fate depends on the actual value of 8.

Smooth initial functions in the range o <O are, thus,
iterated not in class A but rather in a subclass of class B,
namely in the class of functions which are constant at
x =0 and have singularities of strength o at x =1. It fol-
lows then from (4.6) that the eigenvalue inside this sub-
class is

A=AyB)=c 5. (4.20)

In fact, this is a special case of (4.14). Since Ay(B) is
unique at all 3, where it exists, we can say that the con-
tinuum spectrum restricted to the subclass appears as an
“effective” discrete branch Ay(B). This means that, for
0 <0, Ay(B) is to be added to the discrete spectrum when
starting with smooth initial functions. In the range
where Ay(B) <A,(B), the latter dominates. In Eq. (4.6)
A=X,(B)>c P, therefore, ¥'?(0) will tend to zero and
the limiting function ¥'#(x) will belong to class A. If,
however, Ay(B)> A,(B), A, dominates, and ¢'? will belong
to the subclass introduced above. The observed thermo-
dynamics is connected with the actually largest eigenval-
ue, i.e.,

e 9P =)(B)= max(ry(B),A(B)) . 4.21)

Thus, an essentially different behavior can be observed on
two sides of a critical temperature S, for which

MBI=c P

Therefore, the phenomenon can be interpreted as a (first-
order) phase transition and the region 8/8.>1 can be
called the condensed phase.

4.22)
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As we saw, initial functions of class A do not leave this
class. In other words, the largest eigenvalue influencing
their evolution is always A,(B). This provides a useful
method for calculating A,(B3), i.e., the spectrum of gen-
eralized entropies. By starting with, e.g., ¥y(x)
=x"%(1—x)"7, the analogue of (3.6) and (3.7) defines a
series ¥,(x) tending to a (finite) function of class A (see
also Ref. 27). A,(B) can then be obtained as the limit of
the A, as given by (3.7). It is worth emphasizing that in
this procedure no critical slowing down appears at 8, in
contrast to what one sees with a smooth initial function.
The critical value can then be determined with a high ac-
curacy as the intersection of two branches [see (4.21)].
These branches are shown on Fig. 5 for the example (ii) of
Sec. III. We conclude by showing a qualitative sketch in-
dicating the change of behavior of the eigenfunctions
along different branches on Fig. 6. We note that one can-
not exclude the situation where A4(f3) is always less than
A,(B). In such cases there would be no phase transition.

V. THERMODYNAMICS OF INTERMITTENT MAPS

In this section we discuss the eigenvalue equation and
the thermodynamics for complete maps of the interval
which are strongly nonhyperbolic, in the sense that a
fixed point is marginally stable and the orbits are inter-
mittent.>! The set obtained displays a phase transition
whose nature has been hitherto elusive. This phase tran-
sition is of more general interest because an identical kind
of phase transition appears in other, seemingly unrelated,
problems. In Appendix B it is shown that the thermo-
dynamics of the set provided by the rational numbers in
the Farey model, which is also the thermodynamics of
the set which appears in the treatment of mode-locking of

G(B)

/
W 1 1 ]
-2 o 2 4

FIG. 5. The observed thermodynamics for the quartic map.
The continuous branches are determined by the leading eigen-
values A, for the left branch and A, for the right branch. The A,
branch is continued in a dashed-dotted line. The whole A,(B)
branch corresponds to the generalized entropies Kg, cf. text.
The dashed line is —¢q(—p)1In2, which is the thermodynamics
of the invariant measure, and is added to illustrate the warning
of Sec. III C. The nonanalyticity appears at a different value of
Bin the two cases.
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FIG. 6. A sketch of the eigenfunctions pertaining to different
regions of 8, G (B), for a case with z > 1.

coupled nonlinear oscillators, conforms exactly with that
of the intermittent map.

