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Predictions of dendritic growth rates in the linearized solvability theory
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We obtain explicit predictions for velocity selection in two- and three-dimensional, symmetric,
and one-sided models of dendritic solidification. We do this by using WKB techniques to derive a
solvability condition, which is then solved numerically, for the existence of steady-state needle crys-
tals. The comparison with available numerical results is reasonably good. We also discuss the com-
parison with experiments.

I. INTRODUCTION

The solvability hypothesis seems currently to be the
leading candidate for a first-principles theory of dendritic
growth rates' and a number of other related phenomena
as well. Our purpose in this paper is to present a relative-
ly tractable form of this theory and its experimental pre-
dictions in a way that may lead to careful tests of its va-
lidity.

An elementary statement of the solvability hypothesis
is the following. One attempts to model the tip of a
growing dendrite by a needle crystal, that is, a shape-
preserving steady-state growth form which is a solution
of the equations of motion governing diffusion of heat or
solute in the neighborhood of a solidification front. This
needle crystal should be topologically similar to the para-
bolic solutions discovered by Ivantsov. If capillary
effects are included in specifying the boundary conditions
on the front, then, according to the hypothesis, at most
one dynamically stable solution will be found' for any
given set of externally determined growth conditions, for
example, for any fixed undercooling or supersaturation of
the solidifying material. This unique needle crystal, if it
exists, is supposed to be a stable attractor for the system.
Its growth speed, the radius of curvature of its tip, and
other properties such as the sensitivity to sidebranching
deformations are supposed to be the same as those of ex-
perimentally observed dendrites under the same condi-
tions.

The solvability theory has achieved some notable
theoretical successes, but its quantitative relevance to the
interpretation of experimental data has not yet been es-
tablished. The iiotion that the capillary effect is a singu-
lar perturbation which destroys Ivantsov's continuous
family of solutions seems now to be confirmed by a wide
variety of both analytic '' and numerical studies. ' '-'
Confirmation that the steady-state solution is actually an
attractor for the fully dynamical system has been ob-
tained in various local models of pattern formation and
recently in a more realistic two-dimensional numerical
simulation by Saito et al. ' The solvability theory also
explains why the stability parameter o. * (defined below)

plays such a central role in dendritic pattern selection at
small velocities. Finally, although the predicted depen-
dence of o.* on the crystalline anisotropy has not so far
been confirmed experimentally, it should be remembered
that the solvability theory provides a very natural ex-
planation for the fact that dendrites grow only in direc-
tions parallel to crystalline axes of symmetry; the lack of
symmetry precludes the existence of solutions in other
directions.

Uncertainties about the solvability theory stem princi-
pally from its apparent failure (by a factor of about 2—
see below for a more detailed account) to predict the
value of o.* for succinonitrile, by far the most carefully
studied material and one which ought to be well within
the range of validity of the theory. At the time this paper
is being written, it seems possible that this discrepancy
will be removed by a new measurement of the strength of
the crystalline anisotropy. Our proper interest here,
however, is in possible failures of the theory. It is still
conceivable that the solvability hypothesis is completely
wrong. The dynamic fixed point that we are finding, even
if we are computing it correctly, might be irrelevant, and
the true behavior of the system might be some oscillatory
or even more complicated motion that would be invisible
in our steady-state calculations. It seems to us more like-
ly, however, that the solvability theory is basically
correct for substances like succinonitrile and that, if there
is a theoretical mistake at all, the problem is simply in
our computational technique.

Attempts to translate the solvability hypothesis into
practical schemes for predicting dendritic geometries and
growth rates fall into two principal categories. The
direct approach is to use a computer to search for solu-
tions of the fully nonlinear and nonlocal free-boundary
problem that is posed by the steady-state equations of
motion for the solidification front. This approach has
been carried out successfully by several different groups
of investigators' '' ' ' and has provided both
confirmation of mathematical conjectures and useful
quantitative information. This approach becomes ex-
tremely difticult, however, for three-dimensional aniso-
tropic crystals. The second, more analytic, class of tech-
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niques introduces approximations which should be accu-
rate when the actual shape of the needle crystal is not too
far from the Ivantsov solution, that is, when the capillary
correction measured by a* is in some sense small. This is
the approach that we shall discuss here.

Within the broad category of analytic approaches there
are several levels of accuracy and sophistication. Clearly
the most elegant and most nearly rigorous of these is the
nonlinear analysis of Pomeau, Combescot, and co-
workers' ' which is based on unpublished ideas of
Kruskal and Segur. These authors use what might be de-
scribed as a method of matched asymptotics in the com-
plex plane to avoid performing an unsystematic lineariza-
tion at the beginning of the calculation, and are thereby
able to probe very deeply into the mathematical structure
of the problem. Their method still relies on being able to
use o.* as a small parameter, however, and thus their final
formulas pertaining to pattern selection turn out to be
identical to those obtained by the simpler procedure out-
lined below.

