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A formulation of fluid dynamics in terms of Lagrangian variables allows one to make direct use of
the standard methods of statistical mechanics. However, most observations and empirical studies of
large geophysical fluid systems are in terms of Eulerian variables, and this raises the issue of how to
relate quantities given in terms of one set of variables to the corresponding quantities given in terms
of the other set. In a completely general treatment of fluids, one must consider both oscillatory and
translational modes of motion. The oscillatory modes are wavelike and lead to correlations which
are analogous to those for phonons in the solid. The translational modes are particlelike and lead to
correlations which correspond to diffusion in a weakly interacting gas. In this paper we consider
the class of fluids for which the translational modes can be neglected. Based upon the assumption
that the statistical distribution of the canonically conjugate Lagrangian variables is of a Gaussian
form, we obtain a tractable expression for the Eulerian spectra in terms of the Lagrangian spectra
and show that, in general, the two types of spectra are significantly different. In particular, it is
shown that the Eulerian wave-number spectrum exhibits a large wave-number power-law decay
which is similar to that often observed in geophysical systems and further is independent of the de-
tailed nature of the Lagrangian wave-number spectrum. The large wave-number decay of the Eu-
lerian spectrum is due to advection and is strictly a kinematic effect. This also implies that experi-
ments which focus on the large wave-number advective tail cannot yield information about the true
dynamics of the system. The application of this result to the problem of explaining the observed
distribution of oceanic internal waves is discussed.

I. INTRODUCTION

Most observations and empirical studies of large sto-
chastic fluid systems are in terms of Eulerian variables.
This is especially true of geophysical systems such as the
earth's atmosphere and its oceans. For example, the
empirical oceanic internal wave model of Garrett and
Munk' (GM) is in terms of Eulerian variables. On the
other hand, the methods of statistical mechanics which
might be useful for understanding and interpreting these
studies are usually formulated in terms of Lagrangian
variables. This raises the issue of how to relate statistical
quantities, such as spectra, which are given in terms of
Lagrangian variables to the corresponding quantities
given in terms of Eulerian variables. The difficulty is
that, in general, the transformation between the two sets
of variables is not tractable. The problem of relating La-
grangian and Eulerian aspects of fluid flow is an old one,
going back at least to Taylor. For ocean surface waves,
a recent physical discussion is given by Longuet-
Higgins. In this paper it will be shown that there exists
a class of systems for which the problem of implementing
the transformation can be avoided, and still a tractable
relation between Lagrangian and Eulerian spectra can be
obtained. We will find that the kinematic distortion
caused by the transformation results in Eulerian spectra
which can be significantly different from the correspond-

ing Lagrangian spectra.
In order to clarify this point we need first to discuss the

important differences between Lagrangian and Eulerian
variables. In a Lagrangian formulation the fluid is divid-
ed into a number of microscopically large but macroscop-
ically small parcels which are identified by the various
values of a three-dimensional parameter which we shall
denote by g. While it is not necessary, it is usually the
case that g corresponds to the position of the parcel un-
der some reference condition, often taken to be the undis-
turbed condition. Once selected, a specific value for y
remains with the fluid parcel and does not change
throughout the dynamic evolution of the system. We
shall denote the Lagrangian displacements and velocities
at the time t by rlL (y, t) and v~(y, t), respectively. The
Eulerian displacements and velocities will be denoted by
qz( tx) and vz( tx), respectively, where a given value
for the Eulerian label x corresponds to a specific point in
space and it refers to the fluid parcel which happens to be
at that point at the time t. Thus a given value for the Eu-
lerian label x does not always refer to the same fluid par-
cel.

A formulation in terms of Lagrangian variables retains
a faithful correspondence with the particles of Newtonian
mechanics. Such a formulation can be given in terms of a
Hamiltonian and Hamiltonian's canonical equations, or
the Lagrangian variables can be used directly in
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Hamilton s principle to obtain the well-known variational
form of continuum mechanics. In the case of Eulerian
variables no such straightforward Hamiltonian formula-
tion is possible. While the Eulerian equations of motion
have been cast into a variational form, which is some-
times referred to as canonical, such a formulation re-
quires the introduction of additional variables and con-
straints and is significantly different from the usual well-
known Hamiltonian dynamics (for a discussion of this
point see Seliger and Whitham ).

A. Lagrangian variables

We shall first discuss, in some detail, the Lagrangian
formulation and then briefly contrast this to the Eulerian
formulation. In our canonical formulation the Cartesian
components of the Lagrangian displacement ilz (y, t)
and velocity vi (y, t), where 1 ~a ~3, are expressed in
terms of the modal expansions

and

N

9L.(X, r ) = & 0,.(X)q, (r )+ g 4,.(X)q, (r )

j=1 j=1
(la)

N

vc (y, t)= g P, (y)co~p, (t)+ g P& (X) pj(t),

+k+, (p,p, q, q ) (2)

where (p,p, q, q ) denotes the set (. . . ,P,p, q, q, . . . } of
canonically conjugate dynamical variables. In (2) the
terms Ho, (p, q) and Ho, (p, q) are quadratic in the
dynamical variables and lead to separated linear equa-
tions of motion. The term A, Vi(p, p, q, q) is of cubic and
higher order in the dynamical variables and leads to non-
linear interactions between the otherwise independent
linear modes. We shall refer to A. VJ(p, p, q, q) as the in-
teraction potential. The expression for the Hamiltonian
given by (2) describes the system in terms of deviations
from some state of static equilibrium which can be
characterized by the static density profile p(z ). The
specific choice for p(z ) will determine the dispersion rela-
tion co, the eigenfunctions P (y) and P (y), as well as
the nonlinear coupling coefficients in A, V~(p, p, q, q }, but
the form of (2) is general.

