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Bending energy of vesicle membranes: General expressions for the first, second, and third
variation of the shape energy and applications to spheres and cylinders

Ou-Yang Zhong-can* and Wolfgang Helfrich
Institut fiir Theoretische Physik, Freie Uni Uersitiit Berlin, Arnimallee 14, D 1000-Berlin 33, West Germany

(Received 28 November 1988)

A general equation of mechanical equilibrium of fluid membranes subject to bending elasticity
[reported in Phys. Rev. Lett. S9, 2486 (1987)) is derived in detail. The second variation of the shape

energy, also obtained for arbitrary shapes, is used to analyze stability with respect to deformational
modes for spherical and cylindrical vesicles. The former analysis is well known, while the latter is

presented here for the first time. The theoretical results are shown to agree very well with previous
numerical calculations. In addition, they provide the energies controlling the shape fluctuations
and show that spontaneous curvature may transform cylinders into tapes or strings of beads. The
study of the energy of infinitesimal deformations is finally extended to include the third variation.

Applying the general result to the sphere, we obtain the critical value of spontaneous curvature
below which oblate ellipsoids of a deformed sphere are more stable than prolate ones. It is shown to
be the same regardless of whether volume or pressure is kept constant.

I. INTRODUCTION

In recent years both experimental and theoretical stud-
ies of amphiphilic bilayers and monolayers have been be-
ginning to engage the attention of physicists. ' Part of the
progress made in these fields consists in understanding
the role of the bending elasticity for both equilibrium
shapes and shape fluctuations of fluid layers. Certain am-
phiphilic molecules, such as phospholipids, assemble in
water to build bilayers which, at low concentration, close
to form single she11s called vesicles. These structures are
simple models for biologica1 membranes and cells. '
Other amphiphiles form surfactant films separating oi1
and water, thus giving rise to microemulsions.

The equilibrium shape of a vesicle is determined by the
minimization of the shape energy which may be written
as '

F= —,'k, f (c, +c2 —co) dA +bp J dV+A, f dA

Here dA and dV are surface area and volume elements,
respectively, k, the bending rigidity, c, and c2 the two
principal curvatures, and co the spontaneous curvature.
The last serves to describe the effect of an asymmetry of
the membrane or its environment. ' The first term of
Eq. (1) is the curvature-elastic energy of the vesicle mem-
brane. The second and third terms either take account
of the constraints of constant volume and area or
represent actual work. Depending on the situation, the
pressure difference 6 =p,„,—p;„and the tensile stress k
serve as Lagrange multipliers or they are prescribed ex-
perimentally by volume or area reservoirs. Instead of the
last term of Eq. (1) Jenkins' " introduced a local area
constraint by gy dA, where y is a Lagrange function
varying with position. He derived a general equilibrium
equation, but did not consider spontaneous curvature ex-

cept recently for the special case of the fluctuating
sphere. ' A generalized equilibrium-shape equation in-
cluding spontaneous curvature was put forward in our re-
cent paper. ' The first purpose of the present paper is to
give a derivation of this equation.

The second aim of the paper is to provide a general for-
mula for the stability analysis of equilibrium shapes. The
deformational energies of a nearly spherical vesicle of
given area and volume were studied by Peterson. '

Another case, instability of a sphere as a function of Ap
at variable V, has been considered by us. ' In the follow-
ing we calculate the second variation of the shape energy
for arbitrary shapes. The formalism is then applied to
analyze the stability of cylindrical vesicles by calculating
the energies of a complete set of deformational modes. In
addition, the results to be obtained provide the energies
controlling the shape fluctuations and show that spon-
taneous curvature may transform cylinders into tapes as
well as strings of beads. The results compare very well
with numerical examples of strings of beads calculated
previously by Deuling and Helfrich. '

In a third step, the general theory of infinitesimal de-
formation is extended to include the third variation of the
shape energy. In this way we find a limiting value of
spontaneous curvature below which oblate forms of a de-
formed sphere are more stable than prolate ones. The
value is shown to be the same, at the threshold of defor-
rnation, whether the volume or the pressure is given. The
result, coro ~ —1.2, where ro is the radius of the sphere,
agrees with that of Peterson' as well as Milner and
Safran' calculated for the case of fixed volume and also
corrects the limit coro ~ —39/23 given by Deuling and
Helfrich for fixed pressure.