The method that we have advocated in the past, " and
which we shall develop further here, is one in which the
equation for the solidification front is linearized in the de-
viation from the Ivantsov solution at the very beginning
of the calculation. The result of this procedure is an in-
homogeneous linear equation for which it is, in principle,
very easy to deduce a solvability condition. This condi-
tion is generally expressed in the form

A(o, a,p) =O,

where o. is the stability parameter, a is the strength of the
crystalline anisotropy, p is the Peclet number (a measure
of the undercooling or supersaturation, i.e., the driving
force), and A is a function, to be defined below, which is
conveniently approximated by WKB methods. Solutions
of (1.1) determine o. =o* as a function of a and p. In
previous papers, we and other authors have studied the
behavior of A in the limit of asymptotically small a and
have deduced the relationship o' ~ a . This asymptotic
analysis turns out to be unnecessarily restrictive, howev-
er, even within the framework of our small-o. approxima-
tion. A principal point to be made in this paper is that
numerical evaluation of A allows us to compute o*(a,p)
for values of a which are well beyond the range where the
a law is valid, and that these values of o.* agree quite
well with values computed by direct numerical solution
of the original equations.

The organization of this paper is as follows. In Sec. II
we consider the simplest possible case given by the two-
dimensional symmetric model of solidification. Because
almost all the numerical simulations have been performed
on this model, this part will serve as an important test of
the validity of the approximations employed. In Sec. III
we show how to generalize the analysis to a three-
dimensional model in which the effects of azimuthal an-
isotropy have been averaged out. Finally, in Sec. IV, we
deal with the necessary modifications needed in the case
in which the model is nonsymmetric, that is, when the
relevant transport properties in the solid and in the liquid
are different. This part includes as a special case the

one-sided model and allows us to make a direct compar-
ison with a recent experiment of Dougherty et al. on
ammonium bromide dendritic crystals.

II. TWO-DIMENSIONAL SYMMETRIC
MODEL OF SOLIDIFICATION

We start by writing down the dimensionless form of
the equation of motion describing the solidification of a
pure substance in the general nonsymmetric case. In this
paper we will use the terminology and notation pertain-
ing to thermally driven solidification, but the same model
applies to the case in which the mechanism of growth is
instead given by the diffusion of one chemical species
away from the solidifying interface. ' The equations are

a
V2u; =2p, , i =L,S (2.1)

2pL v n (p~us lf o ~ujlf o. (2.2)

u /„,„,=b, —do
uL, l f'ro~g us I f~()~t

p
(2.3)

L and S refer to the liquid and solid, respectively, and
u;=(T, —T„)cL /L is the appropriately rescaled temper-
ature field in the ith phase, measured from the tempera-
ture at infinity T . The material properties defining the
dimensionless parameters in (2.1)—(2.3) are the specific
heat c, , the latent heat of solidification per unit volume L,
the thermal diffusion constant D;, the bulk melting tem-
perature of the substance TM, and the surface tension y
which will be allowed to include the effect of crystalline
anisotropy in a way to be specified later. In terms of
these parameters, b, =( TM —T„)cL/L is the dimension-
less undercooling, p=D~c~/DLcL is a measure of the
asymmetry of the two phases, and do=yTMcL /L is a
capillary length proportional to the surface tension; p is
an appropriate unit of length which will be identified
later on with the tip radius of curvature of the Ivantsov
solution moving with velocity v and, finally, p, =pv /2D;
is the Peclet number.

The physics underlying Eqs. (2.1)—(2.3) is quite simple.
A moving, solidifying front releases latent heat which
diffuses to infinity as expressed by (2.1); requiring heat
conservation at the interface gives us (2.2) (n is the nor-
mal to the front pointing into the liquid and U„ is the nor-
mal velocity of the front), while imposing local thermo-
dynamic equilibrium in the interfacial region implies
(2.3). Equation (2.3) is the well-known Gibbs-Thomson
relation, which gives the equilibrium value of the temper-
ature at the interface and takes into account curvature
corrections; we will be more specific about the precise
form of this curvature term as we go along with the
analysis.

An equivalent formulation of the problem which is
more convenient for our purposes is obtained by eliminat-
ing the thermal field from the equations; this can be done
by using standard Green's function techniques to obtain
an equation in closed form for the function describing the
solid-liquid interface. In the two-dimensional symmetric
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model ()(t = ],pL =ps ) the equation reads

A (gz) 0 (x) x —p[g(x) —g(x')]

p ( ] +/&2)3/2

XKO(pg(x, x') ), A (g')=1 —a+ 8ag'
(]+(' )

(2.6)

fourfold symmetric form A (0)=1—a cos48, 6) being the
angle between the normal to the front and the z direction,
and a the anisotropy strength. Since g'= —tan6) we have

where

q(x, x') =
I (x —x') + [/(x) —g(x')] ]

'

(2.4)

(2.5)

It is well known that a solution of (2.4) when do =0 is
given by

X
g,„(x)=—

(x, g(x)) represent the Cartesian coordinates of the
solidification front in a moving frame in which the front
is at rest, Eo is the Bessel function of the third kind of or-
der zero, ' and prime superscripts denote derivatives with
respect to x. The right-hand side of (2.4) is equal to the
temperature of the interface at the point (x, g(x)) as com-
puted by using (2.1)—(2.2); the left-hand side is the same
temperature obtained by imposing the Gibbs-Thomson
relation (2.3).