(lb)

where the q (t~) and q (t) are real independent general-
ized displacements, the p, (t) and p, (t) are the corre-
sponding canonically conjugate momenta, N+N is the
number of degrees of freedom which later will be allowed
to become arbitrarily large, and cu and m are constants
the significance of which will become clear later. In (1)
the P (g) and P (g) are real eigenfunctions associated
with writing the Hamiltonian in the form

N N

H(p, q)= y Ho, (p, q)+ y HQ, (p, q)+AVJ(p, p, q, q)
j=1 j=1

iV Q) . rV' [p'(&)+q'(&)]+ g p'(t)

The Lagrangian equations of motion are obtained by
using the Hamiltonian given by (2) and Hamilton s
canonical equations. In a general case they are nonlinear
and cannot be solved exactly. The linear approximation
is obtained by setting A, VJ(p,p, q, q) equal to zero in
which case it is easy to show that

and

p (t)=p, (0)c os( cvt) —
q (0)sin(co t),

q, (t ) =q~(0)cos(co, t )+p, (0)sin(co t),
p&(t ) =p, (0),

(3a)

(3b)

(3c)

q (t)= pj(0)t+q (0),1

m,
(3d)

~ Ho(p q)
g(p p q q)= exp XZ .

1
A

Ho, (p, q)
A-

(4)

where the p (0), p (0), q (0), and q-(0) are initial values.
From the form of (3) it is clear that in the linear approxi-
mation the terms which involve the p (t ) and q (t ) are
oscillatory with frequency co and correspond to waves.
The modes which involve the p (t ) and q (t ) are transla-
tional and, in the case of a vertically stratified fluid, cor-
respond to horizontal flows. Later we will neglect the
translational modes, but we retain them for now because
there are some potentially important issues concerning
them yet to be discussed. For large many-body systems
the precise specification of the initial values is not possi-
ble and we must resort to the use of statistical methods.
In order to deal with the nonlinear interactions it is
necessary to use perturbation or other approximation
techniques. We shall refer to the nonlinear interactions
which arise from

AVER(p,

p, q, q } as dynamic nonlinearities
and even though they can sometimes be treated as weak,
they play an important role in the time evolution of the
relevant statistical quantities.

In a perturbation treatment the initial values are re-
placed by amplitudes which exhibit a slow time depen-
dence due to the nonlinear interactions. In this paper we
shall be concerned primarily with the weak-interaction
approximation. In this approximation the nonlinear in-
teractions cause a transfer of energy between the linear
modes but are not large enough to significantly alter the
fundamental character of the linear modes. The statisti-
cal treatment of the problem is concerned with describing
the statistical distribution of these amplitudes and usually
proceeds via a study of correlations. For example, the
development given by Prigogine introduces the phase-
space density function g(p, p, q, q) which satisfies the
Liouville equation and uses perturbation methods to in-
vestigate its time evolution. By making the weak-
interaction approximation and the random-phase as-
sumption as an initial condition Prigogine obtains a mas-
ter equation and shows that its long-time solution is of
the Gaussian form given by
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where Z is the partition function and A and A are the
average energies of the corresponding modes. In the case
of canonical equilibrium, which is the case actually dis-
cussed by Prigogine A =A =Eo, where Eo is a constant.
The slightly more general form given by (4) will be useful
for later discussion.

The wavelike modes are analogous to phonons in the
solid and by using methods such as those developed by
Prigogine and the weak-interaction approximation it can
be shown that, in the limit of large reference time t, the
displacement C k(t, ~) and momentum C»k(t, r) correla-
tion functions are given by

C„k(t, r) =E[q, (t+r)qk(t )]
= C»k(t, r) =E[p, (t+r)pk(t )]

A
cos( co, r )exp( —Ar

l
r

l ),=51,
J

(5a)
where E[.] denotes the expectation value of the bracket-
ed quantity and A,r is the single mode relaxation rate.
Thus, in the case of the wavelike modes the correlation
functions are stationary (i.e., independent of the reference
time t ). The spectra associated with (Sa) are given by

Sq,k(~)= J drCq, k(r)exp(i cow)=S»k(co) = f dcC k(r)exp(icor)

A kIJ J

[(co+co ) +(A.l ) ]

xr,
[(~—~, )'+(xr, )'] (Sb)

where we have suppressed display of the reference time t.
In obtaining (Sa) the nonlinear interactions have contrib-
uted in two ways. First, they have been important in es-
tablishing the phase-space density function given by (4).
Second, they play a role in the time evolution from t to
t+~ and are responsible for the exponentially decaying
factor in (Sa). If the relaxation rate A, I is small in com-
parison to the frequency co, then in (5b) we can make the
replacement

(Sc)
xr,

=. ir5(co+co )
[(co+co, ) +(A, I ) ]

in which case the system is confined to the dispersion sur-
face described by co . This approximation is equivalent to
using the linear expressions given by (3a) and (3b) to de-
scribe the time evolution for the relatively short times ~,
and is entirely adequate for our purposes in this paper.