In principle, any map of the interval that starts as
x +x%4 -+ can be used to observe intermittency. The
analysis of the number-theoretic Farey model in Appen-
dix B suggests the use of the map

, x <4
=1 2 5.1)
x'= .
1—x x>l
x
Since g(x)=x/(1—x) is known to be the fixed point of

the intermittency renormalization group,’? we can use it
to derive statements that have universal applicability to
intermittent maps. As far as intermittency is concerned
the choice of the right-hand branch is irrelevant as long
as it provides reinjection to x ~0. The choice in Eq.
(5.1), which is motivated by the number theoretic
analysis, provides, however, important symmetry proper-
ties which are used in the solution below.

Denoting (0,1) by 0 and (4,1) by 1, we can write the
inverses of the functlons in (5. 1) as

_ X
Folx)= 1+x’

) (5.2)
Fi(x)= o =1—Fy(x) .

All we need do now is write down the functional eigen-
value equation for (5.2) which reads

ABYP(x)

=(1+x)7% |y» +yP (5.3)

1+ 1+x

Notice first that for =1, !’ simply has a pole at the
origin,
/3: 1_)¢( 1 )(x)

Next, for B=—m /2, m =0,1,..., (5.3) possesses
solutions in the space of polynomials of degree m

=1/x—>A=1. (5.4)
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(m =0—A=2, ¥'=1). For all other B (*—m /2,71)
the eigenfunction of (5.3) possesses a branch cut along the
negative real axis (8= =+ 1 is of this sort, and, so far as we
know, no analytic solution has been obtained).

Let us proceed to determine the nature of the phase
transition. Notice by substituting 1/x for x in (5.3), since
A >0, that

PP(1/x)=xPyPAx) . (5.5)
Setting x =1 in (5.3) we see that

AYP(1)=2 B 1y 1) (5.6)
Should 1&”” ) diverge, then so too must 1/1‘/3’ 1. Setting
x =1, 50 too must either (or both) of ¥'#(1),%'#(2). In-

ductlvely, for ¥'® to be finite on the ratlonals in (0 1), it
follows that ¢#(1) is finite. Taking now the limit as
x —07, we have

A—1yPoT)=¢P(1) (5.7)

so that for <1 (and hence A > 1), ¥(0™) is also finite, so

that by (5.5)
Bt
¢(B)(x) — M , (5.8)

x—+ o sz

and ¢r“3’ possesses an extension to (1, «). For f=1—¢€/2,
¢'P) departs from 1/x? at large x by an abrupt change of
asymptotic behavior, and at x =0 by becoming finite of
order 1/(A—1). In particular, it remains smooth at
x =1, and we adopt the normalization

¥P(1)=1

[Indeed, by differentiating (5.5), we learn that ¥'‘f(1)
=8l
Employ the symmetry (5.5) to rewrite (5.3) as

(5.9

MBWYP )=y (1 +x) +—¢"3 +1 (5.10)
Denoting

WA=z, (5.11)
setting x =x +n in (5.10) and multiplying by z"*!, we
have
2P Px +n)—z" 1Y B(x +n +1)

__z"*! x+n+1

(x +n)?# x+n
 (x +Zn +1)ZB¢(B) xj—:il ’ (5.12)

where we again used (5.5) in the last transformation. If
we now sum (5.12) over n =0, ..., o, by (5.8) we have
(after setting n —n — 1)

o

P =3 —F

13
x+n (5-13)

Since ¥'? is differentiable at x =1, we can rewrite (5.13)
as
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d n ® n Finally, it is worth noting that a special family of inter-
(Bl y)= 2z z cee . ’ . -
PPx)=3 (x +n)b +2 (x +n)B+1 o+ mittent maps, those characterized by a cusp [recursion
(3.1) with z =1 is an example], might possess normaliz-
(5.14)

where the ellipsis represents less singular terms, with
O(1) linear in e=2(1—p).