The function A (g') describes the dependence of the
capillary length do on the orientation of the interface rel-
ative to the crystalline axes. In two dimensions we have
do=doA(g') and, to be specific, we assume the usual

b, =23/p e~I dy e (2.7)
v'p

where the length scale p has been chosen to be equal to
the radius of curvature of the tip. Note that p is the tip
radius of the Ivantsov (do=0) parabola with undercool-
ing b, moving at speed U. Equation (2.7) corresponds to
the famous Ivantsov continuous family solutions, and we
will be interested in solutions of (2.4) which are asymptot-
ic to an Ivantsov parabola as x ~+ oo.

Following Pelce et ai. we now replace b on the left-
hand side of (2.4) with its integral representation in terms
of g;„(x); we obtain in this way

f tl d
cr A [g'(x)] ~ = I [e ~[~" ~(" ']Ko(p I (x —x') + [g(x) —g(x')] I

'
) —(g~(;, )], (2.8)

( 1 + g&2)3/2

where (7=do/pp(U, A)=dov l2Dp . The problem we have to solve now is essentially a nonlinear eigenvalue problem:
Given p [which, through (2.7), is related to a particular value of the undercooling] we want to determine the values of o.

such that (2.8) admits smooth solutions which tend to an Ivantsov parabola as x ~+~.
The analysis will now follow that of Ref. 11 with the exception of two important points. The first is that there is no

need, as explained by Caro]i et al. , to take the limit p~0 in (2.8). We will see that it is possible in this way to obtain
finite-p corrections to the selected value of o.. The second difference is that we do not at the beginning assume e to be
small, and this will turn out to be important to obtain an accurate estimate of 0. . As in Ref. 11, we will analyze Eq.
(2.8) in the limit (r «1 and, at the end of the calculation, we will check that the selected value o. does indeed play the
role of a small parameter.

As a first step we substitute g=g, „+g, in (2.8), and linearize in g, . This linearization (note that this is not a lineariza-
tion in the small parameter (r) is not mathematically very well controlled and, as we mentioned in the Introduction,
could be avoided' by performing a matched asymptotic analysis in the complex x plane. We will see, however, that the
linearization seems to give the correct asymptotic form of o *(a) anyway ' and, being easier to implement, can be ap-
plied in a straightforward way to more complicated situations. The result of the linearization is the following equa-
tion for g).

I &2 2

o Af =a ( Afj', )+p J [g)(x)—g)(x')]e '~ ' ' Ko(pi],„)+,K((p7],„) (2.9)

where

f(x)=, „,, A(x)=1 —a+1 8+x
(1+x')'" (1+x')' '

and, following the notation of (2.5),

q;„(x,x') = [(x —x')2+ —,'(x '2 —x 2)']'/2

(2.10)

We can now split the integral in (2.9) using a principal part regularization, evaluate2O the integra] mu]tip]ying g, (x), and
change variable to

Z(x)=3/Af g, (x) .

Being interested in the limit tr ~0 we can neglect terms of order (TZ(x) and obtain

(2. 1 1)
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(1+x )' +~ dx', , &A (x)
o Z "(x)+ Z (x)—pP Z(x')I(x, x') = cr

A(x Qo lT ( 1+x2)3/4

where the nonsymmetric kernel I (x,x') is given by

(2.12)

(~/p)( & „~) [(1+x )(1+x' )]I x,x' =e
& A (x) A (x') &o(pri;. )+ — &i(p'n;. }

1(x' —x )

2 9fU
(2.13)

Equation (2.12} is of the form XZ=g, where X is a
linear operator and g is the inhomogeneous term appear-
ing in (2.12); this structure suggests by itself the solvabili-
ty condition that we have to impose. If we find a non-
trivial null eigenvector of the adjoining operator X, i.e.,
a solution of the equation X Z =0, then we immediately
have a necessary condition for the existence of solutions
of (2.12). Indeed we have

I

to the term S& in (2.17), is given by

Z(x) = (1 ix )—'
(1+x )

So(x)
X exp — —+ ix+

v'cr 2 2

where

(2.18)

A=(Z, g) =(Z,XZ ) =(XtZ, Z) =0, (2.14)

(2.15)

In order to solve this equation we assume a WKB form
for Z(x), i.e., we make the ansatz

Z(x}= exp
S(x,o )

V'cr
(2.16)

where

where (, . ) denotes the inner product related to the
definition of the adjoint operator; in words, the kernel of
the adjoint operator must be orthogonal to the inhomo-
geneous term appearing in (2.12). It is worth mentioning
that the direct operator X has an obvious null eigenvec-
tor, namely, any constant function is a solution of
XZ =0 as we can immediately verify by considering Eq.
(2.9). This is the natural manifestation of the translation-
al invariance of the system along the z direction. For this
reason we can expect, in principle, that also the adjoint
operator has a null eigenvector which makes the solvabil-
ity condition (2.14) nontrivial.

The main advantage of the solvability approach is that
we have to solve a homogeneous, rather than inhomo-
geneous, equation. If wq define the inner product in the
usual way as (f g)= f dx f'(x)g(x), the differentia
part of X becomes self-ad™joint and the equation X Z =0
can be written as

2 1/2

A (x)
+~ dx—pP f Z(x')I(x', x) =0 .

Qo

So(x) =i dx', (1—ix')' (1+ix')
0 A'"(x )

(2.19)

dx' =0,+,Z(x')A'
(1+x' )

(2.20)

where the solvability function A(cr, a,p) is real due to the
symmetry properties of Z(x).