While the oscillatory modes produce bounded motions,
the translational modes produce unbounded motions. If
these modes are occupied, then two initially nearby fluid
parcels may diverge from each other and, given enough
time, be arbitrarily far apart. There are two ways in
which the translational modes can give rise to this behav-
ior. The first way is direct and occurs when there are
significant mean currents present. If there exists a mean
flow which exhibits velocity variations in a direction per-
pendicular to the flow (i.e., mean shear), then Quid par-
cels which were once near neighbors may have different
mean velocities and will therefore separate with increas-
ing time. In fluids with substantial mean currents one
might expect some difficulties if the translational modes
are neglected.

The second way in which the translational modes con-
tribute to these effects is indirect but more ubiquitous.
Even if there are no mean currents, nonlinear interac-
tions randomly transfer energy into, out of, and between
the various translational modes in a way which is analo-
gous to that which, for the oscillatory modes, lead to (5).
The statistical treatment of the translational modes re-
quires consideration of some subtle issues which were not

i

of concern in the treatment of the bounded oscillatory
modes. By using well-known methods (see, e.g. , Uhlen-
beck and Ornstein; Wang and Uhlenbeck ) it can be
shown that, at large reference times t, the momentum
correlation functions are stationary and given by

C „(t,7. ) =E[p, (t+ ~)pk(t )]

=
6~k m) A, exp( —

A,1) I
r

I ) . (6a)

The corresponding spectra are given by
2kr

S .k(co)=5 km A, (6b)' ' [~'+(xr, )']
We note that for the translational modes there are no nat-
ural frequencies co and thus the system is not oscillatory.
It is important to realize that the p are normal mode mo-
menta and not the momenta associated with individual
fluid parcels. Fox has shown that spectra of the form
given by (6b) can, depending upon the nature of A. l 1, lead
to long-time tails in the fluid parcel velocity correlation
functions [see Eqs. (I.7.65) and (I.7.69) of Fox ]. Thus,
the exponentially decaying form of (6a) does not preclude
the possibility of long-time tails which are known to
occur in hydrodynamic systems.

It can also be shown that, in the approximation which
leads to (6a) and at large reference time t, the lead term in
the displacement correlation function is given by

C k(t, r)=E[q, (t+r)qk(t)]
2A

t =46-kD t, (7)
m, xr,

where D is a diffusion coefficient. It is apparent that the
displacement correlation functions are not stationary, but
instead exhibit a linear growth with time which is charac-
teristic of diffusion. We point out here that the physical
dimensions of the q (t ) depend upon the specific normali-
zation of the P (g) in (1). We have formally chosen the
normalization such that

3

Z fd'Xpe, .(X)ek (X) mj~jk.
a=1



5246 KENNETH R. ALLEN AND RICHARD I. JOSEPH 39

where p is the fluid density. However, this is only sym-
bolic and has been adopted to obtain the familiar form
for the Hamiltonian given by (2). It is clear that specific
values for the m are arbitrary and will in turn affect the
scaling of the q (t). In order to make comparisons with
other physical quantities with units of length, (7) must be
used in conjunction with (la) to obtain physical displace-
ment correlation functions with units of length squared.
This will affect numerical values but the functional form
of (7) is unchanged, and it is that functional form rather
than any specific value which is of concern to us in this
paper.

From this point on we shall consider only the oscillato-
ry or wavelike modes. By neglecting the translational
modes we are ignoring the direct eff'ects of mean shear.
We must, therefore, expect that in certain locations our
treatments will be incomplete. In the oceanic case, for
example, near the edge of the gulf stream might be one
such location. In some other locations such neglect is
reasonable. We point out that there is considerable in-

stantaneous shear due to the internal wave modes which
is included in our treatment.

A potentially more serious issue is the neglect of the
diffusion processes which are always present at some lev-
el. These diff'usion processes result in Lagrangian corre-
lation functions which are not stationary. In general the
nonlinear interactions also couple the oscillatory modes
with the translational modes, and therefore even the
wavelike m odes will develop some degree of nonsta-
tionarity. The neglect of these processes is not serious
provided the rate of decay of the Lagrangian correlations
due to diff'usion is small in comparison to the frequency
of the wave we wish to resolve. Thus, in order to neglect
the translational modes we must assume that in the time
T =1/~ that it takes to resolve the frequency co the
distance two nearby fluid parcels diffuse apart is negligi-
ble.

While some concern about these issues in the oceanic
case has been expressed (see, e.g. , Holloway ), so far as
we are aware there have been no investigations which are
sufficiently detailed to prove or disprove the above as-
sumption. Nevertheless, the practice of ignoring the
translational modes (these modes are sometimes called
geostrophic or vortical modes) is almost universal in the
treatment of oceanic internal waves. Additionally, there
is some concern that in the presence of interactions the
translational and wavelike modes will be mixed so that
the existence of the translational modes is obscured. This
issue has been considered by Holloway and Miiller and,
while it may ultimately be of some importance, we will
not consider it further here. In some cases we might ex-
pect our treatment to be incomplete, but in others it
should be adequate. In any case, it js reasonable to exam-
ine the problem to be considered here in isolation before
attempting to deal with the more complicated problem of
combined processes.

