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A modified version of Rayleigh-Schrodinger (RS) perturbation theory, which has been developed
previously, can dispense with the usual RS restriction that the unperturbed Hamiltonian should be
diagonal in the chosen basis. This modified RS (MRS) perturbation scheme is discussed in some de-
tail and extended to the degenerate case. The new degenerate MRS perturbation theory remains
based upon a rearrangement of the unperturbed and perturbed parts of the Hamiltonian. Basically,
an unperturbed Schrodinger equation is thereby produced which may be satisfied trivially and iden-

tically for an arbitrary Hamiltonian. The zeroth-order approximation to the energy remains a free
parameter of the degenerate version of the MRS formalism. The explicit MRS expressions for the
higher-order correction terms also preserve a strict analogy with their counterparts in the nonde-
generate formalism. What is new is an enormous increase in the applicability and universality of
the whole approach. Thus, a priori, the unperturbed Hamiltonian may now be chosen so as to have
all of its larger off-diagonal elements much closer to those of the full original Hamiltonian than is

permitted in the standard RS approach. This is a particular advantage of the whole MRS approach.
By testing the method on two nontrivial model Hamiltonians, the method is demonstrated to have
considerably improved convergence properties over the standard RS scheme, and at relatively little
extra cost.

I. INTRODUCTION

The bound-state Schrodinger equation

H~q&=E~q&

is most commonly solved by the numerical diagonaliza-
tion of the (suitably truncated) Hamiltonian matrix
( m ~H ~

n &. Some suitable basis I ~
n & I must be chosen,

and this is usually some sufficiently simple and complete
set of orthogonal vectors which are not directly related to
the particular Hamiltonian H itself.

In many physical applications of perturbation theory,
the Hamiltonian H in Eq. (I) is often a simple and partic-
ular function of some small parameter or some such set
of parameters p. Such parameters may arise, for exam-
ple, as coupling strengths, corrections to coupling con-
stants determined by some experiment, uncertainties of
the strengths of some externally applied fields, etc. For
these families of Hamiltonians H=H(p), we are usually
interested in the overall pattern of the observables upon
these input parameters p. In such a context, the use of
numerical methods is not very convenient in obtaining,
for example, both E =E(p) and

~ P &
=

~ g(p) & over some
range (po —b,p, pa+ hp) of the parameters p. Indeed, in a
purely numerical procedure, one would need to repeat
the diagonalization of H for each set of values of the in-
put parameters p. Furthermore, the resulting purely nu-
merical information still lacks both the clarity and
"bookkeeping" aspects of the comparable results of a

perturbation-theory approach.
On the other hand, such standard perturbative pro-

cedures as that of the Rayleigh-Schrodinger (RS) type,
lead unfortunately, at least in their usual textbook form,
to perturbation expansions for the wave function and en-
ergy eigenvalue,

~ q &
—~q(0)

& +g~y(1) & +g2~ @(2)
& + (2a)

E =E' '+A, E'"+A, E' '+ . (2b)

where H=HO+AH&, HO=H(po), and A. =O(p —po),
which rely too heavily upon a systematic evaluation of
the successive correction terms. Indeed, various techni-
cal difficulties are frequently encountered in putting the
standard RS procedure into efFect. In the first place, it
may be prohibitively difficult to perform the necessary
calculations, as for most realistic calculations in nuclear
physics, for example. Second, it often occurs that the re-
sults diverge, even for very small values of the perturba-
tion parameters. ' Third, even if the results do converge,
they may do so in such a prohibitively slow fashion that
it becomes necessary to find a more suitable method.

It is our belief that these three classes of difficulties are,
in fact, quite closely related to each other. One of us has
recently proposed a modified formalism, which attempts
to identify the underlying source of each of the difficulties
with a "bad" (diagonal) choice of the unperturbed system
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in the context of the standard RS perturbation theory.
Indeed, the choice of' unperturbed Hamiltonian in the
standard textbook versions of RS theory is based on the
two requirements of simplicity of the basis set [ ~

n & J and
simplicity or ease of solution of the "unperturbed" Ham-
iltonian H(po) in the chosen basis. In the proposed
modification of the RS theory, ' these two requirements
were decoupled from each other by rendering the solu-
tion of the unperturbed Schrodinger equation trivial. We
are thereby allowed to choose H(po) to be a general (non-
diagonal) matrix in some arbitrary, but otherwise
sufficiently simple, basis. The modified RS (MRS) expan-
sions may then be constructed, loosely speaking, as power
series in the "truly small" matrix elements V of the per-
turbations, in which all of the "large" components
H(p) —V appear conversely in the denominator terms.

The basic idea expressed by, and underpinning, the
above achievement of the MRS approach, is scarcely
new. Indeed, at the level of its abstract formulation, it
has proved to be a continuing source of inspiration for
much of the last thirty years or so. For example, in nu-
clear physics Brueckner theory was able to deal with the
large components (namely, the repulsive short-range
cores) of the internucleon potential; and in quantum
chemistry the problem of the long-range Coulombic
forces has been successfully handled by a variety of tech-
niques after an appropriate improvement in the choice of
basis states (or molecular orbitals). It is therefore clear
that the points addressed within our own MRS approach
have also been discussed by many other authors. Indeed,
the present work should be seen in the larger context of
addressing one of the most important topics in modern
perturbation theory, namely how to proceed when the ex-
act solutions to the unperturbed Hamiltonian are not
known. This problem has been addressed from many
different viewpoints, and it is therefore perhaps now ap-
propriate to attempt a brief historical survey of the main
related ideas and to emphasize thereby the distinguishing
new features of our own approach.

One of the most general formulations of this basic
problem, and one of the most penetrating attacks upon it,
has been given by Lowdin and his coauthors in a long
series of papers which have been reviewed, for example,
in Ref. 8. This work is based upon the Brillouin-Wigner
(BW) formulation of perturbation theory. As a primary
object of interest, the so-called "bracketing function, "
~(E), is introduced and studied. It is a quantity which
vanishes at values of its argument equal to the physical
eigenvalues of Eq. (1). The core of this approach lies in
the introduction of an arbitrary reference function ~P &

and a wave operator 8' such that the exact wave func-
tion

~ g & becomes equal to the product W~ P & in a certain
limit. As a consequence it was possible to derive formu-
las which are not only completely equivalent to infinite-
order BW perturbation theory, but which also admit a
straightforward and smooth transition to the degenerate
case. However, the technical details of this transition are
far from trivial. The bracketing function x(E) of the non-
degenerate case becomes a matrix quantity in the degen-
erate case; and the comparable extension of the refer-
ence function

~ P & to a set of t reference functions

and the smallness of the perturbative terms. A particu-
larly unfortunate consequence of this insistence on di-
agonality is our subsequent complete loss of control over
the smallness of the off-diagonal elements of the perturba-
tion, H —Ho. A nice example is provided by the so-
called chain models in solid-state physics, where the role
of the off-diagonal elements has proved to be so crucial'
that the perturbative approaches have largely been aban-
doned. In this context, the restoration of applicable per-
turbative techniques seems wholly desirable and may
indeed be satisfactorily made by a suitable algebraic elim-
ination of all the large perturbations within the MRS
scheme considered here.

At the heart of the above algebraic procedures lies a
rearrangement of the perturbative part of H(p),

H(p) =H(po)+ V(p), (4a)

where it is postulated that the term V(p) is "really
small. " In what follows, a characteristic further small
modification is made,

H(p)=HO+A. Hi, A, =O(p —po) . (4b)

The pair of MRS operators Ho and H, will be construct-
ed in detail in Sec. IIA. In a way which parallels the

[lg; &, i=O, I, . . . , (t —I)) made the BW formalism ex-
tremely flexible. The basic underlying idea, namely the
partitioning of Eq. (1), actually has its origins in the 19th
century, but in the hands of Lowdin and those who fol-
lowed him, it has become extremely popular. When fur-
ther combined with the so-called "inner projection tech-
nique, "' the partitioning method became a rather power-
ful tool. Particularly simple yet illustrative examples of
the approach are provided by the applications to both
single- and double-well quartic anharmonic oscilla-

11,12

In principle, the introduction of the concepts of brack-
eting function or effective Hamiltonian' makes the tran-
sition from the BW to the RS formulation of perturbation
theory straightforward. ' The related technicalities
have been discussed in some detail especially by Hirsch-
felder and his group. In particular, they have developed
the so-called double-parameter perturbation theory,
after having been inspired by the Dalgarno-Lewis pro-
cedure' for iteratively improving the choice of the un-
perturbed Hamiltonian. This same basic "resplitting
idea" of reapportioning the division of the original Ham-
iltonian into unperturbed and perturbed parts has been
used by several other authors (see, for example, Refs. 4,
16, and 17 and other references cited therein). It will also
be one of the main inspirations for the present work.