It can be shown that for any fixed value of a the func-
tion A2(cr, a,p) has a denumerable set of zeros cr„(a,p)
accumulating towards o =0 as n ~ ~. We could obtain
an analytic expression for cr„(a,p) in the limit n ~ ~ but
we are actually interested in the maximum allowed value
of cr which is customarily denoted by o.* and is believed
to correspond to the only linearly stable needle crystal.
This value is best obtained by a direct numerical solution
of (2.20) which is plotted in Fig. 1 for the two values
p =0 and p =0.25; the comparison with the available nu-
merical results' ' is reasonably good even for relatively
high values of the anisotropy strength cx. Of course, the
entire approximation scheme is expected to break down
for a large enough that o.* is no longer small. Our com-
parison with the direct numerical results indicates that
our method remains reasonably accurate for values of a
up to 0.5 or 0.6. Notice that the expected asymptotic
behavior, " cr'~a when a~0, sets in only for very
small values of u, typically a &0.01.

The function Z(x) is well behaved at oo and satisfies
Z( —x)=Z *(x); the solvability condition (2.14) for the
existence of well-behaved, even solutions of (2.12) can
therefore be written explicitly in the form

A 1/2
Az(o, a,p) = f dx' —,'[Z(x')+Z( —x')]

oo (1+x' )

S(x,o. )= g o" S„(x) .
n=0

(2.17)

III. THREE-DIMENSIONAL SYMMETRIC MODEL
This ansatz is particularly useful in solving Eq. (2.15) be-
cause it allows us to replace the integral term with a local
one and then to obtain an explicit solution of the equa-
tion in the limit o.~0. The details of the calculation are
reported in Appendix A.

It turns out that Eq. (2.15) admits a complex-conjugate
pair of solutions Z(x) and Z *(x) whose form, correct up

The corresponding analysis in the three-dimensional
case is more difficult but conceptually very similar to that
presented in Sec. II. The first complication arises when,
in order to understand what we mean by dP( in (2.3), we
want to generalize the Gibbs-Thomson relation to the
case of cubic anisotropy.
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FIG. 1. Selected values o. as a function of the anisotropy
strength n for p =0 and p —0.25 in two dimensions. Compar-
ison with a direct numerical integration of Eq. (2.4).

It is well known that the Gibbs-Thomson relation in
the three-dimensional case with anisotropic surface ener-
gy is given by

TM

gO

a'y
R, gO'

(3.1)

where R „R2 are the local principal radii of curvature of
the surface, O„O2 are the angles between the normal n
and the local principal directions on the surface, and
y(n) is the anisotropic surface energy. For the purpose
of both numerical and analytical computation, it would
be more convenient to express 8 y/BO, directly in terms
of the variation of y with respect to the two angles
defining the direction of the normal with respect to a
fixed set of crystal axes. Unfortunately, because, the
definition of O& and O2 involves the principa1 directions on
the interface, the corresponding expression one obtains is
quite complicated' and the problem becomes analytically
too difficult for present purposes.

In order to simplify the analysis we will make two as-
sumptions. First we assume that solutions exist only
when the crystal is growing along an axis of symmetry;
although this fact has not been proved rigorously, it is
strongly suggested by the mathematical structure of the
solvability theory. The second, more important, and po-
tentially more dangerous, assumption is that y in (3.1) de-
pends only on the polar angle O between n and the fixed
direction in space corresponding to the axis of growth.
This allows us to consider axisymmetric solutions and to
replace (3.1) with

which can be derived from (3.1) by simple geometrical
considerations. The only check we have on this approxi-
mation comes from the numerical results reported in the
literature' which suggest that indeed azimuthal anisotro-
py does not play an important role in the steady-state
selection mechanism. The main reason for us to adopt
such a point of view is that it greatly simplifies the
analysis and it makes it possible to obtain, in a relatively
simple way, explicit predictions for the value of o. even
in the three-dimensional case.

We now discuss briefly the appropriate form to use for
y(8) in (3.2). The simplest possible function describing
the dependence of surface energy on n in the case of an
underlying cubic symmetry can be written as

y =y(1+@4cos49+ . ), (3.4)

the angular dependence of the radius of the crystal in the
same plane is

R (9)=Ra(1+e4cos48+ ) .

By considering (3.3) when P =0, and comparing with (3.4)
we obtain that E4=E /(4+3@'). As mentioned already,
however, we want to consider an axisymmetric version of
(3.3) which allows us to consider axisymmetric needle-
crystal solutions. For this purpose, we average (3.3) over
P and replace this equation with

y(n) =y '[1+a'(cos"9+—,
' sin~())]

=y 1+ cos4O — sin O
15 15

(3.5)

where the relation between o,' and e4 is easily determined
to be

CX

15
=64 .

The factor of 15 has been inserted because of the similari-
ty between (3.5) and the analogous two-dimensional ex-
pression.