The important observation about (5.13) is that with
PY(1—1/(x +n))~yY(1) for large n the radius of conver-
gence of the series is z=1. Thus, for all B>1
z=1—-A=1—-G(B)=0, so that after reaching A=1 at
B=1, G remains pinned at G(1)=0, and G'(B)=0 for
B> 1 (see Fig. 7). It follows that there is a phase transi-
tion (breakdown in analyticity of G in 8) at B=1. Most
importantly, the transition occurs at the radius of conver-
gence virtually guaranteeing an infinite order transition.
This phenomenon can be tracked back exactly to the “in-
termittency” of F, at x =0(Fy(0)=1). Since z=e%P,
dz /d yields G'(B). If we attempt to differentiate (5.14)
on 3 at B=1, the first term (nz" ~'dz /d ) becomes loga-
rithmically divergent, while the second (the remainder) is
finite (differentiable). Thus, the singular part of (5.14) at
the transition is the explicit first term. Setting x =1 in
(5.14) and substituting

z=e ", (5.15)
it is straightforward to verify that the singularity in 7 in
the first term is 17 In7, so that with = — G, and for some

constant k,

GIn(—G)~k(1—-5) . (5.16)

It is worth noting that (5.16) appears numerically as a
first-order transition since

ok
| In(1—p)|

so that smooth extrapolation from 8 < 1— ¢ yields a finite
G'(17) from the slowness of variation of the logarithm
and its nonanalyticity. With the presence of logarithms,
unless the asymptotic form is known, all extrapolation is
risky and misleading.

G'(B) (5.17)

Ar G(B)

'
O

FIG. 7. A sketch of the thermodynamics of the intermittent
map (5.1). At the half integers (indicated points) we possess an-
alytic solutions.

able invariant densities.?® This family exhibits a first or-
der phase transition'® at =1.

VI. INCOMPLETE TREES

In this chapter we examine the formalism developed
above in the context of sets that cannot be organized on
complete trees. For concreteness we draw our examples
from the dynamics of maps of the interval that are not
Smale-complete. For one-hump maps, one knows?? that
by ordering the itineraries (symbolic dynamics) of all the
points in a proper way, the itinerary of the critical point
is the largest allowed one. Thus there are fewer than 2"
allowed itineraries of n symbols and the binary tree on
which we can organize the preimages of the critical point
is severely pruned.®

We shall examine a number of pruned trees. The first
case will treat parameter values for which the critical
point falls on an unstable periodic orbit (Misiurewicz
points).** The second case will deal with situations in
which the itinerary of the critical point is periodic (su-
perstable orbit) and the last case is the rather general sit-
uation where the itinerary of the critical point is aperiod-
ic.

To deal effectively with all these cases, we have to re-
turn to the derivation of the eigenvalue equation, and
write a slightly more general equation that would allow
effective use of the rules for pruning.

Consider again Eq. (2.11). Choosing x =F€](5c') we get

MBWPAF (3)= 3 |[F(F (XN'PYP(FAF (x))) .

(6.1)
Denoting now
YPAF () =¢P(x) , (6.2)
Eq. (6.1) takes on the form
6.3)

MBWEx)= 3 |F(F xNIPYLAF, (x)) .

The rules for pruning will be given as allowed sequences
€€, in this equation. It will be seen that all the examples
treated here can be brought to such a form, allowing € to
take on a sufficient number of values 0,1, ...,k —1.

A. Misiurewicz points

The simplest situation of this type is when the critical
point is mapped (in two steps) onto the fixed point of the
iteration. For maps of the type x' =1—ax? this occurs at
a =1.543688 ... The situation is depicted in Fig. 8. For
convenience, we denote symbolically the interval [1 —a,0]
by €=0, and the intervals (0,x,] and (x,,1] by €=1 and
€=2, respectively. Denoting the inverses of the maps, re-
stricted to these intervals by F, F|, and F,, respectively,
it is easy to check that points in O and 1 have inverses
only in 2, whereas, points in 2 have inverses only in 0 and



5368

%
N

Po3 S

FIG. 8. The situation at the first Misiurewicz point.

1. Accordingly, Eq. (6.3) translates immediately to the
set of coupled equations

ABWL (x)=|F5(Fo(x)PPUF,(x)) ,

AMBPP(x)=F5(F (x)IPYPUF, (x)) ,

MBWPL (x)=|Fy(F,(x ) PYPUF,(x))
+IFU(F,())PYPF,(x)) .

(6.4)

Noticing that F;(x)=F,(x)=—Fy(x), we can, denoting
F (x)=F(x), rewrite Egs. (6.4) as

A(BYP(x)
=|F'(x)|P[|F'(F(x)|Py'P(F(F(x)))
+|F'(—F )P PF(—F(x))], (6.5

where ¥'P(x)=y¢¥(f(x)). Equation (6.5) can be solved
using similar techniques (like recursive functions calls) as
those used previously.