It is instructive and easy to understand all of these
various resplitting procedures as different attempts to ac-
celerate the convergence properties of the perturbative
expansions. Failures in such attempts may then often be
traced to a basic conflict between the simultaneous in-
sistence on the "diagonality" or "solvability" of the un-
perturbed Hamiltonian Ho,
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simpler nondegenerate MRS formalism, the new method
still rests on a weakening of the assumptions convention-
ally made in the standard RS version of perturbation
theory. The reader should be warned from the outset
that this does not, however, imply that the present gen-
eralization of the nondegenerate (t = 1) formalism of Ref.
4 to the present degenerate (t ) 1) case, is trivial. On the
contrary, we encounter not only the purely forrnal prob-
lems of dealing with matrix quantities rather than scalars,
but also certain key difficulties allied to having a matrix
bracketing function (or "error" function) w(E). The gist
of this new difficulty is that even when E becomes equal
to an exact eigenvalue of Eq. (1), the matrix v(E) satisfies
only the single condition that its determinant should van-
ish. On the other hand, its individual matrix elements
may, in principle, still remain large. It is precisely at this
point that a naive extension from the nondegenerate to
the degenerate case of the multiple perturbation series
ideas becomes rather ambiguous and may be expected to
fail. We feel that the only natural framework to tackle
this problem is within the context of creating a new
modified formalism from the "classical" degenerate RS
formalism. It is this approach that we discuss in Sec.
II B.

3 priori, the more we generalize the formalism, the
greater is the potential price that we must expect to pay.
More specifically, we must anticipate that the broader ap-
plicability of the degenerate MRS formalism, and its ex-
pected improved convergence properties, will be compen-
sated for by an increased degree of complexity in the indi-
vidual correction terms at a given order. Even in the
nondegenerate case this complexity has manifested itself
as an increased number of intermediate summations, ' by
the appearance of analytic and/or matrix continued
fractions, by the replacement of the original RS unper-
turbed energies by the complex fixed-point auxiliary func-
tions, ' etc. On the credit side, however, the general spir-
it of the original RS perturbation theory remains
unmodified, and such familiar positive features as its sim-

ple order-by-order implementation, its explicit analytical
display of the parametric dependence of the results, and
its convenient methods of keeping track of the various
contributions diag ramatically are all preserved. Our
higher-order version of the degenerate MRS perturbation
theory is then described in some detail in Sec. II C.

Finally, the question is formulated in Sec. III whether
the good numerical convergence properties which have
been demonstrated to some extent for the nondegenerate
case in the earlier work cited above, and which we now
examine in much greater detail, can survive the extension
to the degenerate formalism. This is a crucial question,
and in this present initial study we attempt only a partial
answer though numerical solutions. We examine two
particular model problems to illustrate the salient
features. The first is a nontrivial but exactly soluble finite
model, which provides a rather stringent test of our for-
rnalism. The second system, namely the quartic anhar-
monic oscillator, is more realistic and has become a stan-
dard yardstick against which to measure new approaches.
As a testing ground it has the distinctive feature of hav-
ing a Hamiltonian with entirely non-negligible off-

diagonal matrix elements in the standard harmonic oscil-
lator basis. Although this has often been interpreted as a
reason for using nonperturbative methods, ' we find that
our own MRS scheme gives convergent and accurate re-
sults. It is clear, therefore, that the strict mathematical
reasons for the well-known divergence of the standard
RS expansions for all values of the strength k of the quar-
tic anharmonicity in this model, in particular the asyrnp-
totic formula

E=E(A.)=a„k,' +0(k '~ ),
are somehow circumvented in our approach. Finally,
even in the context of resummations of Eq. (2b) of the
type proposed by Halliday and Suranyi, our technique
is shown to be capable of leading to a very rapid rate of
numerical convergence.

In comparison with the nondegenerate MRS formal-
ism, it is clear that the degenerate version is a much more
demanding test of the whole approach, since the multi-
plets of energies now have to be evaluated from the same
zeroth-order estimate, E' '. We might anticipate that the
modification V~A, H& of the perturbation term in Eqs.
(4a) and (4b) now plays a more crucial role and that
whereas the convergence, if it exists, must still ultimately
stem from the "smallness" of V, the likelihood of now re-
quiring larger rearrangements in the degenerate case
might lead to a deterioration of the convergence proper-
ties. We show, however, that the MRS method seems to
have the capability of giving very precise and highly con-
verged results in the degenerate case as well. This is one
of the main outcomes of our numerical calculations.

II. GENERAL PERTURBATION THEORY IN
A MODEL SPACE

In this section we describe perturbation theory in a
rather general context and use the model-space concept
and notation made familiar by such workers as Feshbach
and Lowdin. ' Our specific modification to the usual
decomposition of the Hamiltonian is introduced in Sec.
II A 2 where we show how the zeroth-order Schrodinger
equation is then satisfied automatically and trivially. One
of the advantages of our prescription is that, other than
this simple modification, the perturbation theory itself
remains formally unchanged. In this way, many of the
remaining equations will either be also applicable in the
RS formulation, for example, or will be very reminiscent
of previous results. Nevertheless, the detailed interpreta-
tion of the various elements in our expansions will be
considerably different, as is exemplified by the appearance
of free parameters not found in earlier versions of pertur-
bation theory.

The problem that we pose ourselves is, given a rather
general Hamiltonian H(A) containing a coupling parame-
ter or some such set of coupling parameters indicated by
k, we wish to solve the corresponding Schrodinger equa-
tion,

for some set of (usually the lowest) t bound-state eigen-
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vectors and corresponding eigenvalues [ ~1(; );E;(A, ) I, re-
spectively, where t =1,2, . . . . Clearly, the eigenvectors
~1', ) also depend on the coupling parameter(s) A, , but this
dependence is left implicit in our notation. The starting
point for all perturbative approaches is a decomposition
of the Hamiltonian into two parts,

H(A, )=H +pW(A, )

p(H0 E(0) )( p +g) q(0) ) —0

g(H' —E,"')(P+g) ~q(0) & =0 .

(13a)

(13b)

We now formally regard the latter of these equations as a
means to solve for the out-of-model-space part Q ~1('; ') of
the wave function which solves Eq. (9). We thus simply
obtain the result

with g~q("& =R, QH'P~q, '"&, (14)

p W(A, ) =H(A. ) H—
and the (expansion) parameter p is inserted as a purely
formal device for keeping track of the order of the ensu-
ing expansion. The entire success or otherwise of the
method is thus predicated by the initial choice of H .
The primary focus of the present paper is to address the
various possibilities open to us here and to suggest a par-
ticular relaxation of the standard choice which is made in
Rayleigh-Schrodinger perturbation theory (RSPT). We
also note before proceeding that in the decomposition of
Eq. (6), the entire dependence on A, is assumed to be car-
ried by the component W= W(A, ).