The paper is organized as follows. In Sec. II some
definitions and basic formulas are given. Section III
presents the derivation of the equilibrium equation. The
second variation of shape energy and its application to
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the analysis of the stability of spheres are given in Sec.
IV. The stability analysis for cylindrical vesicles is treat-
ed in Sec. V. In Sec. VI the third variation of the energy
is obtained and applied to calculating critical spontane-
ous curvature. Section VII concludes the paper.

II. DEFINITIONS AND BASIC FORMULAS

where 4(u, U) is a sufficiently small and smooth function.
First, from Eqs. (2)—(5) we may calculate Y,', Y,'J, g,j,L, ,
and so on. For example, we have

Y', =Y;+%,n++8;n,

where +;=0;O. Use of the %'eingarten equations'

Y;=0;Y, Y, =BOY, g, =Y, Y

g'~=(g ) ', g = det(g ), L, =Y,, n,
L'~=(L,, ) ', L = det(L, , ) (i j =1,2),

(2)

Theoretically, the membrane of a vesicle may be
represented as a closed surface in Euclidean three space
given by the vector Y(u, U) depending on the two real pa-
rameters u, v. Using the formalism of differential
geometry, ' we introduce the following quantities:

B,n= —L; g~ Yk

transforms (6) into

Y,'-= Y, +4', n —+L, g "Yk .

The relationship'

L, g' Lk(=2HLa —Kg@

and Y; n=O then lead from (8) to

(7)

where 8, =8„,02=8„g;, and L; are associated with first
and second fundamental forms of the surface, respective-
ly. The outward unit normal vector n and the Christoffel
symbols I, are defined by

n=(Y, XY2)/&g, Y,, = I,"Yk+L;jn .

Here and in the following repeated indices imply summa-
tion over them. The mean curvature and Gaussian cur-
vature, respectively, may be written as

5g; =Y'.Y' —Y .Y = —2+L; +%,W

+0'(2HL, , —Kg,, ) .

The identity

= det(g;, ) = ,'e3;~e3ktg—;kgil

in combination with (10) results in

5g=g[ —
4PH +g "+ 0, ++'(4H'+2K)]+0(e') .

H = —
—,
'

( c, +c2 ) = ,' g 'JL ... —K =c,cz=L/g . (4)
(12)

We assume Y to be an equilibrium shape and consider a
slightly distorted surface defined by

Y'= Y+4(u, v)n,

Here and in the following 0 (4 ) refers to terms of higher
than quadratic order in 4, and the symbols e, k are
defined as

+1, when(ijk) is an even permutation of (123)
e,,k

= ' —1, when(ijk) is an odd permutation of (123)
0, otherwise .

(13)

In addition, we have

5g'~=2%'(2Hg'J KL'~)+ —e3,&—e3 i
—g'~g" 4'k4i —3% [(K 4H )g'~+2HK—L'~]+0(% ),1

(14)

5L; =4; +W(Kg,"—2HL, ) —I,""4 +k%%"[KI,""e3&ke3 g Lq'+(L &g™),+L kg" I p)

+%kV [g'"(5; L)(+5 L;i)—,'L; g "]+0(% )—, (15)

with (L &g );=d;(L &g™)and

1, when i =j
6 0, when i+j .

L

From Eqs. (4), (14), and (15},one can now obtain the variation of mean curvature

5H=+(2H2 K)+ —,'g' V, 4 + —,
'4—% [g'~(L,g™),L,„g" g,"I,'"+(KL—'~ —2H ' )I,"]

+4 (4H —3HK ) + ,' 4, +, ( Hg " KL ") +—44; ( 2Hg '~—KL "}+0 ( + ), — (16)
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V, +, =4„-—I-,', 0, . (17)

where V, 4 is the covariant derivative of + defined by' Considering Eqs. (2) and (3), one may prove