B. Eulerian variables

We shall now briefly discuss the Eulerian formulation
and contrast it with the Lagrangian formulation. The
Cartesian components of the Eulerian displacement

gz (x, t) and velocity uz (x, t) can also be written in the
form

N

rt~ (x, t)= g P (x)a, (t)
1=1

(8a)

and

N

uE (x, t)= g P, (x)tu, b, (t),
1=1

(8b)

where we have neglected the translational modes. While
the form of (8) is identical to that of (I), in general the
a (t ) and b (t ) are not related in any simple way to the
q~(t) and p, (t). The linearized equations of motion are
the same, so that for small enough amplitude distur-
bances we may write a (t)=q, (t) and b, (t)=p, (t).
However, the nonlinear terms associated with the two
sets of variables are different. The dynamic nonlinearities
also contribute to the Eulerian equations of motion, but
because individual fluid parcels are continually flowing
into and out of the region of interest there is an addition-
al nonlinear fiow term given by (vz. V)vz which we shall
call the advective nonlinearity. Thus, for larger ampli-
tude disturbances the Eulerian amplitudes cannot be
equated to the q (t) and p (t) and the exact transforma-
tion between the variables becomes intractable. It is im-
portant to realize that the two types of nonlinearity are
fundamentally different. The dynamic nonlinearities are
associated with the details of the forces between collec-
tions of fluid parcels. The advective nonlinearity is asso-
ciated with the flow of fluid parcels into and out of a fixed
region of space and is strictly an Eulerian frame concept.
From a Lagrangian frame point of view the advective
nonlinearity is a kinematic eff'ect. It is, however, impor-
tant to account for this effect when making comparisons
between theory and experiment.

C. Statistical distribution

In Sec. II of this paper we will introduce an exact
transformation which expresses the Eulerian variables in
terms of the Lagrangian variables. We will show that if
the statistical distribution of Lagrangian variables is de-
scribed by the phase-space density function

N

g(p, q)= exp —g '
(p, +q, )/A,

j =1
(9)

then without further approximation tractable expressions
for the Eulerian correlation functions and spectra can be
obtained. We will find that in general the Eulerian spec-
tra are significantly different from the corresponding La-
grangian spectra. In the remainder of this section we
shall provide some discussion concerning the use of (9).

During the past two decades there have been a number
of attempts to obtain a fundamental statistical theory of
oceanic internal waves. The goal has usually been to jus-
tify (9) and the specific form for A proposed by GM. '

Early efforts were directed at obtaining an action rate
equation which describes the nonlinear transfer of energy
between the linear modes. Subsequently, these rate equa-
tions have been used in conjunction with the empirical
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GM action spectrum to argue that the GM distribution
corresponds, in some sense, to a minimum in the energy-
transfer rates. While these studies have helped to estab-
lish a better understanding of the details of the nonlinear
interactions, they have not provided a fundamental ex-
planation for the observed GM action spectrum.

It is significant to note that the Hasselmann action
rate equation can be obtained in a straightforward way
from the weak-interaction master equation developed by
Prigogine. It is well known that the long-time solution
to the Prigogine master equation yields the phase-space
density function given by (9) with A =Eo. This result
corresponds to canonical equilibrium and it is straightfor-
ward to show that the action spectrum (i.e., average wave
action A ) is given by A =Eo/co, . This action spectrum
is entirely different from that proposed by GM and this
disagreement has often been interpreted to mean that the
oceanic internal wave system must be far from canonical
equilibrium. For example, McComas and Muller pro-
pose that if generation and dissipation terms are added to
the rate equation, then the GM spectrum will be a sta-
tionary solution to the altered equation. Thus, the prob-
lem is viewed as a cascade of energy via weak interactions
from large scales where sources are believed to be active
to small scales where the dissipation is believed to be ac-
tive.

The Prigogine formulation is for a closed system, but
there exist other treatments which allow the inclusion of
additional degrees of freedom. For example, Mori has
used Zwanzig's projection operator technique to cast the
problem into the form of a generalized Lagevin equation
which can be used to include the effects of generation and
dissipation. The application of Langevin methods to the
oceanic internal wave system has been considered by
Pomphrey, Meiss, and Watson who also argue that the
GM spectrum corresponds to a local minimum in the
energy-transfer rates.

Unfortunately, these studies have not necessarily re-
sulted in an improved understanding of the appropriate
generation and dissipation mechanisms. Indeed, it seems
clear that the reason for this is that none of these studies
has been sufficiently detailed to have been able to produce
such an improved understanding. This shortcoming has
been partially addressed by West who considers a set of
test waves which interact among themselves and with an
additional set of waves which act as a heat bath. He ob-
tains a generalized Langevin equation, the associated
Fokker-Planck equation, and shows that the steady-state
solution for the distribution of test waves depends upon
the assumed distribution of heat bath waves. Specifically
it is shown that the steady-state phase-space density func-
tion is given by

] N

g(p, q ) =—exp —g (p~+q2)
j=1

+«i, (p q) A, , (1o)

where we have suppressed explicit display of the refer-
ence time t, the interaction potential in (3) has been writ-
ten in the form

N

XVr(p q)= P XVr (p q)

and, in general, A depends upon the distribution of heat
bath variables.

In the weak-interaction approximation the nonlinear
interactions described by XVr(p, q) play an important
role in the time evolution of the phase-space density func-
tion but can otherwise be neglected. Thus, it is only
Ho(p, q) which occurs in the phase-space density func-
tion for canonical equilibrium. Prigogine and Henin
have considered the case of strong nonlinear interactions
in closed systems. They obtain a generalized master
equation and show that its long-time solutions corre-
spond to canonical equilibrium so that the phase-space
density function is given by (10) with A, independent of
the mode index j. Thus, (10) may be viewed as a generali-
zation of canonical equilibrium which includes the possi-
bility of an interaction with a generalized heat bath.