A. The formal expansion and zeroth-order considerations

In any perturbative treatment, the eigenvalues E, and
eigenvectors

~ g; ), with i =0, 1, . . . , are now decomposed
as usual into formal power series expansions in the pa-
rameter p

E; =E,' '+pE;"'+p E '+

) —
~

q(0) ) +
~

@(1)) + 2~q(2) ) +
(8)

By inserting Eqs. (6) and (8) into Eq. (5) and equating the
terms of the same order in the expansion parameter p, we
find

HO
~

q(0) ) E (0)
~

q(0) )

(H' —E;"')lg';" &+( W —E'")
l
g;" & =o,

(H0 E(0))~q()v) ) +( W E(1))~q(x —1) )

(9)

(10)

N—g E™~tt)( ') =0 E ~2 (11)
m —2

for, respectively, the zeroth-, first-, and higher-order
(X) 1) equations.

Next, we propose a t-dimensional model space in
which to solve our original Schrodinger equation (5).
We assume that this space is spanned by some appro-
priate trial set of t orthonormalized vectors

~ P ),
a =0, 1, . . . , (t —1). Projection operators P and Q, defined
as

where the resolvent or propagator R, is defined in terms
of the Hamiltonian H as

R, —= (E( ' —QH Q) (15)

Insertion of Eqs. (14) and (15) into Eq. (13a) then gives

P(H +H QR, QH )P~1(r, ') =E 'P~1(', ) (16)

as the projected version of the zeroth-order equation (9)
into the model space. We now consider alternative ways
to proceed beyond Eq. (16).

1. The standard approach (RSPT)

H ~H(A, =O) —=H(0), (17)

and the basis states ~P ), a=0, 1, . . . , (t —1), to be the
lowest t bound eigenstates of this Harniltonian. In this
case, Eq. (16) simply reduces to

H (())p
~

q(0) ) —E(0)p
~

q(o) ) (18)

and hence the zeroth-order wave functions ~1()(0) ) and en-
ergy estimates E ' become, respectively, the correspond-
ing eigenfunctions and eigenvalues of H(0), which it is
assumed are known.

There are countless examples of very successful appli-
cations of this standard RSPT approach. On the other
hand, it can also lead to serious problems, as we have al-
ready indicated in our introductory remarks in Sec. I.
This is particularly true in the rather commonly occur-
ring situation where the nature of the Hamiltonian
changes radically in the X~O limit. A typical example is
provided by the well-studied anharmonic oscillators.
It is to overcome these difhculties that we now propose
an alternative approach to the zeroth-order equation (16).

It is, of course, clear that, in general, Eq. (16) is no
easier to solve than the original Schrodinger equation (5).
The standard way forward is that adopted in Rayleigh-
Schrodinger perturbation theory (RSPT), where H0 is
now normally constrained to be diagonal in our chosen
representation. This is usually, but not necessarily, ac-
complished by choosing H to be the noninteracting part
of the original Hamiltonian H =H(k),

a=o

may then be used to project into and out of the model
space, respectively. In particular we focus initial atten-
tion on the zeroth-order equation (9), and decompose it
as,

2. A more general approach (MRSPT)

We now wish to remove the usual constraint imposed
in RSPT that H be diagonal. However, as we have al-
ready indicated, when this constraint is relaxed the resul-
tant zeroth-order equation is, in general, no easier to
solve than the original full Schrodinger equation. This
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H(A, )=H +pW (19)

as before, but now with the new definitions,

H =H +pP(P,
pW: H(X)—H p—P(P—,

(20)

(21)

where g is an as yet arbitrary matrix of dimension (t X t)
in the model space, which is formally of order unity with
respect to the parameter p.

Insertion of Eq. (20) into the zeroth-order equation (16)
and use of the trivial relations PQ = QP =0 and
QR; =R;Q readily yields the relation,

P(H'+ pg+ H'QR, H')Ply, '" ) =E,"'P
l
q',"& . (22)

While it is possible to make further progress with Eq. (22)
as it stands, a considerable simplification occurs if we
now impose a further constraint on our model space,
namely that the zeroth-order eigenvalues are degenerate,
i.e. , E '=E' I, independent of i for i=0, 1, . . . , (t —1). In
this way a knowledge of a single input resolvent
R =—(E' QH Q) '—will suffice. Furthermore, it is also
clear that after this simplification the P projection of an
arbitrary wave function will also satisfy the zeroth-order
equation (16). Indeed it is apparent that Eq. (16) may
now be satisfied identica11y by the choice

g= p 'P(E"' H'-H'QR—QH')—P, (23)

for the separable modification to the Hamiltonian. It
should be evident that with this specific choice of Eq. (23)
we have solved the zeroth-order Schrodinger equation (9)
for an arbitrary wave function and energy. In other
words, we effectively no longer need to solve it at all. In
this way the (t independent model-space projections of
each of the t) zeroth-order wave functions

~ f;') and
their degenerate zeroth-order eigenvalue E' ' are now to-
tally arbitrary at this zeroth-order level. In particular,
we shall henceforth denote E' ' by c to stress the fact that
it remains a completely free parameter of the MRSPT ap-
proach. To summarize, we thus have that the energy ei-
genvalue expansion of Eq. (8) becomes

E, =c+pE,'"+p'E"'+ (24)

where c, is a free parameter of our MRSPT, and the
zeroth-order resolvent of Eq. (15) becomes

R =(E—QH Q) (25)

in terms of the same parameter. The Q projections of the
wave functions ~PI ') are obtained from Eq. (14) with

R;~R, in terms of the as yet arbitrary P-space projec-
tions. This latter equation, together with Eq. (23), are
henceforth regarded as definitions which fix the decom-

difficulty can be overcome via the modified Rayleigh-
Schrodinger perturbation theory (MRSPT) that is now
described. We first note that within our t-dimensional
model space it is natural to consider and exploit the rath-
er obvious freedom of modifying the decomposition of
the Hamiltonian H(A. ) in Eqs. (6) and (7) by the addition
and subtraction of terms which are separable in the mod-
el space. We thus write as our new decomposition,

H'= g g H'„~m )(n ~,
m =1n=1

(26)

and, purely for ease of discussion, let us also consider just
the case Q~ I,P~0 for the moment. Clearly, the usual
RSPT depends on the representation being diagonal,
H „~H„5 „to be able immediately to calculate the as-
sociated resolvent as

(e —H, )-'- y ~n), (n~ .
(e —H„„)

(27)

When H is not diagonal, perhaps the simplest way to
construct the resolvent is simply to truncate the basis to a
finite subspace I ~n );n =1,2. . . , MI, so that the upper
limits in the double summation in Eq. (26) become M,
and the truncated (M XM)-dimensional matrix is then in-
verted numerically. This is the method that will be
adopted in the present work, but clearly we do need to
address the question of convergence as M ~ ~. Indeed,
this convergence has been examined elsewhere ' '' ' by
one of us in the case where the RSPT condition of di-
agonality of H has been relaxed to deal instead with
more general representations in which H „=0 for
~m —

n~ )s, for some non-negative integer s. The RSPT
discussed above is just the case s =0. The more general
case s & 0 leads to a band-matrix representation for H in
which there are (2s + 1) nonzero "diagonals. "

In particular, it has been shown ' how the s =1 case
(i.e., tridiagonal matrices H ) may be solved analytically
in terms of continued fractions, and the M ~ ~ conver-
gence has been reduced to a convergence of such contin-

position of Eqs. (19)—(21) and which eliminate the
zeroth-order equation (9) completely.

At first sight one might imagine that what we have
done is essentially trivial. It is certainly clear that this
new MRSPT approach must, in some sense, be more
demanding on the higher-order corrections. However the
one overwhelming advantage of choosing a nondiagonal
"unperturbed" Hamiltonian H is that we can now
choose our starting Hamiltonian H to be arbitrarily
close to H(k) and so hope to ensure a rapid convergence
of the perturbation expansions (8) and (24) by producing
an expansion parameter p which is arbitrarily small.
Thus, our starting Hamiltonian H need not be funda-0

mentally different from the full Hamiltonian H(X), as is
frequently the case in the standard approach where H is
constrained to be diagonal. For example, in the case of
the quartic anharmonic oscillator discussed below, both
H and H(A, ) contain quartic terms.