8, [(B,g "&g )f]=—8„(I,,g "'&gf)
The variation of area is given locally by

5&g =( —2+H+ —,'g' W, %', +q& K)&g +O(q&'), (18)

for arbitrary functions f (u, U). Transforming the last
term of Eq (27) accordingly, we arrive at

5I''F = f q&[Ap —2&I.H +k, (2H +co)(2H —2K —coH)
and globally by

5A=5 f dA

= f (
—2%'H + —,

'
g "4,q&, + q&'K )d A +0 ( q& ) . (19)

The variation of volume is found to be

5 V = g ( q& HW —)d A +0 (%& ) . (20)

Evidently, all variations can be expressed by H, K, g, ,

L, , and I;- which have all been defined at the beginning
of this section.

III. SHAPE EQUATION

5"'F=bp5" f dV+X5 "fdA

+ —,
' k, 5''' f (2H +co ) d A (21)

The first variations of V and 3 are immediately seen from
(19) and (20) to be

In order to obtain the equation of mechanical equilibri-
um of the vesicle membrane we have to calculate the first

variation of the shape energy given by Eq. (1). Because of
(4) we may write

+2k, b,H]d A, (29)

where, except for Ap, 6 is the Laplace-Beltrami operator
on the surface Y, i.e. ,

~ =(1x&g )a, (g'&&g a, ) . (30)

If Y(u, u) describes an equilibrium shape, it satisfies
5'''F =0 for any infinitesimal function +(u, v). Hence
Eq. (29) leads to the equilibrium condition

IV. SECOND VARIATION AND INSTABILITY
OF THE SPHERE

Ap —27H +k, (2H +co)(2H —2K —coH)+2k, bH =0 .

(31)

This shape equation has first been shown in Ref. 13. It
represents the balance of normal forces per unit area.
Apart from the pressure diff'erence Ap and the tensile
stress k it contains the complicated stresses of curvature
elasticity. Equation (31) can also be obtained by general-
izing and forming the derivative of the shape equation for
axisymmetric vesicles which was calculated some time
ago.

5"' f dV= f q&dA (22)

5'' f dA = —f 2q&H dA . (23)

5'' F, =
—,'k, 5 ' f (2H+co) dA

=
—,'k, f [(2H +co) 5'' dA

+4(2H+co)(5 ' H)dA] . (24)

The first variation of the curvature-elastic energy may be
written as

In dealing with the stability and deformational energies
of vesicles, the membrane area is usually taken to be con-
stant. Unlike other equilibrium shapes, such as cylinders,
spheres can then be deformed only if the enclosed volume
is variable. They can be destabilized by a pressure
difT'erence or by spontaneous curvature. The former may
be produced osmotically or by means of a micropipette
that opens into the inside of the vesicle.

The shape equation (31) enables one to seek equilibri-
um configurations. However, only the solutions of Eq.
(31) which are stable can be observed in an experiment.
Therefore, one has to check whether the second variation
of the shape energy (1) is positive definite. We start from

Because of (16), we have

5I "H =0'(2H' K)+ ,'g '&V, q—&,
—

which with (17) becomes

(25)

5I"F=~ 5I'I f dv+~5"I g dA

+ —,'k, 5' ' f (2H +co) dA . (32)

5'"H =q(2H' —K)+,g &(q„—r,', q, ) . (26)
The first two terms are immediately obtained from Eqs.
(19) and (20) which give

We insert (23) and (26) into (24) and integrate 4', and q&&

by parts, then use the result and Eqs. (22) and (23) to ob-
tain

5'' F = f q'[4p —2AH+k, (2H+co)(2H 2K coH)— —

+(k, &&g )(a, a, +a„r,", )g'&&g

and

5"' f dV= —f q'H dA

5 y dA = y ( —'g "q& q& +q& K)dA .