The important difference between canonical equilibri-
um and the more general distribution given by (10) is that
(10) includes an interaction with a generalized heat bath.
We shall refer to interactions with a generalized heat
bath as external interactions and to interactions among
the system or test waves as internal interactions. In all
realistic situations both types of interactions are present.
The crucial issue is which type of interaction dominates
the time evolution of the phase-space density function. If
internal interactions dominate, then we would expect the
phase-space density function to evolve near to the canoni-
cal distribution [i.e., (10) with A =ED]. If external in-
teractions dominate, then we would expect the more gen-
eral distribution given by (10). We point out that the in-
clusion of external interactions does not preclude the pos-
sibility of obtaining the canonical distribution. Indeed,
the canonical distribution is a special case which is in-
cluded within the distributions encompassed by (10).
While it is never explicitly stated by West, it is clear
from his results [see his Eq. (3.18)] that if the heat bath
waves are distributed in accordance with the canonical
distribution, then the test waves are also distributed in
accordance with the canonical distribution. Thus, we
may view the canonical distribution as a special case of
(10) which is obtained if either the external interactions
are negligible in comparison to the internal interactions
or if the heat bath is distributed in accordance with the
canonical distribution.

In general the full expression given by (10) is too com-
plicated to be of practical value. The difficulty is that the
interaction potential is a complicated function of the
dynamical variables and its inclusion in the full Hamil-
tonian used in (10) leads to intractable expressions. The
weak-interaction approximation consists of neglecting
the interaction potential in (10). This results in a phase-
space density function which is of the Gaussian form
given by (9) and leads to many interesting calculations
which are mathematically tractable. However, it is im-
portant to realize that for the weak-interaction approxi-
mation to be valid we must limit not only the average en-
ergy per mode but also the wave-number bandwidth. If
the modes are occupied out to arbitrarily small length
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scales, then the contributions from the interaction poten-
tial will be arbitrarily large. Thus, the number of degrees
of freedom cannot be extended to include arbitrarily
small length scales. For example, if the average energy
per mode is the constant Ep out to some length scale p
and the modes which correspond to smaller length scales
are excluded, then it can be shown that the ratio Ep/p
(i.e., the average energy per unit volume) must be limited
if the weak-interaction approximation is to be valid. Un-
der these conditions the phase-space density function is
given by (9) with A =Eo.

In geophysical fluids, such as the ocean, molecular
viscosity provides a fundamental basis for excluding the
small scale modes. In a typical situation the modes
which correspond to length scales shorter than about a
millimeter are strongly damped and are, thus, ineffective
for storing energy. We can, therefore, think of a
minimum lower bound for a length scale cutoff p which
is provided by molecular viscosity. If we now consider a
system for which the internal interactions dominate, then
we would expect the phase-space density function to be
given by (9) with A~ =ED and the number of degrees of
freedom determined by the length scale p . The factor
Ep/p must be smaller than some fixed value for the
weak-interaction approximation to be valid (a more pre-
cise statement of this condition will be given later) but if
this condition is met, then (9) can be used for the calcula-
tion of statistical averages. We shall refer to this scenario
as case I. We believe that other processes are more im-
portant for limiting the participation of small length-
scale oceanic internal waves, but include this case for
completeness and because it is the simplest and most fa-
miliar case for which the use of (9) is justified.

If we consider a system for which external interactions
dominate, then we would expect the phase-space density
function to be given by (9) with A determined by the
heat bath. In this case the heat bath provides a length-
scale cutoff p& such that length scales smaller than p& are
not significantly populated. If, as a simple example,
A =Ep for length scales larger than p& and decreases top

3zero for smaller length scales, then Ep/pl, must be limit-
ed for the weak-interaction approximation to be valid. If
this condition is satisf. ed, then (9) can be used for the cal-
culation of statistical averages. It is this scenario which
has been proposed by McComas and Muller. It is
tempting to propose that generation and dissipation
mechanisms provide a heat bath which establishes A

such that the GM action spectrum is obtained. However,
this proposal transfers our lack of understanding to the
heat bath, the detailed nature of which must eventually
be explained. In the case of oceanic internal waves the
precise details of generation and dissipation are not com-
pletely known, but what is known does not seem to lead
to an explanation for the quasiuniversal character of the
GM spectrum (cf. Holloway' ). Further, existing esti-
mates" of the evolution rates due to internal interactions
seem to suggest that at most length scales of interest the
internal interaction rates are much larger than the exter-
nal interaction rates. While this proposal has some at-
tractive features, there are also some important un-
resolved issues. We shall refer to this scenario as case II.

A third scenario which is the most intriguing is also
the most speculative. We now consider a system which is
at canonical equilibrium but for which we cannot neglect
the interaction potential. In this case the phase-space
density function is given by (10) with A =Eo, but this ex-
act expression is usually not tractable. However, it is
sometimes the case that the small scale modes contribute
much more strongly to the interaction potential than do
the larger scale modes (this can be shown to be true for
oceanic internal waves). In this case A, Vt(p, q) in (10)
provides a cutoff due to nonlinear interactions for modes
which correspond to length scales smaller than p„. We
can then approximate the phase-space density function
by (9) if we choose A, such that A =ED for modes which
correspond to length scales larger than p„and then de-
creases rapidly to zero for modes which correspond to
length scales smaller than p„. This approximation can-
not be expected to provide correct detailed information
about the exclusion of the small scale modes. While this
is a serious shortcoming for the purpose of describing the
Lagrangian spectra, we will show that the Eulerian spec-
tra are not sensitive to such details. The ratio Ep/p„
must be limited but otherwise (9) can again be used for
the calculation of statistical averages. We shall refer to
this scenario as case III.