We can now proceed with the analysis of the equation

y(n) = y '[1+e'(n + n + n, )]

=y '[1+@'[cos0+ sin 8(1 —2 sin~/ cos2$)]I

(3.3)

where 0 and P are the spherical angles which define n
with respect to a crystal axis. The parameter e' in (3.3)
can be related to the definition of anisotropy strength ap-
pearing in the experimental literature ' in the following
way. Usually, the anisotropy strength is computed by
measuring the deviation from spherical shape of a single
crystal close to equilibrium. In particular, if the form of
y(n) in the (100) plane is given by
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do A(0) B(0)
R, R

dx' expIp[/(r') —g(r)] —p2)(x, x') I

2' 2)(x, x'} (3.6)

of motion. Within the approximations just described, the
Gibbs-Thomson correction in (2.3) is determined by the
term in square brackets on the right-hand side of (3.2)
and the three-dimensional equation analogous to (2.4)
reads

with y(0) given by (3.5) and tan0= —g'(r). Here and in
the following x is a two-dimensional vector whose
modulus is denoted by r while 2)(x, x') represents, as in
two dimensions, the Euclidean distance between the cor-
responding points on the solidification front.

The strategy is now identical to the one used in Sec. II.
We make use of the three-dimensional Ivantsov solution

2

,„(r)=—

(3.9)
where

1

Ri
d g' 1

dr ( 1+g&2)1/2 ' g ( 1 + g&2 )1/2

y A (0)=y+, yB (0)=y+cot0—Bf
819 ae

'

(3.7)

(3.8)

6=pe~ f dy
y

and linearize (3.6) in order to obtain the desired solvabili-
ty condition. When we do this an important
simplification, described in Appendix B, allows us to
write the linearized version of (3.6) in the following com-
pact form which is the three-dimensional analog of (2.9}:

I2 2
p r —r 1

iV I l V 9lU

d[rAfg]+ f exp — (r'2 r2) p2)—,„—
r dr ' 2m- [g,(r) —g, (r')] =crA', , ; (3.10)

;„ f, and A are given by (Bl), (B2), and (B3), respectively. Once again we can compute the integral multiplying g, (r),
change variable to Z (r)= &rf A g)(r), and finally obtain

1+r I r 1+r' "4
crZ "(r}+ + Z(r) —pP Z(r')H(r, r') =o.

4y' A (r) o 1r
' v' A

(3.11)

The integral kernel is now given by

(1+r ) (1+r' )H(r, r')= &rr' f dP exp — (r' r) —p2),—, (r, r', ctp)
2& A (r) A (r') 2 I QlV

1 r' —r 1

22 Iiv

(3.12)

where P is the angle between r and r' and hence

2);„=[r +r' 2rr'cosp+ —,'(r' r) ]'——
In writing (3.11) we have neglected a term of order
cr f(r)Z(r), with f(r) smooth and regular at the origin;
the term cJZ(r)/4r, however, must be kept because it
becomes important when r is sufficiently close to the ori-
gin (r (&o ).

The last thing we need to specify in order to write
down the solvability condition in three dimensions is the
boundary condition to impose on Z at r =0. Note that,
in this case, functions are defined for r ~ 0 only, and the
inner product in (2.14) implies an integration on this re-
stricted domain. In other words we have to characterize
the function space on which the operator X acts so that
(2.14) is valid.

If we consider the relation between Z and g„and the
physical meaning of g, (r), it should be clear that we are
interested in solutions of (3.11) which go to zero at least
as fast as &r when r~0. One can check that (2.14) is
still the correct solvability condition with Z(r) defined by

the equation X Z =0

crZ "(r)+ + Z(r)
4y2 A (r)

d '—pP f Z(r')H(r', r) =0,
0 7T

(3.13)

gr(r) —e
—i(n/4)z( y) +e +((~/4)z 4

( (3.14)

where Z(r) is again given by (2.18) and (2.19) provided
we use (B3) for A (r). This is the null eigenvector of Xt
which must be used when computing the solvability con-
dition, which now explicitly reads

supplemented by the boundary condition Z(r) o: &r as
r~0. This homogeneous equation for Z(r) is the analog
of the two-dimensional equation (2.15) and we can obtain
an approximate solution for small a. in a way similar to
the one employed in the previous case. (See Appendix B.)

The appropriate solution of (3.13) satisfying the bound-
ary condition at the origin is



5320 A. BARBIERI AND J. S. LANGER 39

&r (1+r )
/

A3(o, a,p)= f dr 8'(r)
0

&rA=Re dr 1+(1+r ) Z(r)e ' '=0,
p ( 1 +r2)3/4 A (r)

(3.15)

with 3 and 8 given in Appendix B.
Note that, although the integration in (3.15) is for posi-

tive r only, the resulting expression for A3(o, a,p) is very
similar to what we found for A2(o, a,p). To see this we
have to deform the contour of integration into the corn-
plex r plane and notice that A3 is dominated by the be-
havior of the integrand in a neighborhood of r =i, where
the solvability integral has the same structure as in the
two-dimensional case; for this reason one can expect to
obtain similar results for A2 and A3.

Figure 2 shows o *(a) as obtained by a numerical solu-
tion of (3.15) for two different values of p; the two dots
correspond to the numerical simulation of Ref. 16 which
is the only one available, to our knowledge, in the case of
a three-dimensional anisotropic system. Notice that the
prediction of 0.* is quite sensitive to the value of the an-
isotropy strength which, for this reason, should be mea-
sured with particular case. The comparison with the ex-
perimental data available in the case of succinonitrile, a
material which should be correctly described by the sym-
metric model of solidification, can be obtained by using
the reported experimental value of a,„=0.075. From
(3.15) we get o *=0.0092 while experimentally
t7,*„=0.0195.