To speed up the convergence one can start with an ini-
tial function that is singular at x =1—a and x =1, e.g.,

Fx)={[x —(1—a)|(1—x)} P2 . (6.6)

Such singularities should build up anyway by the itera-
tion, and starting with them in ¥(x) speeds up the con-
vergence.

From the point of view of scaling behavior, we expect a
phase transition at S negative, due to the dilation of
lengths at the critical point. Any point being 6 close to
x =1 comes from a distance 8!/ near the critical point.
This strong dilation results in making the neighborhood
of x atypical, and for 3 sufficiently negative this atypical
behavior dominates.

We can remove the phase transition by starting with an
initial function that is singular also at x,, i.e.,
{[x —(1—a)](1—x)|x —x4|} “#/2. with such a function
and (3 negative, we remove all the influence of the dilation
at x,. There is no path for B <0 that leads back to the
fixed point. Indeed, having such an initial function, we
compute the smooth function depicted in Fig. 9. The
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FIG. 9. Thermodynamics at the first Misiurewicz point. The
smooth line avoids the phase transitions by taking a singular ini-
tial condition. The straight line segment belongs to the con-
densed phase.

other line in Fig. 9 is obtained from the initial function
(6.6). The phase transition is obvious. Other Misi-
urewicz points can be treated under similar footing and
will not be detailed here.

B. Superstable orbits

When the itinerary of the critical point is periodic we
have a superstable orbit. The set of interest is then not an
attractor but a repeller.’*7*%23 An example is the map
1—ax?ata,=1.75488. . ., which supports a superstable
3-orbit. We denote the region [(1 —a),0] by O and the re-
gion (0,1] by 1. Observation shows (see Fig. 10) that O
has preimages in 1 only, whereas 1 has preimages both in
0 and 1. We can thus write immediately

AMBIYL (x |F;(F0(x))!ﬁ¢‘{’>(F0<x>), 6.7)
A(B) {"’(x>=iF5<F N|PYP(F
+|F§(F|(x))lﬁzb(1’”(F1(x)) , (6.8)
F°~|

Fi

Of======-==

I-a

X
o
}
3

FIG. 10. The situation at a parameter value where period 3 is
superstable.
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where again
172

F(x)= =—F,(x) .

These equations can be solved using similar techniques to
all previous equations.

It is interesting to notice that the numerical solution
for A, of (3.7) converges in an oscillatory fashion, with a
period 3. The reason is obvious, and stems from the fact
that arbitrary initial conditions are ‘“‘imbalanced” with
respect to the invariant measure. A simply convergent
series can be obtained by considering the averages

X =ApAp 1Ay (6.9)

These quantities converge well and approach A(3).

The convergence can be sped up again by starting with
a singular function. It is easy to see from Eq. (3.4) that
the required singularity is now not the ‘“natural” one
o =p/2, since for y —1 we have

1/2}

e (6.10)

1—y
a

)
'()bnﬁ

PPy
1—y
a

If we start with (x)~
w(B)(y) _ (l_y)—a'/Z—a .
y—1

7, we get upon iteration

(6.11)

However, after three further steps this singularity is
transferred to x =0, and, therefore,

¢(B)(y) ~1 (1 __y)*(3/4)a—o~
y—b

(1—y)~ 7% (6.12)

In the limit the singularity becomes 20 =f. Thus the
singular function that is chosen to speed up convergence
is, e.g.,

x 7B for x>0

1 for x <O. (6.13)

Px)={[x —(1—a))(1—x)} AX

The different behavior for x —0 from above and from
below stems from the fact that for y <O there is only one
preimage, whereas for y >0 there are two. This corre-
sponds to an initial condition ¥;(x)=%(F;(x)), i =1,2 in
Egs. (6.7) and (6.8).