D. Summary

It is important to realize that the fundamental treat-
ments which lead to (9) and (10) are in terms of Lagrang-
ian variables. That is, they do not include contributions
from the advective nonlinearity, since from a Lagrangian
frame point of view the advective nonlinearity is ir-
relevant. In Sec. II we will develop expressions which en-
able us to write the Eulerian displacements and velocities
in terms of the dynamical variables p (t) and q (t). We
will find that while these expressions are not tractable for
the purpose of finding the exact Eulerian fields, they lead
to entirely tractable calculations for the Eulerian spectra.
We will thus be able to study the consequence of strong
nonlinear contributions from the advective nonlinearity
in otherwise weakly interacting stochastic systems. We
shall not attempt to establish that any particular system
qualifies to be within that class. Rather, we will focus
upon the important physical features exhibited by such
systems and emphasize the differences between the La-
grangian and Eulerian spectra. We will develop the gen-
eral relation between Lagrangian and Eulerian variables
and define the statistical quantities in terms of which we
describe the stochastic system. Of particular interest will
be the four-dimensional frequency wave-number spec-
trum which is the average energy per unit frequency per
unit three-dimensional wave vector as a function of fre-
quency and wave vector. We will obtain an expression
for the Eulerian frequency wave-number spectrum which,
while tedious to evaluate, is clearly tractable.

In Sec. III we will consider an example with one spatial
dimension and obtain an expression for the two-
dimensional frequency wave-number spectrum (i.e. , the
average energy per unit frequency per unit one-
dimensional wave number). The one-dimensional exam-
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pie is rich in physical detail and it will be clear that in
general the Eulerian spectra are significantly different
from the corresponding Lagrangian spectra. In the final
section we discuss the results. In particular, we will con-
sider the application of these methods to the problem of
oceanic internal waves. It is possible that the oceanic
internal wave field is near canonical equilibrium, but that
strong contributions from the advective nonlinearity re-
sult in Eulerian spectra which are significantly different
from the corresponding Lagrangian spectra. These con-
siderations may ultimately play an important role in ob-
taining a fundamental understanding of the observed dis-
tribution of oceanic internal waves. While much of our
discussion is in terms of oceanic internal waves, it is clear
that there is a potential applicability to a variety of other
geophysical systems.

We now recapitulate our point of view and precisely
what is done in this paper. We assume that the transla-
tional modes can be neglected, that for the relatively
short times ~ 1inear time evolution is adequate, and that
the phase-space density function is given by (9). We
make no attempt to extend the fundamental theories '

which might be used to derive (9) or to justify the appli-
cation of (9) to any particular physical system. Rather,
we apply (9) to the practical problem of computing the
Eulerian frequency wave-number spectrum and show that
it is important to account for the difFerence between Eu-
lerian and Lagrangian variables. We find that in general
the Eulerian spectra are significantly different from the
corresponding Lagrangian spectra. These considerations
are clearly important if one is to be able to make mean-
ingful comparisons between theoretical calculations and
the results of experiments which involve the measure-
ment of Eulerian variables.

u=y+rtt (g, t ) (13)

and J[u] is the Jacobian determinant associated with the
transformation given by (13). While there are numerous
possible choices, a convenient representation for the
coarse-grained delta function is' '

h(x —u)=(1/o&2~) exp( —
~x

—
u~ /2o ), (14)

where u is the linear dimension of the Eulerian cell.
In many practical applications we may take the limit

o ~0 in which case (14) becomes the Dirac delta function
5(x —u) and by using (11) and (12) we may write

vz(x, t)= f vt (y, t)5(x —u)d'u

(15)

where g(x, t) is the solution obtained by inverting (13)
with u=x. While (15) is a simple-looking expression, in

order to implement an exact evaluation we must invert
(13) which, in aH but trivial cases, is intractable. If, how-

ever, we are interested in statistical quantities, then for
the three cases discussed in Sec. I C the problem of in-

verting (13) can be avoided and tractable expressions for
the Eulerian spectra can be obtained.

All of the second-order statistica1 quantities are ob-
tained from the two space point two-time point Eulerian
velocity correlation functions which are defined by

variable. The weighting function W'(x, g, t) in (11) is
defined in terms of the coarse-grained delta function
b(x —u) such that

W(x, y, t )d 'y =A(x —u)d u

=b,(x—u)J[u]d y,
where u is the position of the Lagrangian fluid parcel
given by

II. FORMULATION
Cpq~@( X, r ) =E[v~~( x +X) t +r )v~ti( x, t ) ] (16)

We shall illustrate our development by considering the
Eulerian velocity; the development of the corresponding
expressions for the Eulerian displacement will be obvious.
The Eulerian velocity is defined in terms of an average
over a collection of Lagrangian quid parcels. We begin
by dividing the Quid into a nunber of Eulerian cells which
are macroscopically small, yet large enough to contain
many Lagrangian Quid parcels. The Eulerian velocity is
then given by the weighted average

vz(x, t)= f vt (y, t)W(x, 7t', t)d y, (11)

where it is to be understood that, unless otherwise noted,
integrals are taken over the fu11 range of the integration

The correlation functions defined by (16) are given in
terms of Eulerian variables and correspond to the usual
quantities which are obtained experimenta11y. There are
analogous correlation functions which are defined in
terms of Lagrangian variables (to be discussed later). We
note that the left-hand side (lhs) of (16) assumes spatial
homogeneity and temporal stationarity (i.e., independent
of x and t) while the right-hand side (rhs) is not so re-
stricted. The definition given by (16) is general, but in
this paper we shall consider only the homogeneous sta-
tionary case. Of particular importance for our studies
here are the four-dimensional Eulerian frequency wave-
number spectra which are defined by

SE, tt(k, cv) = f d Xfdr Cz, &(X,r)exp[ —i(k X—cur)] .