Naturally, there is a price which has to be paid for this
extra freedom. Thus, in practice we still need an efficient
method to perform the evaluation of the inversion in Eq.
(25) to obtain the "unperturbed propagator" or resolvent
R. Various such methods have been proposed in the past.
Let us consider a zeroth-order Hamiltonian H which
has the general representation in some complete ortho-
normal basis I ~n );n =1,2, . . . I,
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ued fractions. This procedure has been extended to the
case s ) 1 by using matrix continued fraction techniques
to replace the previous continued fractions of the s =1
case by their (s Xs)-dimensional matrix analogs. An al-
ternative approach has also been examined, ' in which
the resolvent is itself approximated by a similar band-
matrix form R ~R, where R „=R „ for lm n—

l
~s,

and R „=0for lm —nl)s. A final approach to the in-
version inherent in the construction of R has been given '

in terms of an asymptotic fixed-point analysis.
The upshot of all these investigations is that there seem

to be no practical problems of convergence in the M —+ ~
limit of the truncated basis representation for H . This
is, in any case, intuitively obvious since the error caused
by the truncation can, in principle, itself be incorporated
into the perturbative part 8' of the full Hamiltonian. In
all of our later numerical work we shall, therefore, per-
form the inversion in Eq. (25) within a suitable finite-
dimensional truncated basis. Furthermore, we shall con-
sider only the more interesting question of the conver-
gence of the MRSPT series of Eq. (24).

Finally, we reiterate that our zeroth-order Hamiltonian
H has been left completely arbitrary. In particular, it
may or may not have the same or similar functional form
as H(A, ). Most previous work, for example, has been
done for an H(A. ) that represents the standard quartic
anharmonic oscillator and with H equal to an appropri-
ately chosen tridiagonal piece of what is a pentadiagonal
matrix representation for the full Harniltonian in the cor-
responding harmonic oscillator basis. In the present
work we shall concentrate on numerical examples where
H is chosen to have exactly the same form as H(A. ) but
with a dig'erent value of the coupling constant(s) A, .

As stated above, the zeroth-order estimate c for the en-
ergy is a free parameter in the MRSPT scheme. If the
model-space projector is constructed as in RSPT and if c.

is set equal to the degenerate model-space eigenvalue E' '

of the unperturbed Hamiltonian H, then the matrix g of
Eq. (23) will be identically zero, and our new MRS
scheme will reduce to the standard RS scheme. Clearly,
a main point of interest is now going to concern the be-
havior of the MRSPT when c. is not equal to an unper-
turbed eigenvalue. It is clear that the new scheme will
oft'er little practical advantage if it is capable of produc-
ing accurate results only for values of c close to such un-
perturbed eigenvalues. Obviously we cannot expect the
accuracy of the resultant energy eigenvalues to be totally
independent of the choice of c. but we can hope that the
results are relatively insensitive, at least in large regions
centered around the eigenvalues of H . This point will be
examined particularly closely in the ensuing discussion.

After this rather lengthy discussion of the zeroth-order
equation in general perturbation theory and its particular
form in our MRSPT approach, we now discuss the
higher-order MRSPT equations and corresponding
corrections to the wave functions and eigenvalues. As al-
ready stated at the beginning of this section, many of the
results presented below are formally equivalent to those
in standard perturbation theory, although a few
modifications are also necessary due to the nondiagonali-
tyofH .

B. The Srst-order MRSPT equations

The general first-order equation (10) now becomes

(H' —e)lq', "&+(w —zI") 1i,'")=o . (28)

(H' —.)le")=o .

We thus find the compact relation,

(Q' 'l(W —E;"')lf'; ') =0, i,j =0, 1, . .. , (t —1) .

(31)

(32)

We may finally write this equation wholly within the pro-
jected P space by using Eq. (14) to write the zeroth-order
wave functions lttt'; ') in terms of their P-space projec-
tions as,

lq,'"& =(I+QRHO)Ply, '"&

= (I +QR H )P l
P' ' ) (33)

where we have also used Eq. (20) and the trivial relation
QR =RQ, and where I is the identity operator. Equation
(32) thus becomes

(g' 'lP(H RQ+I)(W E,"")(I+QRH )P—lf' ') =0 .

(34)

If we decompose the P-space projections of the zeroth-
order wave functions in terms of our t orthonormalized
basis states lP ) as

Ply', ")= gc." ly. &, E =o, l, . . . , (t —1)
a=O

(35)

then Eq. (34) may be written as a (t X t )-dimensional ma-
trix generalized eigenvalue problem,
t —1

g (/pl[(H RQ+I)W(I+QRH )
a=0

E,'"(I+H RQR—H ) alp )&' =0,
i,g=o, 1, . . . , (t —1) (36)

which we may now solve numerically.
It is clear that Eq. (36) specifies both the first-order

corrections E,'",i=0, 1, . . . , (t —1), to the lowest t states
of the spectrum as well as the zeroth-order approxima-
tions to the corresponding wave functions via Eqs. (33)
and (35). This structure is reminiscent of the comparable
result from the degenerate version of R.SPT. ' We note,

We proceed as before by projecting Eq. (28) into the P
and Q subspaces,

P (H —e)( P +Q) l
f';" ) +P ( W—E;"')

l g; ' ) =0, (29a)

Q (H e)(P—+Q )
l
P';" ) + Q ( W E"—)

l
f'; ' ) =0 . (29b)

The latter equation (29b) may again be formally solved
for the Q projection of the wave function

l g', "),

Qlq';"&=QRH Ply';"&+QR(W E,' ')—lg;'') . (30)

The first-order wave function corrections may be elirn-
inated by taking the overlap of Eq. (28) with the states
( QJ 'l and using our imposed condition
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however, that in our MRSPT approach we do not require
that the model-space projector P commutes with the un-
perturbed Hamiltonian H . We also note that the
coefficients c(,', a=o, l, . . . , (t —1), are only defined by
Eq. (36) up to an overall multiplicative constant which
determines the normalization of the unperturbed wave
function.

C. The higher-order MRSPT equations

From Eq. (11), the Nth-order generalization of Eq. (28)
is now given by

(HO )ly{N()+(W ~{1))llew(N 11)

then Eq. (40) enables us to eliminate the value of E,' ' as a
function of the coefficients c '; ' with m =0, 1, . . . ,N —1.
In this way Eq. (39) may be reduced to a set of equations
for the coefficients c ', " ultimately in terms of the
coefficients c' obtained previously from Eq. (36).

We note, however, that after this procedure, Eq. (39)
does not uniquely define all of the quantities c ' ", a
=0, 1, . . . , (t —1), for given values of i and n T.he remain-
ing so-called renormalization ambiguity of these re-
currence relations stems ultimately from the fact that
Eqs. (10) and (11) do not uniquely specify the correction
terms lP( ') for N~ 1, since an arbitrary renormaliza-
tion,

y E( (lq(N — )) —() N)2 (37)
lq'"'&-l1(' '&+ (42)

m=2

By a similar procedure as for the first-order equation
above, the Q projection of Eq. (37) becomes

remains compatible with these equations by use of Eq.
(9). In the standard RSPT this ambiguity is usually re-
moved by requiring

Qlq(N() =~ QII0PlyI-'1)

+g(w —z,"1)lq(" '1)

N
~(m(g ly(N

—m) )
m —2

(38)

&y(0)ly(N)) —0 (43)

In the present case, it is simpler to fix directly one of the t
coefficients c';', e=o, 1, . . . , (t —1), for each fixed N and i
or alternatively to fix the norm of each of the wave-
function corrections l1(r( '). An obvious replacement of
Eq. (43) in MRSPT would appear to be the condition

& p(0(l( W ~(1))lq(N
—11)

~,(m}& q(0)
l

q(N —m) ) () (39)

By inserting Eq. (38) into Eq. (37), the P projection of the
latter equation may also be computed. More directly, by
taking the overlap of Eq. (37) with the state & g' 'l, and

using Eq. (31), we find the compact relation

&P, lg(, ')=0, i=o, l, . . . , (t —1), N~1 (44)

which implies immediately c; ' =0 for all N ~ 1 and
i =0, 1,. . . , (t —1). This is not the only choice possible,
but it is the one that we adopt in our numerical work dis-
cussed below.