(33)

(34)

X (2H +co)]d A (27) The last term may be written as
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5' 'F, =—'k, It) [4(2H+c0)5' 'H+4(5" H) ]dA

+ —,'k, f [(2H +ca) 5 'dA

+4(2H +ca)(5 ''H)5 ' d A],
where, because of (19),

5' 'dA =( —'g'~O 4 +'I( K)dA

(35)

the respective terms, one obtains among the integrands of
Eq. (35) some which involve 4%',

~
and %%;. Using the

identities

(37)

(38)

and 6' 'H is the lengthy second-order part of 6H given in
(16). With Eqs. (16), (23), (25), and (36) substituting for

and integrating by parts, one transforms them into terms
involving 4 and +,-O'-. The final result is

5' (F = f ['I( (((K bpH+2—k, (H+ca/2)(8H SKH—+cDK/2)+2k, (K —2H )(K+2cDH+2H )

+2(k, /&g )B,B [Vg (H +c /2)(2Hg' KL' )—]
—(k, /&g )8 I&g (H+c /2)[g "0 (L,g' ) L,„g"—g "I,', —(2Hg" KL'~)I—

, ]I )

+4,4, [[1/2+k, (H +c0/2) ]g"+2k,(H +c0/2)(KL' —3Hg' )I

—2k, (K+cDH) I(g "V,+, +(k, /2)(g'~V, % ) )dA . (39)

bpr0+2kr0 —k, car0(2 —c0r0)=0 . (40)

We use polar coordinates to describe the sphere, putting
u = O, U =((), so that

An equilibrium shape is stable if 6' 'F is positive for
any %&0. In general, this requires that the eigenvalues
of an operator acting on + and associated with Eq. (39)
satisfy certain conditions. The aim is to write (39) as a di-
agonal quadratic form in the amplitudes of a set of defor-
mational modes related to the given equilibrium surface,
but this is difficult to achieve in the general case. Howev-
er, we believe Eq. (39) to provide a powerful tool for the
numerical stability analysis of any equilibrium shape. In
some simple cases, it may be evaluated analytically. A
typical example is the spherical vesicle which is now con-
sidered in detail.

It is obvious that the sphere is always a solution of Eq.
(31) if its parameters satisfy the following equation:

From Eqs. (17), (30), and (42) one obtains for the sphere

b, , 4=g "V,q(, =( —1/r0)L "V;0', . (44)

When Eqs. (42) —(44) are inserted in Eq. (39), the
lengthy formula for 6' 'F reduces to the simple form

5' 'F= f q([D+B6, +(k, /2)6, ]q(dA, (4S)

where

D =—,'APrp '+k, Cprp

B = ,'bpr~+ —,'k, l2+—c0r0)r0
(46)

and A, has been eliminated with the help of Eq. (40).
Obviously, the spherical harmonics Y( (O, $) provide a

convenient basis for the computation of Eq. (4S). Use of

Y=ra( cosP sinO, sing sinO, cosO) .

Inserting into Eqs. (2), (3), and (4) yields

(41)
b, , Y( = —l(l+1)Y( /r0

results in

(47)

g„=rp ~12 gzl 22 0 s n
5"'F=

—,'k, g a( ~'ra [l(l+1)—2]
I, m

L11: r0 ~12 221 0 L22 0»n
r] =rz =r' =rz =011 11 12 22 if 4 is written as

X [l (l +1) car0 —Apra/—2k, ], (48)

sin OI, 2
= —I zz

= sinO cosO

1 1K=
rp I 0

(42)

1
0&( sinOB&)+

ro sinO

1

rp sinO
(43)

and so on. The Laplace-Beltrami operator is now the
usual Laplace operator on the sphere

4= ga( Y( (O, p) .
I, m

(49)

Here l =0, 1,2, . . . , m ~1, and a&* =a& . The latter
requirement serves to ensure that + is a real function.
Equation (48) is the result reported in our paper' We
can show that it holds generally regardless of whether
area, volume, or radius is kept constant. Equations (27)
and (39) give for the curvature-elastic deformational ener-
gy



5284 OU- YANG ZHONG-CAN AND WOLFGANG HELFRICH 39

5F, =6'"F,+5"'F,

=k, coro(corp —2)&4napprp '+
—,'k, g ~a& /rp~ I[1(l+1)]—(2+2coro —,'c—oro)l(1+1)+coro j

1, m

(50)

5A =2&4mapprp+ g ~aI ~
[1+—,'l(l +1)),

l, m

5V=&4napprp+ g ~a, j rp .
I, m

For fixed area, i.e., 5A =0, one obtains

&4~app= —
—,
' g ~a& ~ rp '[1+—,'1(1 +1)]