Upon iterations, starting with this initial function, fast
convergence is observed. We find quantitative agreement
with previous calculations®® of the escape rate from the
repeller a, the Lyapunov exponent restricted to the re-
peller A and its fractal dimension D,. These quantities
are calculated from?*

G(1)=
dG (B) _

a5 o= (6.14)
G(Dy)=0

5369

Fo—l ~—F,

FIG. 11. Same as Fig. 10, for superstable period 5.

C. Aperiodic itineraries

When the itinerary of the critical point is aperiodic, it
is not easy to write down a closed form theory. This
problem can be circumvented by calculating the thermo-
dynamic functions at a series of parameters for which the
itinerary is periodic, a series that converges to the param-
eter at which the itinerary is aperiodic. As an example
consider the parameter value for which the itinerary of
the critical point is the same as the itinerary of a golden-
mean rotation, properly reordered for one-hump maps.*
As is well known, the golden mean is the limit of ratios of
Fibonacci numbers F, /F, ,,. Thus a strategy suggests
itself: we can look at the thermodynamic functions at pa-
rameter values corresponding to superstable orbits of
length 3,5,8,13,..., and these should converge to the
thermodynamic functions of the map with the above
aperiodic itinerary. The period 3 case was discussed in
Sec. VI B. The period 5 problem is sketched in Fig. 11.
It is easy to verify that the following equations are ob-
tained:

ABWEL (x)=|Fy(Fo(x)) PP PUF,(x)) ,
MBWP (x)=|F5(F (x)PpPUF,(x)) ,
MBWE(x)=|Fy(Fy(x) PP F,(x))
+|F'2(F2(x>)|3¢‘ﬂ’(pz<x>) ,
=|Fo(F3(x))|Ppf(F3(x))
+[FUF; () PP PUF;(x)) ,

(6.15)

AMB) (B)

with ¥\ =F,=F;=F, Fy=—F.

A similar analysis can be done for superstable orbits
8,13,...,F,, always yielding F, —1 coupled equations.
The point is that G(B) appears to converge nicely to a
limit, see Fig. 12. We should stress that in the limit we
obtain an infinity of coupled equations; it is our hope that
such an infinite set can be represented by a single, non-
linear eigenvalue equation. Work to find such nonlinear
equations is in progress, and will be reported elsewhere.
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FIG. 12. Thermodynamics at superstable orbits of length 3,
5, 8, and 13. The two last ones are indistinguishable on the
graph. The parameters used in x'=1—ax? are a =1.754 83,
1.62541, 1.711 08, and 1.707 70, respectively.

VII. SUMMARY

The introduction of an eigenvalue equation for the cal-
culation of the thermodynamic functions of multifractal
sets has led to several results.

(i) An efficient method of computation via recursive
function calls is available.

(ii) The nature of first-order phase transitions in the
thermodynamic formalism has been clarified as a switch
between the discrete and continuous parts of the spectra
of the linear operator L.

(iii) The phase transition of the intermittent map,
which is in the same class as the Farey model, the sub-
critical mode locking of coupled nonlinear oscillators,
and a certain one-dimensional Fermi gas with logarith-
mic interactions, could be fully understood. The transi-
tion was shown to be of infinite order

(iv) The thermodynamics of multifractal sets which lie
on incomplete trees can be efficiently computed once the
pruning rules are given. The usefulness of this approach
for other problems in nonlinear physics where multifrac-
tals appear will be tested in the future. Preliminary uses
in the context of fractal aggregates in two dimensions in-
dicate that the approach is efficient and worthwhile.*
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APPENDIX A: CONJUGATION
Two functions on [0,1], f and g are conjugate if

f(x)=h"logoh(x), (A1)

with & being a monotonous and differentiable function,
with A (0)=0, h(1)=1. The invariant densities of f and
g are related by

PP =y e h (x)|h'(x)] . (A2)

There exists a special conjugation /% (x) between f (x)
and f(x) such that the invariant density of f(x) is the
constant function. This conjugating function % (x) is ob-
tained as

o= [ 59 xdx . (A3)

It has been shown that f(x) is everywhere expanding (hy-
perbolic) with a maximum at which the derivative of f(x)
is discontinuous (tent-maplike maximum).?®

Consider now the eigenvalue equation for two conju-
gate functions f and g.