We illustrate how the renormalization ambiguity arises
in practice by considering Eqs. (39) and (40) in the case
N =2. After eliminating E,( ' from Eq. (39), by use of Eq.
(40), we find

Equation (39) can be rewritten as a hierarchical set of
equations for the energy correction terms,

&
i((0) l( W ~(1))lq(N

—11)

& y"'lq;( w —E(")lq(")=o, /, J =0, 1, . . . , (t 1)

where

lq', ")& q,
"

I

&
q(0)

l

1((01),
—= 1—

(45)

(46)

N —1—y E{-'&q',"ly, ™)
m=2

i =0, 1, . . . , (t —1 ), N & 1 (40)

where we have put j =i. In this way the energy correc-
tions E,' ' may be regarded as known in terms of the
lower-order wave functions lg("') with n =0, 1, . . . , N —1.
In this way Eqs. (32) and (39) may be regarded as implicit
recurrent definitions of the wave-function correction
terms, which may be solved for and reinserted into Eq.
(39).

If we decompose the P-space projections of the wave-
function correction terms,

Equation (45) is now a set of equations for the wave func-
tions lP,"') and may be compared with Eq. (32). We
note, however, that the member of the set of equations
(45) with j =i is a trivial identity since &P( 'lg, =0 from
Eq. (46), and we immediately see this as the cause of the
above-mentioned ambiguity. We may proceed as before
by projecting lp', ") into the P space. We use Eq. (30) to
write lg', "& as

ly(, "&=(I+Qza')Ply(, "&+QjI ( w —z("))qI"& . (47)

Insertion of Eqs. (41) and (47) into Eq. (45) then yields the
result

t —1

y &1//(0'ly, (w E,!")(I+QRH )ly &c '—
a=0

Ply', -') = g c(-, 'ly. &, i =o, 1, . . . , (t —1) (41)
+&q,'"ly, (w —E ")Q&Q(w —E,"')lP, ') =0. (48)
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Since the wave functions ~P'; ') are known, Eq. (48) may
now be solved for the coefficients c",', apart from the am-
biguity arising from the efFective loss of the j =i member
of the set. It is clear that we may remove the term +=i
from the sum in Eq. (48) by arbitrarily assigning the
coefficients c;" any values we choose. The remaining
nontrivial (jWi) linear equations may then be uniquely
solved for the remaining parameters c" .

This procedure may be repeated at each higher level to
solve both for the energy corrections E ' and the corre-
sponding wave-function correction terms ~ttjI "). A
similar renormalization ambiguity may be explicitly un-
covered in each order. As noted already, for the sake of
making a definite choice for our numerical work below,
we have adopted the zero-overlap requirement of Eq.
(44).

In the remainder of this work we now apply the above
MRSPT technique to two specific illustrative examples,
in order to see how well it converges in practice.

III. NUMERICAL RESULTS

In all of the results that we present below, we have tak-
en the unperturbed Hamiltonian H to have the same
functional form as H ( A, ) itself. Thus we choose
H ~H(Ao) with some other (arbitrary) value Ao of the
coupling constant. We are particularly interested in ex-
amining the accuracy and convergence properties of the
method as a function of both A,o and the free parameter c.

A. Finite tridiagonal matrix

As our first example we consider one of the simplest
model Hamiltonians, namely a finite (M XM)-dimen-
sional tridiagonal matrix H(A, ), with two coupling con-
stants X—:(A, „A,2} and elements specified as

H „(A,)=(a+A2)5 „+A)(5 „+)+5 +, „),
m, n =1,2, . . . ,M . (49)

There are a number of reasons why this particular Hamil-
tonian is well suited for testing our MRSPT procedure.
In the first place, the associated Schrodinger equation

crate form, which is the analog of the case t =M for the
MRSPT. By contrast, we shall see that the MRSPT can
work very well indeed for any subspace size t ~M, even
for t =1. We also note that for this model, the unper-
turbed (nondiagonal) propagator R of Eq. (25} is very
simple to calculate, since the inverse of a tridiagonal ma-
trix is straightforward to evaluate by numerical or con-
tinued fraction techniques. Finally, we remark that the
arbitrary parameter c. in this case may rather simply be
set equal to the lowest eigenvalue of H =H(A, o), so that
the separable modification g to the Hamiltonian, given by
Eq. (23), becomes identically zero.

We display in Fig. 1 the "ground-state energy" (i.e.,
the single energy eigenvalue obtained within the subspace
of dimension t =1) as a function of the parameter e for
the Hamiltonian of Eq. (49) with dimension M =4 and
with parameters a =100, A, =(0.2, 0.4). We choose an
unperturbed Hamiltonian H =H(io) of the same form
but with Xo=(0. 19,0.28) and give results up to tenth or-
der in our MRSPT expansion. We note that the present
model Hamiltonian has the special property that if the
free parameter c, equals any eigenvalue E;(Ao) of H(ko)
then the MRSPT scheme will produce the corresponding
eigenvalue of H(A, ) exactly at first order. The underlying
reason for this is that the eigenfunctions (but not the ei-
genvalues} of the Hamiltonian of Eq. (49) are actually in-
dependent of the coupling parameters A, , as may be seen
from Eqs. (51)—(53). This feature of the model would it-
self cause the steplike behavior seen in Fig. 1, which be-
comes more and more pronounced with increasing order
of perturbation. We also note that there is an essentially
Oat plateau centered around each eigenvalue. As already
mentioned in Sec. II, this insensitivity of the MRSPT es-
timates of the energies to the choice of c, at least within
certain broad regions, is just what we had hoped for. All
one needs in order to obtain a very accurate estimate for

101.0

1008 L

H(~)lq„) =Z„~q„), k=o, l, . . . ,M —1 (50) 100.6 'p

Ek =a + A, z
—2k, cosXk,

where

Xk=, k=0, 1, . . ., M —1 .
(k+ 1)ir
M+1

(52)

(53}

Second, this Hamiltonian clearly exhibits a strong
"discontinuity" at the point X=(0,0), where the energy
spectrum becomes completely degenerate. Clearly, stan-
dard RSPT will not work at all about the unperturbed
Hamiltonian H (0), unless one uses the maximally degen-

is exactly soluble. Indeed the matrix of Eq. (49) is closely
related to the Chebyshev polynomials of the second
kind, and we may write for the eigenfunctions and ei-
genvalues, respectively,

(n ~Pk ) =( —I)"+'sin(nXk)lsinXk, n =1,2, . . . , M (51)

100.4

100.2

100 0 L

100.0 100.2 100.4 100.6 100.8

FIG. 1. Results for the energy, calculated via the ground-
state formalism, of the tridiagonal Hamiltonian of Eq. (49), with
k=(0.2, 0.4) and ko=(0. 19,0.28), with a matrix size M =4.
We have used a subspace size t =1, and results are shown as a
function of the free parameter c, for perturbation order N = 1

(solid line), 2 (long dashes), 5 (medium dashes), and 10 (short
dashes). The points [E;(k~),E;(A.)] are marked with the symbol
X, emphasizing that, for this Hamiltonian, when c=E;( ko ),
MRSPT produces the energy E;(k) exactly, even at first order.
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B. The quartic anharmonic oscillator

As our second model we consider the standard, one-
dimensional, quartic anharmonic oscillator defined over
the infinite x axis as,

H(A, ) = —,'(p +x )+Ax, A, )0 (54)

in terms of the coordinate x and canonical momentum p,
or equivalently as

H(A, )=—,'+a a+ —,'A.(a+a ) (55)

the eigenvalue E; of the full Hamiltonian H is an ex-
tremely rough estimate of the corresponding eigenvalue
for the unperturbed Hamiltonian H . One might still
worry that these "plateaus of insensitivity" are an artifact
of this special Hamiltonian. We shall see below, howev-
er, that the same general behavior also holds for the
anharmonic oscillator example, and we postulate that it
is a general feature of the MRSPT.