I, m

Inserting this into (50) and (52) and forming

6F =6F, +Ap5V,

(51)

(52)

(53)

(54)

one finds 5F to be identical to 5' 'F as given by (48).
Similarly, for 5 V=0, i.e.,

which is identical with the expression of Helfrich' and
Milner and Safran' . In the same second-order approxi-
mation, Eqs. (22), (23), (33), and (34) give the following
variations of area and volume:

ing rigidity k, of lecithin membranes. ' ' The same
shapes are found on the outside of aged red blood cells
(see Fig. 31 of Ref. 22). A theoretical study of the stabili-
ty and the deformational energies of cylindrical vesicles is
therefore of some interest. In this section we apply the
general formula for the second variation of the shape en-
ergy Eq. (39) to this problem.

A circular cylinder is a solution of the equilibrium-
shape equation (31) if it satisfies

bppp+App+ —,'k, (cppp —1)=0, (58)

po being its radius. The cylindrical vesicle may also be re-
garded as a cylinder closed by roughly hemispherical
caps at both ends. Neglecting the influence of the ends,
i.e., assuming L &&po, where L is the length of the
cylinder, one can write the shape energy (1) in the form

F=bpnppL +A,27rppL+ —'k (pp
—cp) 27rppL =0 .

&4~aoo= & I~i I "o '

I, m

and from Eqs. (40), (50), and (51), one finds

(55) (59)

Demanding 6F/6L =0, one finds as a second equilibrium
condition for the cylinder

5F=5F, +A5A bppp+2kpp+k, (cppp 1) =0 . — (60)

=5F +
2 [k cprp (2 cpro) Aprp]5A (56)

which is again identical to 6' 'F. Note that volume or
area reservoirs are presupposed if 5A =0 or 5V=O, re-
spectively, and that the Ypp mode cannot be separately
excited in these cases. Both reservoirs are needed in the
case of constant radius, i.e., aoo =0, which is contained in
(48).

In (48) the coefficients of ~aI ~

will be negative above
some threshold pressure difference

5
&
=(2k, jr )[pl(1 +1) coro]— (57)

V. CYLINDER INSTABILITY

Swelling of lecithin in a large excess of water produces
not only spherical vesicles but also tubular shapes, among
them cylinders and modulated cylinders including strings
of beads. ' The bending fluctuations of long cylindrical
vesicles have been used repeatedly to measure the bend-

depending on I but not on m. In other words, by increas-
ing the pressure difference the sphere can be destabilized
with respect to ever higher /'s. The trivial case I = l,
characterized by 6' 'F =0, means a translation of the
sphere. The least stable case, 1 =2, was first discussed by
Helfrich. Rotational symmetric equilibrium shapes of
variables have been numerically calculated by Deuling
and Helfrich. The agreement of the calculated pressures
with the theoretical threshold is excellent, as was shown
in our paper. '

In other words, both the pressure difference Ap and the
tensile stress A. are fixed, obeying

b,p =2k,pp (1 —cppp) (61)

A, = —,'k, pp (3 —cppp)(cppp —1), (62)

Y=pp( cosP, sing, z), 0~$ ~2m, O~z ~L ..

Inserting Y into Eqs. (2) to (4), we obtain

(63)

g por

n=( cosP, sing, O), I, =0
l K=0

2po

I 11 gL 12 QL 21 0 ~L22 —1
7 po

(64)

and so on. The Laplace-Beltrami operator is now the
usual Laplace operator on the cylinder Y

—2/2+ g2 (65)

A slightly distorted cylinder may be described by

while one of them can be freely chosen in the case of
spheres.