® ¢(B)
Adf )= 2_ e IB’ (A4)
xEf
B
ALUEp= 3 ) (AS)
ng*‘(w lgl?

We shall show that the following statement is true:

_ dh(x)
¢‘,!3’<x)—¢;”’°h<x>| | (A6)
A=k, . (A7)
To see this use the identities
f'(x)=[h Yogoh(x)][g'oh(x)h'(x)], (A8)
— 1y — 1
(h™")ogoh(x) —h’Oh*‘ogoh(x) . (A9)

Perform now the change of variables x =h(x') in Eq.
(AS),

ryPo)= 3 WD)
o pixnen -ty 18/ xNIP
y=goh(x')=hof(x"). (A10)

Multlplymg now the numerator and denominator by
|(h ~Yyogoh(x')h'(x')|P and using (A9) we find

A WP ()R f(x")|P
PP (x'NIh"(x")]P

= (A11)
x'ef“zo:h“(y) fxenlP
This equation is then satisfied by ¥'f’ where
dh(x)

B )= (B

lﬁfﬁ(x)— gHOh(x) T dx (A12)
and

Ag=h, . (A13)

In particular, using the special conjugation # Eq. (A3), we
find
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~ B
= | dh(x)
=B
w‘,ﬁ’m—zpjoh(x)’ N

=y h(x)|y}(x)]? . (A14)

For hyperbolic systems ¢‘jﬂ’ is smooth, and, therefore,
¥'#(x) has singularities which are induced by the singu-
larities of tl"f” alone (see also Ref. 27). Since ¢‘f” has the
same singularities on both ends of strength 1—1/z, we
conclude that the eigenfunctions belonging to the discrete
spectrum belong to class A.

APPENDIX B: THE FAREY MODEL
AND RELATION TO INTERMITTENCY

The Farey model (also a subcritical treatment of
mode-locking of coupled nonlinear oscillators;*""!¢ also
intermittency) is a binary tree thermodynamics with the
nth set of intervals the distances between the neighbors
depicted in Fig. 13. Thus, at level n =2 there are 2°~ ! in-
tervals of respective lengths 2—1 and 3—3. Reading
from left to right at level n, the rationals encountered are
in increasing order the 2" continued fractions [c,, . . ., ¢;]
of variable length k with ¢; =2 (for uniqueness of repre-
sentation) satisfying

k
S>ci=n+2, (B1)
1

and each pair encountered having one element with
¢x =2, the other with ¢; > 2. By definition,

1

[eys e ]= e ra——. (B2)
-12- n=0

o) i &

% % n=|
Lt — e
o/ \i T of \i i/ o e
e i e B R

FIG. 13. The Farey model. The numbers on the figure are
the x values obtained via Egs. (B7) and (B14), and the corre-
sponding addresses (€,,€,_1,...,€;). Note, that an x-ordered
representation of the tree is shown here and this is why the se-
quence of the €;’s is reversed, cf. Fig. 1. The arrows indicate the
balls used in the coverage [see (B10) and (2.4)] at different stages
of the construction.

The tree of Fig. 13 is thus a complete enumeration of the
rationals.

Let us construct the (n + 1)th set from the nth by the
following pair of rules for F; and F, respectively:

[Cly'--7Ck]—)[cl+1rc2""’ck] ’

(B3)

[Cl,...,Ck]—>[l,Cl,...,Ck] .

Since the sum of the ¢;’s is incremented by 1 by each F,
by (B1) each image is in the next level; since ¢, = 1, each
rational of level n produces two distinct rationals at level
n +1. Thus, starting with [2] (level 0), any rational is ob-
tained as

—1 -1 _,—1 -2
ley,...,c, ]=Fy F,Fg F, - F& ' F,Fe& [2].
(B4)

Denoting a rational at level n by its binary index written
as

x{M=x"e,,€,_,...€), €=0,1, (B5)
and ordered by the rule

FxM=x{ D (B6)
it follows that

x‘"’(e,,,...el)=F€10Fezo -‘-OFe”(x‘), (B7)

where x *=[2]. Equations (B4) and (BS) now determine

the binary index of [¢y,...,c ] as
i(feg, oo hee])
=0...010...010...01...10...010...0.
ck~2 ck_l—l Ck~2_l cz—l c]-l