In the case of dendritic growth from a supersaturated
ammonium bromide solution the theory seems to be in
better shape. This case actually corresponds to the one-
sided rather than the symmetric limit Lu=O in Eqs.
(2.1)—(2.3)] and we anticipate here the results derived in
Sec. IV. Equation (4.3) gives us the necessary
modification which allows us to compute cr'. We have
a,„=0.24+0.06 and o.,*„=0.081+0.02 while the theory
gives us o*=0.083+0.025. The uncertainty about the
predicted value of cr* comes from the reported uncertain-
ty of a,„and does not include the error related to the ap-
proximations used to derive (3.15) and (4.3).

IV. NONSYMMETRIC CASK

Finally, let us consider the more general nonsymmetric
case. We will see that the value of o.* can be simply re-
lated to the analogous symmetric result just derived. We
start by going back to Eqs. (2.1)—(2.3) and noticing that,
for general values of p and p, we can write down an
equivalent set of two integrodifferential equations for g(x)
and, for example, the value of the normal component of
the heat Aux into the liquid,

do do dp—f do' (n V'QL )%'+QL(n V'ul ) +2pI fdx'QL&=b, —
2p

dp do pi.—f da' p (n'V Qs%'+Qs(n V uI ) +2psp fdx Qs
S P P 5'SP

~ dp

2 p

(4. la)

(4.1b)

In writing (4.1) we have again restricted attention to steady-state solutions moving with constant velocity v, f da
S

denotes an integration over the solidification front, and QL ~s~ is the Green s function for steady-state diffusion in the ap-
propriate moving frame

exp[p, (z' —z) —p, ~r —r'~]

4

As in Sec. III, we consider only longitudinal anisotropy so that A is again given by the term in square brackets in (3.2).
Two things should be noticed about (4.1). The first is that if p, = 1 and pI =ps, then QL =Qs and, by subtracting

(4.1b) from (4.1a), we recover, as we should, Eq. (3.6). The second is that, in the Ivantsov limit do=0, Eq. (4.1b) can be
solved if we take n Vur = —2V„pL, whereas Eq. (4.1a) reduces to the do=0 limit of Eq. (3.6). This simply reflects the
fact that, without surface tension, we can always take the solid to be isothermal, in this way eliminating from the prob-
lem any reference to diffusion in the solid phase.

In order to make further analytic progress with (4.1), we now consider the physically relevant limit of small under-
cooling. Although it is very likely that the analysis could be generalized to arbitrary values of p in a way analogous to
what was done in the symmetric case, we consider here the limit 6—+0 for the sake of simplicity; indeed, in this limit
Eqs. (4.1a) and (4.1b) can be reduced to a single equation which can be analyzed by using techniques we are already fa-
miliar with. To do this we first replace b, in Eqs. (4.1a) and (4.1b) with its integral representation in terms of
QL (x —x', g,„(x)—g,,(x') ), and then take the limit p ~0. In this way Eqs. (4.1a) and (4.1b) can be combined in the form
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dx'~[~(, ]
g(x') —g(x) —(x' —x) V'g(x') dx' 1

4~ I(x—x') +[((x)—g(x')] I
4~ +(x—x') +[((x)—g(x')]

0= ——(1+p, )A,
2

(4.2)

where, as usual, o =
do�/ppl

and g;, denotes the Ivantsov solution g;, (x)= —x /2.
The strategy to use should be, by now, clear. First we have to linearize (4.2) around the Ivantsov parabolic solution

corresponding to o =0. Then we must find the acceptable null eigenvector ofX, where X is the linear operator acting
on g, (r). Once the null eigenvector is obtained we can immediately write down the usual solvability condition and
derive from it the acceptable values of o. Because of the new integral term appearing in Eq. (4.2), this program is more
difficult to implement than in the symmetric case. However, we will show that the selected value o (p) is simply re-
lated to that found in the symmetric case

(4.3)

Note that Eq. (4.3) is obviously true if we neglect completely the first integral term in (4.2). In the following we try to
explain why this approximation is legal; the reader not particularly interested in the technical details can safely stop at
this point.

Let us check explicitly what is the effect of the new term present in (4.2) after the linearization has been performed.
The first effect is a modification of the inhomogeneous term in (3.14). We now have the following extra term:

I

g (r) = f r%',„H, (r, r'), (4.4)

where

r + r' 2rr' cosP—
[r +r' 2rr'c—os/+ —'(r r' ) ]— (4.&)

and A;, is given by (3.10). The second, most important difference lies in the resulting form of the operator X, as we can
see by looking at the linearized version of (4.2) which should be compared with the p ~0 limit of (3.14),

I d '

(rfAg&}+ f r'Hz(r, r')[g&(r) g, (r'}]+o(1—p—)f "
Hi(r, r'), (r'f Ag'&)

2r dr o 4m. o 4~ ' ' dr'

g, (r) —g, (r')+ r'g', (r') rg', (r') cosP-
+o(I —

p, ) f 'r%';„H3(r, r')[g, (r) —g, (r')]+ f dP
0 4m

'" '
o [r +r' 2rr'cosP+ ,'—(r r—' ) ]—

=—( I+p)~;, +o (1—p)g (r), (4.6)

where

&2 2

H (r, r')= dP
[r +r' 2rr' cosP+ 4(r——r' ) ]