In Table I we present the results for the M = 8-
dimensional matrix, with the parameters a, A, , and A,o tak-
ing the same values as above and with c equal to the ex-
act ground-state eigenvalue Eo(ko) of H =H(Ao). Re-
sults are displayed for the size of the subspace varying
from t = 1 to the maximum t = 8, and for both first and
second orders in the perturbation theory in each case. As
before, the ground state is produced exactly at first order.
Naturally, the entire spectrum is also exact at first order
for the t =8 subspace size. Clearly, the excited-state en-
ergies are not produced as well as the ground-state energy
since the differences between the higher levels and the pa-
rameter c are greater, and we recall that the zeroth ap-
proximant for all levels is c. Certainly a higher-order
perturbation calculation would do better. However, for
this Hamiltonian at least, we can obtain much better esti-
mates for the excited-state energies by choosing a more
appropriate value for c and working even in the
"ground-state" (t =1) formalism.

in terms of the standard creation and destruction opera-
tors a and a, respectively, defined in terms of the usual
commutation relation [a,a ]= 1 and the relation a ~0 )
=0, where i0) is the usual vacuum state.

It is well known that standard RSPT diverges for
this model for every nonzero value of A, . We have not
performed a similar analysis for the MRSPT, although
our numerical results below strongly suggest that the
method probably converges in certain ranges of the input
parameters. A detailed analysis of the convergence prop-
erties would be very interesting but would take us too far
afield for present purposes. In its absence however, we
make two qualitative remarks. In the first place, the
standard intuitive argument for why the RSPT series for
an energy eigenvalue has a zero radius of convergence in
the parameter k is that the A. ~O limit is strongly singular
in the sense that the coordinate-space representation of
Eq. (54) for the potential part of the Hamiltonian,
changes from a quartic to a quadratic form. We note
that, by contrast, this is not generally the case in our
MRSPT scheme, since we may choose to expand about
some arbitrary value of A, ~A,o, rather than about the
value A. ~O. We use our numerical data below to try to
ascertain whether values of ko can be chosen so that the
corresponding MRSPT series are convergent. Of course,
it is impossible to predict the behavior of the neglected
higher-order perturbative corrections in this way, but we
shall see that the results are nevertheless quite suggestive.

Our second point is that one of the main advantages of
our new technique is that we may readily expand about
any value of A.o. Thus, even if our MRSPT techniques do
turn out to provide formally divergent series for the ener-
gy spectrum, it is still perfectly possible that these series
may be able to provide very accurate estimates, by choos-
ing a value of A, o "close enough" to A. and by not attempt-
ing to go to too high an order in the perturbation theory.
That this is true can be seen very clearly even in the stan-
dard RSPT. Thus, the results of Bender and Wu show
that for A. =0.01, for example, the RSPT corrections to

TABLE I. Results for the eigenvalues E; [=E;(k)] of the tridiagonal Hamiltonian with size M=8, a= 100, A, =(0.2, 0.4), and
Ap=I'0. 19,0.28) for various values of the subspace size t. The free parameter c has been set to Ep(kp). For a given t, the first- and
second-order energies are displayed above and below each other, respectively. Note that the t = 8 results are exact at first order.

Ep a

0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123
0.024 123

0.41003
0.18608
0.221 12
0.11352
0.147 36
0.103 94
0.11473
0.098 27
0.10003
0.094 88
0.094 57
0.093 70
0.093 58
0.093 58

0.606 93
0.494 79
0.417 62
0.322 33
0.304 95
0.253 00
0.241 07
0.218 63
0.208 89
0.203 06
0.2
0.2

E3 —a

0.687 99
0.639 53
0.538 73
0.484 51
0.427 92
0.394 47
0.358 05
0.345 60
0.330 54
0.330 54

E4 —a

0.727 79
0.706 79
0.614 04
0.587 90
0.519 71
0.505 36
0.469 46
0.469 46

Eq —a

0.750 18
0.741 32
0.664 42
0.654 55
0.6
0.6

E6 —a

0.764 36
0.761 22
0.706 42
0.706 42

E, —a

0.775 88
0.775 88



39 PERTURBATION THEORY WITHOUT UNPERTURBED SOLUTIONS 5345

Without loss of generality we restrict ourselves to real
values of the parameter r. Just as the state ~0) is defined
to be the original (or "bare") vacuum state a ~0) =0, we
now define ~P) to be the vacuum state of the unitarily
transformed operators, b

~ P ) =0. Using the easily proved
relation,

exp( —,'ra )a exp( —,'ra ) =—a—rat2 = (57)

it is simple to prove that the normalized state ~P ) is given

by the Gaussian form

the ground-state energy decrease monotonically out to
34th order before they start to diverge beyond this and at
which point the size of the corrections is of the order of
1()

—12'
We present our numerical results for the Hamiltonian

of Eq. (55) in a Bogoliubov-transformed harmonic oscilla-
tor basis and with the specific transformation used deter-
mined variationally. This procedure is equivalent to us-
ing the Hartree (or Gaussian) approximation as the start-
ing point. We first perform a Bogoliubov transfor-
mation on the operators a and a, namely the most gen-
eral (homogeneous) linear transformation (or "rotation")
that leaves the canonical commutation relations un-
changed,

b =(1—r )
' (a —ra ), ~r~ &1, [b, b ]=1 . (56)

12

0
0.6 0.7 0.8 0.9 1.0

FIG. 2. Accuracy vs c for the ground-state energy of the
anharmonic oscillator, with A, = 1.0, 2.0=0.99, t = 1, in a size-19
basis. Results are shown for perturbation order N=1 (solid
line), 2 (long dashes), and 3 (short dashes). Note that for this
case, Eo(AO)=0. 8019436. Accuracy of the energy E has been
defined as —log, o~(E E'""')/—E'""'~ and is interpreted as the
number of correct digits, in base 10, of the approximation E to

exact

quartic anharmonic oscillator which is accurate to better
than about 2% for all (positive) values of A, .

In our numerical work, we use the Hamiltonian of Eqs.
(59)—(62) in the orthonormal harmonic oscillator repre-
sentation specified by the new operators b and b,

~P) =(1—r )' exp( —,'ra" )~0) . (58)
~n ) =(n!) ' (bt)"~y), n =(), 1,2, . . . . (63)

We note that the state exp( ,'ra ) ~0)—is normalizable

only if ~r~ & 1, which is the condition for the transforma-
tion expressed in Eq. (56) to be canonical.

Using the inverse of the transformation of Eq. (56), we

can readily write the Hamiltonian of Eq. (55) in terms of
the new operators b and b ~ It is convenient to write it in

explicitly normal-ordered form with respect to these
operators, and we find

2 1+H=s+ (b +b )+ b b4' 2'

More specifically we work with an approximate, truncat-
ed (M XM)-dimensional representation in which only the
states of Eq. (63) with n & M are used, as discussed previ-
ously. While this transformed basis will improve the nu-
merical accuracy of our results over those obtained using
the original basis, it does not change the fundamental na-
ture of the problem. Thus, the transformed Hamiltonian
of Eq. (59) is still "singular" in the limit A, ~O.

We turn first to the question of how our results depend
on the choice of the input parameter c.. Results for the

10

where

+:(b+b ):+:(b+b ):,2' 4' (59)

and

co=(1—r)/(1+r)

1+6) 3A.
Eo= 4' 4~

(60)

(61)

The Hartree approximation is finally found by minimiz-
ing the expectation value (it ~H~P) =Eo with respect to
the free parameter co. From Eq. (61), co is thus a solution
to the cubic equation,

0

0.1 1 10 100 1000

co co 6K=0 . (62)

It is not diKcult to show that for all values of A. , Eq. (61)
has only one real root which satisfies the condition co & 0
imposed by the restriction

~
r

~
& 1. It has been shown else-

where that this simple approximation itself produces a
variational estimate co for the ground-sta~e energy of the

FIG. 3. Accuracy (as defined in Fig. 2) of the ground-state
energy for the anharmonic oscillator for various values of A.

with XO=0.99K, in a t = 1-dimensional subspace of a basis of size
19. The free parameter c, has been set to Eo(ko) (solid line),
0.9EO(ko) (long dashes), and 1.1EO{AO) (short dashes), and re-
sults are given for perturbation order N from 1 to 3 with N
displayed to the right of the curves.
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TABLE II. Results for the ground-state formalism energy for the anharmonic oscillator, where the free parameter E has been set
to various values of the eigenvalues E;(Ao) of the H(A, o) Hamiltonian, with i ranging from 0 to 4. The perturbation parameters are
A. =1.0, Lo=0.99, with the subspace size t =1, in a size-19 basis. Results are shown up to perturbation order N =10, with the first
row showing the value of E and the last showing the exact results.