(B8)

It is natural to regard the binary string of (B8) as a
configuration of k —1 gas particles on a one-dimensional
lattice of length n. It is of variable number, since
k=1,...,n+1. (For k=n-+1 there is a unique
configuration of all 1’s corresponding to [1,1,...,1,2]
with n 1’s). It can be shown that a pair of rationals
defining an interval, as depicted on Fig. 13, are of the
form

[c1s---5¢k,2] and [eq, ..., +2], (B9)

and that the interval between them is of length

ey, v vy e 2])]
[2,¢6r.-.5¢, 12

= [cks - -
1—[2,¢4,...,¢] k>

-,‘31]2"‘[62’01]2[C1]2-

(B10)

The thermodynamic sum (canonical partition sum ) of the
model at level n is

S ey e2Dlf=S e P (B11)
so that
H,=—In|I'""] . (B12)
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By (B10), we now have asymptotically that

—1—] . (BI3)

¢ic;

k
H,([cy,...,¢,21)~2 3 Inc;+0

i=1

Since by (B8) the ¢;’s are the distances between adjacent
particles, we see that the Farey model at level n is a lat-
tice gas of varying particle number (second quantized) on
a lattice of length n with long range logarithmic interac-
tion saturating at the nearest particle. Notice that the
smallest value of H, is obtained with ¢,=n—H, ~21nn,
where, for all ¢;=1, H,~2nlnp”' [where p~!
=(V'5+41)/2] possesses the largest value of H,. Thus, if
the model possesses a phase transition (with n— o0, of
course), its nature is that there is O density below a criti-
cal temperature, and finite density above it, with each site
occupied (density 1) as T— —0 (B— — o). Thus, the
model is reminiscent of a second-quantized Fermi gas
(repulsive, with occupation number per site no more than
one). Indeed, it is shown in Sec. V that there is a phase
transition (at 8=1) of infinite order in this model.

The connection of this model to mode locking is a
consequence of Farey addition (e.g., 1®%=(1+2)/(3
+5)=32, look at Fig. 13) which determines that rational
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of smallest denominator (and hence largest mode-locking
interval) lying between two given rationals numbers, and
has been discussed elsewhere.*""!'® The connection to in-
termittency, and the solution of the model rest upon the
F’s of (B3), which we now work out.

Denote [c, ..., ¢, ] by x in (B3). It follows from (B2)

that
_ X
Fobo=177>
1 (B14)
Fl(x)zm—_—l—Fo(x) .
Each branch is a hyperbole with
Fylx)= (B15)

1—x

Notice that F, has derivative +1 at its fixed point x =0,
so that |F.(x)| <1 is marginally violated (i.e., a multipli-
cative scaling converging to 1 at an end point). Indeed,
(B15) is the fixed point of the “intermittency renormaliza-
tion group ”, so that up to our proviso on measures, we
are, in this model, also working out the thermodynamics
of intermittency (the precise form of the ‘“reinjection”
given by F ! is inessential).

*Permanent address: Institute of Theoretical Physics, Eotvos
University, H-1088 Budapest VIII, Hungary.

IM. J. Feigenbaum, Commun. Math. Phys. (1980).

2H. G. E. Hentschel and I. Procaccia, Physica D 8, 435 (1983).

3U. Frisch and G. Parisi, in Turbulence and Predictability in
Geophysical Fluid Dynamics and Climate Dynamics, edited by
M. Ghil, R. Benzi, and G. Parisi (North-Holland, Amsterdam
1985).

4T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and
B. I. Schraiman, Phys. Rev. A 33, 1141 (1986).

5G. H. Gunaratne and I. Procaccia, Phys. Rev. Lett. 59, 1377
(1987).

6R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A 17,
352 (1984).

7T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett. 56,
854 (1986).

8C. Amitrano, A. Coniglio, and F. diLiberto, Phys. Rev. Lett.
57, 1016 (1986).

9A. Coniglio, Physica A 104, 51 (1986).