H
~
(r, r') is given by (4.5), and

(4.7)

2 &23(,& 2r+r —2rrcosg
[r +r' 2rr'cosP+ ,'(r r' )——]— (4.8)

The question is now the following. Suppose that, by using (4.6), we write down the equation for the null eigenvector
of the adjoint operator and make the familiar WKB ansatz for the form of the solution. How are the terms So and S,
in (2.16), which alone determine the asymptotic form of cr, modified by the presence of the extra terms in (4.6). To
answer this question one should note that, although new terms containing high derivatives of g, appear in (4.6), these
terms are multiplied by o and, furthermore, they are inside an integral which acts as a smoothing operator provided the
kernel is regular enough. Roughly speaking, the same way as a derivative can be thought to correspond to an efFective
power of 1/&o, an integral operator with a regular kernel gives at least one power of &o.

To be more precise, consider one of the extra terms appearing in (4.6). We have

d I

cr(1 —p) f Hi(r, r'), (r'f A g'&) = —cr(l p)P f (r'f A—g'&), Hi(r, r'),
o 4m. ' dr' o 4m. dr'

where the principal part integral is needed because of the behavior of H, (r, r') at r' = r,
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H&(r, r') = — In~r r—'~, r'=r .
27

It should be now reasonably clear that the contribution of such a term to the local equation determining Z(r) will be of
the form o.Z '(r), and hence it will only affect the r-dependent prefactor but not the phase function So(r).

In an analogous way we can rewrite another term in (4.6) as

g, (r) g, (r'—)+r'(I(r') rgI(—r') cosP
o (1 —p) r%', , dP

47r o [r +r' 2r—r'cosg+ —'(r —r' ) ]

=o.(l —p) f r%';, H4(r, r')~ 8r g)(r') —g)(r)
r' —r

+ rg', (r')H~(r, r ')

where

(4.9)

and

fr +r' —2rr' cosP+ —,'(r —r' ) ]
(4.10)

An analysis of the local behavior of H4(r, r') and H5 (r, r') at r' = r shows that we can integrate such a term by parts and
that its contribution to the Z(r) equation, being of the form o Z, can be neglected altogether. The same is true for the
remaining term in (4.6).

The net result is that the extra terms present in (4.6) can be neglected in determining the phase function So(r). A
more careful analysis shows that the result for Z(r, p, cr ) is of the form

Z(r, p, o ) = exp —— r Z(r, o (p)),
8 1+@

(4. 1 1)

where Z(r, o(p)) is . the solution in the symmetric limit with o. replaced by o (1+p)/2 and p =0.
We can now consider the solvability condition analogous to Eq. (3.15),

v r (1+r )' I+@
A3(o, a,p)=Re dr — A, , +(1—p, )g(r) Z(r, p, o )e ' '=0 .

0
(4.12)

O
O

O
O

O
O

In the case a « l, o. «1, we know that II is dominated
by the behavior of the integrand in a neighborhood of
r =i. For this reason, in this limit we can replace
Z(r, p, cr ) by Z(r, cr(p) ). Furthermore one can check that
the contributions to A3(o, a,p) coming from the two
terms in the square brackets under the integral sign scale
in a diAerent way with o. , as o.~0 and a &&1, and the
dominant one comes from the%', , term. The result of all
this is simply that (4.3) indeed represents the correct
asymptotic form of cr*(p).
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O
O
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APPENDIX A

FIG. 2. Selected values o* as a function of the anisotropy
strength a for p =0 and p =0.25 in three dimensions. Compar-
ison with a direct numerical integration of Eq. (3.6).

In this appendix we give a detailed derivation of (2.18).
We will assume that the analytic continuation for com-
plex x of the phase function So(x) defined in (2.16) and
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(2.17) has a vanishing derivative at some point x =x in
the upper half plane. This means that x =x is a point of
stationary phase for the rapidly varying function Z(x),
and hence the integrals appearing in (2.15) can be es-
timated, in the limit cr ~0, by a steepest descent approxi-
mation. To do this we deform the contour of integration
in the upper plane so that it goes through x ' =x, and then
we extract the leading contributions.

In order to deform the contour we need to consider the
singularities of the kernel I (x', x) on the real x' axis; it is
easily checked that the only singularity occurs at x'=x
and, by using the limiting form of the Bessel functions at
small argument, ' we obtain the following expression for
I(x', x) in a neighborhood of the singular point:

A(r) B(r)
(1+ )' ' (1+ ')' '

1

( 1+„2)3/2
(r)=

(B1)

(B2)

4cx + cx 34r —1

5 15 (1+r )

a 5 —2r2
B(r)=1——

(I+r )

Equation (3.10) is now a consequence of the equality

(B3)

with A (r) and B(r) obtained from (3.5) and (3.8) by set-
ting tan&= r,

x (1+x')'"I(x',x) =
pA (x —x')

(1+x')' '
ln(x —x') +

2A

Bf Af B'
r r ( 1+r2)1/2

(x'~x) . (Al)

We see that the function I(x',x) has both a pole and a
branch cut at x =x'. If we now assume, and this will
serve as a self-consistency check at the end of the calcula-
tion, that ReSO(x ) & 0, the dominant contributions to the
integral appearing in (2.15) will only come from the in-
tegration in a neighborhood of x' =x. After a proper an-
alytic continuation of I (x', x) in a complex neighborhood
of such a point and by using (Al) and (2.15)—(2.17}, we
finally obtain the following local equation, correct to or-
der 3/'o'

S(x,o }o exp
d S(x,a)

exp
dx Vg

p ( 1+x2)3/2 ( 1+ 2)1/2—
g
v'g + 1+ix =0 .