Let us now calculate the deformational energies in a
quadratic approximation. With cylindrical coordinates
u =P, v =z, a cylinder of length L is defined by
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Y'= Y+Qn,
and the real function '0 expanded into

0= g b „exp[i [mP+n (2'/L)]I
m, n

with b'„=b

(66)

(67)

Let us now insert (64) to (68) into the first and second
variations of F„A, and V, i.e., into (19), (20), (29), and
(39). We obtain

5 A =npo.L g ( m + n q )
l
b „ l po

m, n

Using (17), (64) to (67), and the abbreviation q =2~po/L,
we have

f vb, ,+dA = f Og'V;+, dA
'2

+2npoL. ( boo/p o) +O(b „),
5y=~p~ g lb „l'p, '+2~poL(boo/p, )+O(b'„),

m, n

(69)

2'+—g (m +n q )

m, n po

(68) and

(70)

5F, = —,'k, 5 f (2H +co) dA

~Lp (copo —1 )(boo/po)+ g I [ (capo 1 ) 2copo](m + n q )+2copom
m, n

+(m +n q )+1—2m Ilb „l po +O(b „). (71)

Accordingly, the variation of the total energy

5F=6F, +hp5V+A5A

becomes, if (61) and (62) are substituted for hp and A, ,

5F =k, mpo 'L g [2copo(m —1)+(m +n q ) 4m —2n q +3—]lb „ l po
m, n

(72)

(73)

+ (n 'q' —I )']
I ho„ I'po ' (74)

In order to check the last formula, we have done a
completely independent calculation, maintaining volume
and surface area of the cylinder but allowing changes of
po and L. We have also modified the above calculations
at constant L, fixing either V or A. In all the cases, the
result is identical to (73) except for the absence of the b~
term. In order to understand why reservoirs make no
difference it is helpful to imagine the following experi-
rnent: We excite a single deformational mode of an equi-
librium structure connected to reservoirs. Afterwards,
we remove 5 V and 5A due to the deformation, exchang-
ing area, and volume with the reservoirs while keeping
the deformation amplitude a constant. Since 6V and 5A
vary as a and Ap and A, are regular functions of a, the
energy needed for the adjustment goes with a or a
higher power of the amplitude. This argument should
equally hold for a single reservoir, but it does not include
deformation modes whose 5A and 5V have linear terms
in their dependence on amplitude, such as the ao and boo
modes of sphere and cylinder, respectively.

The general expression of (73) provides the basis for
analyzing the stability and fluctuations of cylinders. For
example, in the case of rotational symmetry, i.e., m =0, it
becomes

5F =k, npo 'L g [ —2copo+2

Obviously, the necessary condition for 6F ~ 0 is

copo 1 .

The nth mode (n ~ 1) is unstable if

n q =(2nmpo/L) ~ 1++2(copo —1) .

(75)

(76)

For a cylinder of practically infinite length, the least
stable mode is characterized by copo = 1 and

n q =1, i.e. , T=L/n =2mpo, (77)

where T is the period of the distortion along the z axis.
To interpret myelin shapes of red blood cells, more than
ten years ago Deuling and Helfrich' calculated four ro-
tationally symmetric myelin forms and displayed them in
Fig. 2 of their paper. Using their data, we make a check
as shown in Table I and find very good agreement with
the predictions of (75) and (77).

In the case m = 1, one Eq. (73) reduces to

5F =k, npo 'L g n q lb&„ l po (78)

If, in addition n =0, we have a simple sideways transla-
tion of the cylinder requiring no energy. For n )0, the
modes represent tube bending. The deformation associat-
ed with a single mode resembles a corkscrew because of
the particular definition (67) of the modes. It is easy to
redefine the modes such that they describe sinusoidal
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TABLE I. Comparison of theory with numerical examples calculated by Deuling and Helfrich (Ref.
15). Here eop, „, T, p,„,and p;„are taken from Fig. 2 in Ref. 15 with length unit of cm; po is approxi-
mated by 2 (p,x+p;„), and eopo then calculated by means of (cop,„)po/p, „. The last column shows

po as obtained from T and Eq. (77).

Shape
No.

1.8
1.4
1.2
1.0

pmax

0.6
0.6
0.6
0.6

pmin

0.5
0.3
0.2
0.1

eopmax

1.2
1.4
1.6
1.8

1

pO 2 (pmax+pmin ~

0.55
0.45
0.40
0.35

eopo

1.10
1.05
1.07
1.05

po= T/2n

0.573
0.456
0.382
0.318

5F =k, vrpo 'L g [2(copo 1)(m ——1)
m, n

+(m +~ q
—1) ]I~ „I po (79)

tube bending in orthogonal planes. The energy of tube
bending does not depend on spontaneous curvature and
should therefore always be positive. The elastic modulus
of bending the tube as a whole is k, mpo which agrees with
the early calculations of Servuss et al.