10y, P. Eckmann and D. Ruelle, Rev. Mod. Phys. 67, 617 (1985).

11M. J. Feigenbaum, J. Stat. Phys. 46, 919 (1987); 46, 925 (1987).

12M. J. Feigenbaum, M. H. Jensen, and 1. Procaccia, Phys. Rev.
Lett. 56, 1503 (1986).

13M. H. Jensen, L. P. Kadanoff, and I. Procaccia, Phys. Rev. A
36, 1409 (1987).

14D, Ruelle, Thermodynamic Formalism (Addison-Wesley,
Reading, 1978); R. Bowen, Equilibrium States and the Er-
godic Theory of Anosov Diffeomorphisms, Vol. 470 of Lecture
Notes in Mathematics (Springer, New York, 1975), p. 1; Ya.
Sinai, Russ. Math. Surv. 166, 21 (1972).

15T, Bohr and D. Rand, Physica D 25, 387 (1987).

16p_ Cvitanovic, in Proceedings of the XV International Collo-
quim on Group Theoretical Methods in Physics, edited by R.
Gilmore (World Scientific, Singapore, 1987).

17D, Katzen and I. Procaccia, Phys. Rev. Lett. 58, (1987).

18P, Szepfalusy, T. Tel, A. Csordas, and Z. Kovacs, Phys. Rev.
A 36, 3525 (1987).

19p. Grassberger, R. Badii, and A. Politi, J. Stat. Phys. 51, 135
(1988).

20M. J. Feigenbaum (unpublished); T. Bohr and M. H. Jensen,
Phys. Rev. A 36, 4904 (1987).

2IM. J. Feigenbaum Complex Objects on Regular Trees,
Proceedings of the 1987 NATO Summer School (Plenum,
New York, 1987).

22p, Collet and J. P. Eckmann, Iterated Maps on the Interval as
Dynamical Systems (Birkhauser, Basel, 1980).

23p, Szepfalusy and T. Tel, Phys. Rev. A 34, 2520 (1986); T. Tel,
Phys. Lett. A 119, 65 (1986); T. Tel, Phys. Rev. A 36, 1502
(1987).

24T, Tel, Phys. Rev. A 36, 2507 (1987).

25P. Grassberger and I. Procaccia, Phys. Rev. A 28, 2591 (1983).

26G. Gydrgyi and P. Szépfalusy, J. Stat. Phys. 34, 451 (1984).

27A. Csordas and P. Szépfalusy, Phys. Rev. A 38, 2582 (1988).

28G. Gyorgyi and P. Szépfalusy, Z. Phys. B 55, 179 (1984).

29p, Szépfalusy and T. Tél, Phys. Rev. A 35, 477 (1987).

30T. Bohr and T. Tél, in Directions in Chaos, edited by U. Bai-
Lin Hao (World Scientific, Singapore, 1988), Vol. II.

31p, Manneville and Y. Pomeau, Physica D 1, 219 (1980).

32J. E. Hirsch, M. Nauenberg, and D. J. Scalapino, Phys. Lett.
87A, 391 (1982).

33p. Cvitanovic, G. H. Gunaratne, and I. Procaccia, Phys. Rev.
A 38, 1503 (1988).

34M. Misiurewicz, Publ. Math. IHES 53, 17 (1981).

35D. Ruelle, Ergod. Th. Dynam. Syst. 2, 99 (1982).

36M. Widom, D. Bensimon, L. P. Kadanoff, and S. J. Shenker, J.
Stat. Phys. 32, 443 (1983).

37L. P. Kadanoff and C. Tang, Proc. Natl. Acad. Sci. U.S.A. 81,
1276 (1984).

38H. Kantz and P. Grassberger, Physics D 17, 75 (1985).

391. Procaccia, S. Thomae, and C. Tresser, Phys. Rev. A 35,
1884 (1987).

40]I. Procaccia and R. Zeitak, Phys. Rev. Lett. 60, 2511 (1988).

4IM. H. Jensen, P. Bak, and T. Bohr, Phys. Rev. Lett. 50, 1637
(1983); Phys. Rev. A 30, 1960 (1984).