1

2
3
4
5
6
7
8

9
10

0.801 943 626 3
0.803 775 642 3
0.803 770 633 7
0.803 770 657 4
0.803 770 657 3
0.803 770 657 3
0.803 770 657 3
0.803 770 657 3
0.803 770 657 3
0.803 770 657 3
0.803 770 657 3
0.803 770 657 3

2.730 955 805 6
0.804 873 494 5

0.803 091 971 5

0.804 263 748 7
0.803 389 802 4
0.804 070 481 0
0.803 533 391 0
0.803 958 597 5

0.803 621 838 8

0.803 888 411 9
0.803 677 561 7
2.737 892 359 2

5.165 126 648
5 ~ 179 334 702
5 ~ 179 291 721
5.179 291 942
5.179 291 941
5.179 291 941
5.179 291 941
5.179 291 941
5 ~ 179 291 941
5.179 291 941
5.179 291 941
5.179 291 941

7.919853 742 7
0.847 450 863 0
0.734 3
1.047 4
0.454 4
2.148 7

—0.851 4
8.1185

—6.339 4
40.12

—25.15
7.942 429 339 7

10.931 71400
10.963 739 60
10.963 639 26
10.963 639 79
10.963 639 79
10.963 639 79
10.963 639 79
10.963 639 79
10.963 639 79
10.963 639 79
10.963 639 79
10.963 639 79

accuracy of the ground-state energy are displayed in Fig.
2 for the case k = 1, A,O=O. 99, in the same size-19 basis as
before. The accuracy of an estimate E for the energy is
taken to be the quantity —log, o 1 E/E'""—'~, where the
exact value E'"'"', is taken to be that corresponding to
the truncated basis. In all of our numerical work we use
a basis of size M = 19. We point out that this basis size
gives results extremely close to the infinite-basis limit.
Thus, for the case k= 1, for example, the ground-state en-

ergy has an error of less than 10 % due to the finite
(M=19) basis size. We note that in each order of pertur-
bation theory, the accuracy is only weakly dependent on

In second-order MRSPT in this case the exact answer
happens fortuitously to be attained with a value v=0. 78,
which may be compared with the corresponding value of
Eo(ko) =0.80. We also display in Table II the same t =1
ground-state results, but where E =E„(A ), o

n =0, 1, . . . , 4, the lowest five eigenvalues of the truncat-
ed (in the same basis of dimension 19 as previously) un-

perturbed Hamiltonian H(A. O). We see very clearly the

interesting feature that the "ground-state" (t =1) formal-
ism accurately produces the excited-state energies for all
levels which have the same parity as the ground state.
We take this as evidence that the steplike feature of Fig. 1

for the case of the tridiagonal Hamiltonian of Eq. (49) is
not simply due to the special features of that model, as
discussed previously. It seems that as long as the excited
state being considered is not too di6'erent from the
ground state, then our MRSPT always has the rather
general feature illustrated by Fig. 1.

In Table III and Fig. 3 we present results for the
ground-state energy and its accuracy, respectively, as ob-
tained via the t = 1 version of MRSPT in various orders
up to the fifth. The coupling parameter A, ranges from
0.1 to 10 . In each case we have chosen lo=0. 99K,. In
Table III we have set c equal to the exact ground state
Eo(A, O) of the (truncated) unperturbed Hamiltonian
H(A, O), and in Fig. 3 we have set E equal to 0.9, 1.0, and
1.1 times Eo(A,O). The data clearly demonstrate that the
accuracy of the method at any order in perturbation

10

0.8

i, . I'g'/
g'i'/

gg
04

0.2

0
0.0 0.5 1.0 1.5 2.0

Xp

FIG. 4. Accuracy (as defined in Fig. 2) of the ground-state

energy for the anharmonic oscillator as a function of Ao, with
X=1.0, c =Eo(ko), with the subspace size t = 1 in a basis size of
19. Results are displayed for perturbation order N=1 (solid

line), 2 (long dashes), 4 (one long, one short dash), 6 (medium

dashes), 8 (one long and two short dashes), and 10 (short
dashes).

0.0 0.1 0.2 0.3 0.4 0.5

1/N

FIG. 5. Crossing points (short dashes) and inAection points
(solid line) (as defined in the text) for the anharmonic oscillator,
as a function of the inverse of the perturbation order N, with
X=1.0, subspace size t =1, in a size-19 basis. Also shown are
the crossing points for the standard RSPT results (medium

dashes), as derived from Bender and Wu (Ref. 11). For these
later data, the vertical axis shows X and not kp.
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1/N

FIG. 6. Size of the Nth-order perturbation correction C& vs
the inverse of N, for the ground state of the anharmonic oscilla-
tor with X=1.0 E, =Ep(A, p) t =1 calculated in a size-19 basis.
Results are shown for kp=0. 35 (solid line), 0.40 (long dashes),
0.45 (one long, one short dash), 0.5 (medium dashes), 0.7 (one
long, two short dashes), and 0.99 (short dashes).

theory is almost independent of the value of the coupling
constant A, , over the four decades displayed, for a fixed-
input ratio A,o/A. , and we see again that they are also quite
insensitive to changes in c..

For a fixed value of A, , the accuracy as a function of the
input parameter A,o is shown in Fig. 4 for various orders
of perturbation theory in the t = 1 version of MRSPT. In
each case the free parameter c. has been chosen to be the
exact ground-state energy of the truncated (in the same
basis of dimension 19 as before) "unperturbed" Hamil-
tonian H(ko). These curves are quite suggestive concern-
ing the convergence properties of the method. In partic-
ular the curves are seen to have an inAection point in the
A,o(1 branch which is almost order independent and
which has no counterpart in the A.o) 1 branch. This
feature is shown in more detail in Fig. 5 where the
inflection point of each curve is plotted against N
where N is the perturbation order. We also similarly plot
in Fig. 5 the crossing points of the data displayed in Fig.
4, which are defined to be the values of ko above which
the (%+1)th-order estimate for the ground-state energy
becomes more accurate than the Nth-order estimate. If,
in the limit N~ ~, these crossing points would converge
to some nonzero value of A,o (less than one) our expansion
would be convergent for A. greater than this value. Of
course the data presented do not constitute a proof, al-

FIG. 7. Accuracy (as defined in Fig. 2) of the ground-state
energy of the anharmonic oscillator vs A. calculated via standard
RSPT as in Bender and Wu (Ref. 11). Perturbation orders
shown are N = 1, 2, 4, 6, 8, and 10 and are marked as in Fig. 3.

though they are certainly suggestive, and clearly demon-
strate the vast improvement over the comparable (Xo=O)
RSPT results.

It also seems quite plausible from Fig. 4 that the accu-
racy curves as a function of Xo asymptotically approach
an infinite step function as the perturbation order in-
creases without bound with a transition from divergence
to convergence for values of Ao, respectively, less than or
greater than some critical value of about 0.45. As one
last check on this point we display in Fig. 6 the quantity—1/log, ojC&j against X ', where Ctv=p Fz I is the
correction term to the ground-state energy eigenvalue
from Nth-order itself. By plotting curves for several
values of ko, we see again the fundamental change in the
behavior of the perturbation series for the ground-state
energy at X=-1 as we cross a value of Xo=0.45. By way
of comparison, we show in Fig. 7 the corresponding accu-
racy as a function of k for the standard RSPT as used by
Bender and Wu. The corresponding crossing points are
also displayed in Fig. 5, where these now indicate the
value of A. below which the (N +1)th-order estimate for
the energy becomes more accurate than the Nth-order es-
timate. In this case, the limit A. ~O as N~ ~ of this
curve is known, and indicates divergence of the RSPT
for all values of k.