The coarse-grained delta function given by (14) can be written in terms of its Fourier transform as

b, (x—u)=(1/2ir) f exp[im (x —u) —m o. /2]d m

By using (11), (12), and (18) the expression for the Eulerian velocity becomes

(17)

(18)
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Uz„(x, t)=(l/2~) f d y f d m Ui (g, t)J[ u(g, t)]expI im [x—y —gt (y, t)]—m cr /2I (19)

Then by using (16) and (19) the correlation functions can be written as

Cz„, ~(X,r)=(1/2rr) f d y f d g' f d m f d m'M t3(y, rm, m')exp[im. ( x+X—y) —m' (x —g') —(m +m' )e /2],

(20)

where

M &(y, r, m, m') =E(U& (y, t+r)uz&(y', t)J[u(y, t+r)]J[u(g', t )]expI —i[m rjt (g, t+r) —m' gL(g', t)]] ) (21)

and

(22)

We again note that we are considering the spatially homogeneous case. Next, by making the transformation (22) and
z=(y+y')/2, the integral over z results in 5(m —m') and (20) becomes

CE„ t3(X,r)=(1 /2~) f d y f d'm M &(y, r, m)exp[im (X—y) —m cr ],
where since m' =m we have suppressed the display of m'. Finally, by using (17) and (23) we obtain

Sz, &(k, co)= f d y f drM &(y, r, k)exp[ —i(k y
—cur) —k cr ] .

(23)

(24)

Xexpj —(co /2A )[p (t)+q (t)]I (25)

The expectation value of any function F(p, q, t ) of the
dynamical variables is given by

The frequency wave-number spectra given by (24) are
of central importance for our development in this paper.
However, in order to implement (24) we must first obtain
a tractable expression for (21). In the case of a general
statistical distribution the expectation value in (21) can be
prohibitively dificult to calculate. However, if we con-
sider the G.aussian form given by (9), then the expectation
value in (21) can be computed exactly. It is straightfor-
ward to compute the partition function for (9) and we can
then write

so that we can express the dynamical variables in terms
of their explicit dependence upon the time difference ~
and upon the values p (t ) and q (t ). From this point on
we shall drop explicit display of the time t and simply
write p and q . We will call this the weak-interaction ap-
proximation and while its use is perhaps somewhat
speculative for case III, it is clearly appropriate for cases
I and II.

The complicating factor in (21) is the complex ex-
ponential. All of the other factors in (21) generate prod-
ucts of the form (p q ) where we may encounterJl ~n

any combination of the p and q and n can be as large as
eight (i.e., up to three from each of the two Jacobian
determinants and one from each of the two velocities).
By using (27) the complex exponential in (21) can be writ-
ten

N

E[F(p, q, t)]=fF(p, q, t)g(p, q) Q dp dq (26)
exp I i [m rtt (y, t—+r )

— m'. ri(Ly', t ) ] )

N

=exp i g (P,p,
—+Q, q, )

j=l
where

3

P = g m P (y)sin(co r)
a=1

rtt (y, t+r)= g P (y)[q (t)cos(co r)+p (t)sin(co r)]

The phase-space density function give by (9) restricts
the population of the modes so that the contributions
from the interaction potential are small. Thus, the time
dependence of the dynamical variables can be approxi-
mated by (3). By using (1) and (3) it can be shown

(29)

(30)

and
(27)

3

Q = g [m P (y)cos(cu r) —m' P (y')] . (31)

N

vt (y, t +)=rg P (y)co [p (t)cos(co r)
j=1

—qi(t )sin(~ r)] (28)

The function M &(y, r, m, m') will, therefore, consist of a
sum of expectation values which, by using (2S), (26), and
(29), can be written in the form
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E p qi exp —i g (P,p +Q q )

j=1
=(i)"

Jl
E exp —i g (Pip +Q, q )

BQ,

exp —g (A, /2', )(P, +Q, )
gQ

(32)

By using (32) the expression given by (21) can be evalu-
ated exactly. The only complication is that in the full
three-dimensional case there are a substantial number of
terms generated by the product of the two Jacobian
determinants. While this makes the calculation tedious,
it is only tedium and there are no fundamental
difficulties. Because of the complexity associated with
the full three-dimensional problem it is advisable to first
consider a simplified one-dimensional example. We will
find that the simplified example is rich in physical detail
and there will be little doubt that the important features
will carry over to three dimensions.

III. ONE-DIMENSIONAL EXAMPLE

and

P, &(g) ={/2/Lpco, cos(l, y. )

P,q(g)= —Q2/Lpco, sin(l y) .