Whenever m & 1, the circular cylinder can be destabi-
lized by negative spontaneous curvature. In discussing
these remaining modes it is advantageous to rewrite (73)
as

the functions Yz . In the rotationally symmetric case
the deformations of positive and negative amplitude are
physically not equivalent, being prolate and oblate ellip-
soids, respectively. Both of them have the same energy to
second order in the amplitudes [Eq. (48)]. In order to
break this symmetry one has to expand the right-hand
side of Eq. (I) to third order, as first pointed out by Deul-
ing and Helfrich. This may be done directly in spherical
coordinates. However, with a view to further uses of the
theory, we begin with general coordinates as we have
done in the preceding sections.

If third-order terms are included, we have for the vari-
ations of A and V

5 A = g [ 2+H +q '—K + —,'g "+,-q',
We consider only the simplest case n =0, i.e., deforma-
tions uniform along the tube. The circular cylinder is
easily seen to become unstable at copo ~ —

—,', its cross sec-
tion turning into an ellipsoid (m =2). In the absence of
reservoirs this is accompanied by a decrease of its length.
As the spontaneous curvature becomes more and more
negative, the cylinder may be expected to transform into
a tape.

VI. THIRD VARIATION AND CRITICAL
SPONTANEOUS CURVATURE

+ (Hg" KL ")%4;4 —]dA,

5V= f (4 4H + ,'4 —K)d A . —

The variation of F, is divided according to orders

5F, = —,'k, 5 f (2H+co) dA

=n'"F, +S"'F,+a[']F, ,

(80)

(81)

(82)

As pointed out in Sec. IV, at hp =hpz a spherical vesi-
cle becomes unstable and begins to be deformed into a
shape which can be described by a linear combination of

where 5'"F, and 5' 'F, may be taken from Eqs. (29) and
(39) by putting bp =0 and A, =O. The third-order part is
given by

5' 'F, =2k, 5' ' f H dA +co5' ' f H dA + ,'k, co f (Hg' K—L' )0'+;4 dA—, (83)

where

5' ' f H dA = f (4 V;4 [(2H K)g' HKL' ]+—%%;4 —[(4H ,'K)g'J 2HKL'~]— ——

+ —,'O';O', Vk+i[(I/g)e3;ke3 I g "g"']

+ —,'4 4', [ Kg"I," +(2Hg" K—L'~)[2(L. ,;g'"), +K—(g,,L'");+KL' gi I „][)dA (84)

and
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5' ' f H dA = f {4 (8H 1—2H K+4HK )++4;0' ((9H 4—KH)g'I+(K 5—H K)L "]
+'ll ipk I [(6H K—)g" 2—HKL "](LIg'"), +(2KH g" H—K L")(g,IL'"),

+ [(K 2H—K )L '~ KH—g
' ]I,", + [(4H K K—)g " HK—L ' ]L" g, I,', )

++ 6'%(12H 7KH—)+4 6"4(2K H '' 6H—K)+ —', H+(6'qi) —0'(6'0')(5"iII)KH

+—'4 4 b, '+(Hg" +KL")+—,'4+„b,'VI [(L,g'");+KL g, l,' ]g' KL—'~I,"
I

+(H/g)e3, &e3j/%gg /V, %', }dA

5A =4nrp(2ap+ap+ —4az),
5 V:477r p ( a p +a p + —,

' a z + —,
' a p + —,

' a p a z +—„',a z )

5F, =477k, [(cprp —2cp p)ap+ —,'cprpap

(87)

Here 5'+=g'~V';4, 6"=Hi. '~V',-+ . For the sphere the
operators 5, 6', and 6" are identical to the usual Lapla-
cian operator b, , for the sphere [Eq. (43)].