It is our belief that the MRSPT convergence is very
good for A.o) A,o"", where A.~"' depends on k. We conjec-
ture that some ko"'(X) &A. is a natural boundary of the
convergence domain. At the very least, the data of Fig. 4

TABLE III. Anharmonic oscillator ground-state energies, calculated up to perturbation order N =5, for various values of k, with
kp=0. 99~, c, =Ep(k.p), and subspace size t =1 in a size-19 basis. The results in the last row, marked E, are exact.

0.1 10 100 1000

0
I
2
3
4
5

E

O.S58 656 881 7
0.559 147 038 1

0.559 146 325 2
0.559 146 327 2
0.559 146 327 2
0.559 146 327 2
0.559 146 327 2

0.801 943 626 3
0.803 775 642 2
0.803 770 633 7
0.803 770 657 4
0.803 770 657 3
0.803 770 657 3
0.803 770 657 3

1.500 374 630
1.504 987 217
1 ~ 504 972 389
1.504 972 469
1.504 972 469
1.504 972 469
1.504 972 469

3.121 117 646
3.131418 492
3.131 384 155
3.131 384 346
3.131 384 345
3.131 384 345
3.131 384 345

6.671 928 545
6.694 295 996
6.694 220 848
6.694 221 266
6.694 221 266
6.694 221 266
6.694 221 266
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TABLE IV. Results for the anharmonic oscillator, with A, = 1.0 and AO=0. 99, in a basis size of 19, for various values of the sub-

space size t. The column marked E indicates whether the free parameter c is equal to Eo(ko) or El(ko). For a given value of t and c.,
first-, and second-order results are displayed above and below each other, respectively. The results in the last row, marked E, are ex-
act.

Eo

0.803 775 64
0.803 770 63

E3 E4

0.804 873 49
0.804 873 49

0.803 775 64
0.803 770 63

2.740 843 83
2.738 543 46

0.804 873 49
0.803 091 97

2.737 912 47
2.737 892 26

0.803 771 05
0.803 770 66

2.740 843 83
2.738 543 46

5.225 250 36
5.196486 06

0.804 208 35
0.803 666 61

2.737 912 47
2.737 892 26

5.200 777 79
5.184 777 22

0.803 771 05
0.803 770 66

2.738 266 72
2.737 947 88

5.225 250 36
5.196486 06

8.170957 16
8.048 220 12

0.804 208 35
0.803 666 61

2.737 892 78
2.737 892 36

5.200 777 79
5.184 777 22

8.104 641 07
8.005 644 30

0.803 770 72
0.803 770 66

2.738 266 72
2.737 947 88

5.180 180 18
5.179 530 76

8.170957 16
8.048 220 12

11.668 3164
11.330 342 8

0.803 777 97
0.803 769 78

2.737 892 78
2.737 892 36

5.179 652 37
5.179 353 23

8.104 641 07
8.005 644 30

11.543 043 0
11.235 496 1

0.803 770 66 2.737 892 36 5.179 291 94 7.942 429 34 10.963 639 7

make it clear that we can achieve a high degree of accu-
racy for k & kcrlt

Finally we present in Table IV some data for subspaces
of size t & 1, again for the case X=1, Xo=0.99, and in a
size-19 basis. Results are shown for the free parameter E

set equal either to Eo(ko) or E, (k ), a0nd using first- and
second-order MRSPT in each case. As one might expect,
the energy level produced most accurately in the spec-
trum of H(k) is that which corresponds to the level in the
spectrum of H(k, o) to which the parameter c. has been set
equal. We also note that we obtain very accurate results,
at low perturbative order, for this favored level by in-
creasing the subspace size t. Thus eight digits of accura-
cy are obtained at only the second perturbation order for
t =4(5) for the ground (first excited) levels, respectively.
We also see that the further away an energy level is from
the chosen value of c., the worse is the accuracy. Given
that c. represents the zeroth-order approximant for all of
the energy levels, this result is to be expected. Overall,
the quality of the results is impressive, even for the
highest eigenvalues.

IV. SUMMARY AND CONCLUSIONS
The standard versions of perturbation theory first con-

vert the Schrodinger eigenvalue problem into a simplified
unperturbed version, which is chosen so that its solutions
may easily be determined exactly or, equivalently, so that
it has a known diagonal form. This process is then fol-
lowed by a systematic iterative determination of the
correction terms to arbitrary order. Our present MRSPT
represents a rather broad and basic generalization which
allows easy inclusion of nondiagonal pieces in the starting
Hamiltonians about which we perform the corrections.
This was achieved by rendering the solution of the unper-
turbed Schrodinger equation trivial, as a result of which
the energy "eigenvalue" for this equation has become a
free parameter (denoted by E) in the theory. If the energy
eigen values produced by MRSPT turned out to be
strongly dependent on the choice of c, the method would
achieve little, since this would imply that a rather accu-
rate knowledge of the unperturbed energy spectrum
would be needed as a starting point. The data that we
have presented for two very dissimilar models have
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shown that the accuracy achievable is, however, quite in-
sensitive to the choice of E. It was demonstrated that if c.

is broadly in the vicinity of, say the ith energy eigenvalue
of the unperturbed Hamiltonian H, then the MRSPT
energy will converge to the corresponding eigenvalue for
the full Hamiltonian H, as long as the zeroth-order and
appropriate exact wave functions are not too dissimilar.

We have seen, however, that the overall structure of
the new method is still very akin to that of RSPT, with
only relatively slight modifications. Since the unper-
turbed propagators are no longer diagonal, it is not
surprising that the explicit formulas of MRSPT are some-
what more complex then their usual RSPT counterparts.
Nevertheless this is a very small price to pay for a pro-
cedure that, as shown here and elsewhere '"' ' has
opened up a way towards a new and broad class of self-
consistent procedures for use with such nondiagonal un-
perturbed Hamiltonians, where previously only the diag-
onal elements had been available in this context.

In physical terms, the main achievement of our
modifications has been the possibility of including more,
if not all, of the large or otherwise important matrix ele-
ments of the full Hamiltonian into a nondiagonal, unper-
turbed version about which to do perturbation theory.
As a consequence, the energy perturbation expansions of
the form in Eq. (8) will feel the effects of these large Ham-
iltonian components only through the energy denomina-
tors of the unperturbed propagators of the form of Eq.
(18). Conversely, the remaining "small" matrix elements
will determine the rate of convergence or the relative de-
crease in size of the consecutive terms in the perturbation
series. It seems intuitively obvious that a much more
rapid convergence rate and/or higher quality of approxi-

mation at a given perturbative level ought to be achiev-
able in principle by our MRSPT over the standard ap-
proach. In our studies here we have presented numerical
data to back up these claims, It seems likely for example,
that in such important and well-studied examples as the
quartic anharmonic oscillator, which are known to
diverge for all coupling parameters in the standard ap-
proach, the MRSPT does converge for a wide range of
choices of unperturbed Hamiltonian. We have explicitly
shown that the method is certainly capable of giving re-
sults of very high accuracy for a wide range of its input
parameters.

Two of the freedoms of the degenerate version of
MRSPT presented here are the choice of t-dimensional
model space and of the initial energy parameter c. As al-
ready mentioned above, the accuracy achievable is not
strongly dependent on the choice of c, for example. Still,
some choice must be made. We believe that this decou-
pling of the model space and initial energy parameter
from the unperturbed Hamiltonian may well be exploited
as an asset of the method in future uses. For example, it
permits considerable freedom to impose other physical
constraints (e.g. , variational principles or inequalities)
relevant to the problem at hand, in order to determine
them separately. We hope to return in the future to such
considerations and to other further developments of the
method.
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