A (x)S'(x) A (x)

To obtain So and S„and hence (2.18), we simply need to
evaluate the second derivative and to expand the result-
ing equation in powers of 3/o by using (2.17). Note that
of the two possible choices for So(x), we must take the
one satisfying the condition ReSO(x) &0. Once we have
the desired solution Z(x), it is evident from Eq. (2.15)
that another acceptable solution will be given by Z '(x).

which holds independently of the choice of y(0). This
can be seen most easily if we go back to the 0 variable
tanO= r, rewrite the equation as

[B(0)—A (0)] +cos8
tanO d 0

d8
dO

and use the expression for A and B as given by (3.8).
Finally we analyze (3.13) to derive (3.14). Notice that

there are two main differences between the two- and
three-dimensional cases. The first is that the integral in
(3.13) is for r' ~ 0 only; the second is that the integral ker-
nel H(r, r') cannot be explicitly defined in terms of ele-
mentary functions. As we shall see these two facts com-
plicate the algebraic part of the analysis without, howev-
er, changing the essence of the two-dimensional deriva-
tion.

Proceedings as in two dimensions we have now to de-
form the contour of integration in the appropriate way.
In addition to the pole and the branch cut contributions,
there is also a term coming from the integration along
part of the imaginary axis (see Fig. 3). Actually this last
term does not give any contribution when we consider
the acceptable solution defined in (3.14), we will come
back to this point later on, and hence we can keep just
the local contribution from the singular point as we did
in 2d. This can be obtained by computing the behavior of
H (r', r) in a neighborhood of r'=r,

APPENDIX B

In this appendix we give some of the details of the
three-dimensional calculation reported in Sec. III. The
derivation of Eq. (3.10) is very simple. First notice that,
upon linearization, the term in square brackets on the
left-hand side of Eq. (3.6) can be written as

R;, —Afg", —g', Af'+A'f+

Bf Af B'
r r (1+ 2)1/2

Re r'

where FIG. 3. Contour of integration used to simplify Eq. (3.13).
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r(1+r )'
H r', r=

A (r)(r —r')
( 1+ 2)3/2

2A
ln(r r')—+ . . (r' +r—) . (85)

The local behavior of the integral kerne1 is identica1 to
what we found in the two-dimensional case so that we
can write down at once the equation replacing (3.13) in
the limit ct —+0. By comparing (3.13) and (2.15) we obtain

S(ro ) d S(rcr) cro. exp exp ' +
0 df cr 4r

2)3/2 ( 1+ 2)1/2

A (r)S'(r) A (r)
(86)

Also in this case, of course, the solution of (86) has to be
chosen so to satisfy the self-consistency requirement
ReSO(r ) &0 at the point of stationary phase r = r in the
upper half plane.

Equation (86) is almost identical to (A2); indeed, if
r ))3/t7, the solution is immediately given by (2.18) pro-
vided we use (83) for A (r). The two solution Z(r) and
Z (r) must now be combined in a way to satisfy the
boundary condition at r =0. In order to do so we can
solve (86) for r « 1 and use asymptotic matching to ob-
tain a global solution for r ~ 0.

If r (& I, by taking into account the boundary condi-
tion at r =0 we can reduce (86) to

and

f Z( r')H (r ', r)dr' I7t
0

f Z *(r')H(r', r)dr'Im-
0

Z2(r)=3/r Yo
Qo (1 —

—,",a)

where Jo and Yo are Bessel functions of order zero. The
boundary condition to impose at r =0 requires that we
choose the linear combination of Z(r) and Z *(r) which
is proportional to Zt(r) as r «1. This combination can
be obtained if we notice that the solutions of (86) and
(87) must agree in the region 3/o. «r «1, where both
equations are valid. For these values of r we can approxi-
mate Jo by using its asymptotic expansion for large argu-
ment, which can then be compared with the expression of
Z(r) and Z *(r) in the limit r « l. In this way it is easy
to check that the appropriate combination giving the
correct boundary condition at r =0 is indeed given by
(3.14).

Finally, we can verify that neglecting the integral along
the imaginary axis to obtain (86) was legal. We substi-
tute (3.14) in (3.13) and proceed in evaluating the integral
by steepest descent. [Note that the contour has to be de-
formed into the lower plane when integrating Z *(r).]
We see that the two terms

crZ "(r)+ + „Z(r)=0,

whose solutions are given by

(87)
exactly cancel each other. This is a consequence of the
identities

H(e —i (vr/2) i
)
— —i(n'/2)H( i(n/2) r

)

Z «( —i(~/2)x
) Z( i(m/2)

)

Zt(r) =)/r I() gct(1 —
—,",a)

which are valid for real x and can be checked by using
(3.12) and (2.18) and (2.19).
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