Although these formulas seem very lengthy and heavy,
they are convenient in the actual computation. Being in-
terested only in ellipsoids of revolution, we put

4= rp[a p+azPz(0)],

where P2 is the second Legendre polynomial and ao
serves to renormalize the radius so that the total area is
conserved. With Eqs. (42) —(44) and (86), the above for-
mulas reduce to

ergy and is more stable than the prolate one (az+ ) when-
ever

copp & 1.2 (95)

The result is in agreement with previous stability analyses
of Peterson' and of Milner and Safran, ' although their
approaches seem different from ours. Peterson seemed to
use numerical computation, finding coro & = —1.2, while
Milner and Safran started from a deformation of the type
4=a&( Yzz+ Y& z)+a@Yap and showed that a& =0 and
ao )0 for coro + 1-2

Let us briefly consider stability at fixed pressure rather
than volume. Inserting ao = ——', a 2, because of 5 3 =0, in

Eqs. (88) and (89), we obtain

5F=5F, +bp5V

5p ', mr pa—z —
—,
"—

, m k, ( cp r p + 1 .2 )a z +5p+ err pa z,
+( —,

—
—,cprp+ —,cprp)a~12 6 2 2 2 2

+ ( —'cprp ——")apa ~
—( —"+—"cprp )a ~ ] (89)24 12 3

where

(96)

The conservation of area, i.e., 5A =0, gives a„=——', a2
which permits rewriting Eq. (88) as

a ——"a ——"g=O (90}

where r1=5V/(4mrp /3), the rela.tive volume variation, is
negative and near zero. From this one may find two solu-
tions for ai ( which are also near zero )

a ~+ =7[ cos( 9p+ —', ~) + —,
' ])0,

a, =7[ cos(6p+ —,'~)+ —,'] &0,
(91)

where Op= —,
' arccos(1+ —,oi) ). From (91) one may prove

(a~+ )
—(az ) =49+3 singp(1 —cosOp) )0 .

Furthermore, ao = ——', a2 reduces 6F, to

5F, =4vrk, [—,'(6 —cprp)a', —
—,", (cprp+2)a,'] .

If Eq. (90) is substituted for a z, it becomes

5F, = 47rk, [—,'( 24+2r p) p—a~6+( 2c+r p) p]rI.

(92)

(93)

(94)

For fixed 5V, i.e., fixed il, Eqs. (92) and (94) imply that
the oblate shape (a& ) has the lower curvature-elastic en-

5p =bp —bp~=bp 2k, rp (6——cprp) . (97}

VII. CONCLUSION

In this paper we have extended the calculation of the
first and second variation of vesicle-shape energy to arbi-
trary shapes, deriving a general equilibrium condition,

The first term in (96) indicates that 5F & 0 for 5p )0, i.e.,
the sphere begins to be unstable for Ap ~hp2, in agree-
ment with the general result of Eq. (57). The second term
shows that for infinitesimal 6p the oblate ellipsoids are
again stable for coro & —1.2. This corrects coro & —

—,",
as obtained previously by Deuling and Helfrich under
the same constraint. The third term of Eq. (96) indicates
that the spontaneous curvature below which oblate ellip-
soids are stable depends on 6p.

It should be noted that the above expressions for 6F
are complete only to O(az) [see Eqs. (93) and (96)] and
thus cannot be used to calculate a2. From the require-
ment of stability one may infer that the a2 term is posi-
tive for coro= —1.2 and 6p near zero, which has to be
proved in the future. But it is certain that the oblate el-
lipsoids (az &0) have a lower energy than prolate ones
(a~ )0) under the same constraints.
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i.e., shape equation, and a general stability criterion. Thc.
third variation of the energy with shape has also been ob-
tained, again for arbitrary shapes. We have discussed the
fiuctuation modes of spheres (up to third order) and
cylinders (for the first time), in particular stability prob-
lems. The fourth variation of the energy remains to be
calculated. It would permit a complete treatment of the
special critical point which separates oblate from prolate
deformations of spherical vesicles, a problem encountered
in studies of red blood cells. The present work is restrict-

ed to the small deformations occurring near threshold.
Svetina and Zeks have recently studies strong deforma-
tions of vesicles, including certain limiting shapes.
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