I

(35) and (36) can be written

N/2 2

VL (X'~ ) = g g 4',, (X)ql, ( r )
j=l s=l

and
N/2 2

uL (y, t)= g g P/, (g)co p, (t),
j=l s=l

where

(39)

(40)

(41)

(42)

In this section we shall consider a one-dimensional ex-
ample for which we can obtain a relatively simple expres-
sion for the frequency wave-number spectrum. The sys-
tem is translationally invariant and satisfies periodic
boundary conditions so that the eigenfunctions P, (y) are
given by

P (y) =+ 1 /2Lpru, exp(il/y),

where

(33)

i =(2vrj /L), N/2 j—N/2 . (34)

and

N/2

gL(y, t ) = g + 1 /2Lpco exp(il g)qi(t )

j = —N/2
(35)

I, is the length of the system and p is the density. By us-

ing (1), (33), (34), and introducing a slight change in label-
ing we can write

co, =col, i, (44)

where c is the speed of sound.
Before proceeding to the calculation of the Eulerian

spectra, we shall first compute the corresponding La-
grangian spectra. The two space point two-time point
Lagrangian correlation function is defined by

We note that the term j=0 corresponds to a uniform
translation of the system and has been excluded from our
formulation. The canonically conjugate dynamical vari-
ables p,, (r ) and q,, (t) are real and completely indepen-
dent. The Hamiltonian is given by

N/2 2

H(p, q)= g g (rui/2)[p, ', (t)+q,', (t)]+XVi(p, q) .
j=l s=l

(43)

As a familiar example, the dispersion relation for longitu-
dinal sound is given by

N/2

uz (g, t ) = g + 1 /2Lpcoj exp(iljg)co p, (t ) . .

j= —N/2
CL„(X,r)=E[ui (y+X, t+r)uL(y, t)] . (45)

The expressions given by (35) and (36) are given in
terms of complex eigenfunctions and the dynamical vari-
ables p (r) and q, (t) are also complex. Because qL(g, t)
and uL (y, t ) must be real, the p, ( t ) and q (t ) must satisfy

(Recall that this is a one-dimensional example so that
there is only one component of velocity and the label y is
one dimensional. ) In the weak-interaction approximation
the time dependence of p, (t) is given by (3a) so that by
using (40) we can write

p i(t ) =p,*(t),
q -(t ) =q*(t ),

(37a)

(37b)

N/2 2

(g, t+r)= g g P,, (y)co, [p, c so(co, )r
j=l s=l

p, (r ) =p, , (r )+ip, ,{r ),
q, (t) =q, ,(t)+iq, 2(t ),

(38a)

(38b)

and hence the complex variables are not completely in-
dependent. However, it is straightforward to rewrite (35)
and (36) in terms of real independent variables. By writ-
ing the complex dynamical variables in terms of their real
and imaginary parts such that

—q, sin(co r)], (46)

where it is understood that the p., and q -, are at the time
t. By using (43) the phase-space density function corre-
sponding to (25) can be written

N/2 2

g(p, q ) = + + (cu, /2n. A, )exp[ —(cu, /2A )(p,, +q, ) ] .
j=l s=l

(47)
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Then by using (45)—(47) it can be shown that

N/2 2

Ct„(X,r)= g g A, to pi, (X+X)pj,(X)cos(cuir)
j=1 s=l

and by using (41), (42), and (48) we find

X/2

Ct, (X,r)= g (2A, /Lp)cos(1 X)cos(tu r) . (49)

Ct„(X,r) =( I/2~p) f A(l )cos(IX)cos[cu(l )r]dl, (50)

where we have extended the integral to include both posi-
tive and negative values of l. The Lagrangian frequency
wave-number spectrum is the two-dimensional Fourier
transform of (50) given by

At this point it is convenient to pass to the limit that L
becomes arbitrarily large so that the discrete variable I is
replaced by the continuous variable 1 and (49) becomes

A(k)=EDh(k) . (53)

It is clear from (51) and (52) that the Lagrangian spec-
tra are directly sensitive to the details of A(k ). For case
II the heat bath determines the structure of A(k ) so that
the wave-number spectrum given by (52) is a direct mea-
sure of the nature of the heat bath. In case III canonical
equilibrium establishes the distribution such that
A(k)=ED for small wave numbers and then decreases
rapidly to zero for wave numbers which correspond to
length scales smaller than p„. In case III the decaying
region of A(k) is an approximation to the effects of
strong nonlinear interactions and the detailed structure in
this region cannot be expected to be correct. If our in-
terest is in these details of the Lagrangian spectra, then a
more complete treatment must be given. However, if our
interest is in the Eulerian spectra, then we will show that,
over at least a part of the wave-number domain, they are
not sensitive to these details. We shall find it convenient
to introduce the convergence factor h (k ) such that

St„(k,tu)= f dX f dr Ct„( X, r)exp[ i(kX— ter)]—

=(m/p)A(k)[5(to —tu(k ))+5(to+co(k ))],
(51)

where A(k) symmetric about k =0. The delta functions
in (51) confine the system to the dispersion surface, and
we shall refer to this type of system as wavelike. The
wave-number spectrum St„(k ) is given by

For case III, Eo is the average energy per mode and h(k )

is unity if the wave number corresponds to length scales
greater than p„and then decreases rapidly to zero for
length scales smaller than p„. For case II, we shall con-
sider Eo to be the maximum average energy per mode
and h(k) is determined by the heat bath but must ap-
proach zero for length scales which are smaller than pz.

We shaH now consider the case of Eulerian variables.
In the one-dimensional case the Jacobian determinant is
given by

St, (k ) =( I/2m)f St,.(k,

tu)dc'�=�(1/p)A(k

) (52) (54)

which is simply proportional to the average energy per
mode.

By using (19) and (54) the Eulerian velocity can be writ-
ten

uz(x, t)=(1/2') f dX f dm ut (X, t)[1+8 1 (7', t)/BX]exp[im[x X Ylt (X,t—)]——m o /2I

=( I/2m ) f dX f dm ut (X t )(i lm )8 exp Iim [x X alt (X —t )]——m cr l2I IBX

= —(i /2m) f dX f dm ( 1 lm )exp [im [x —X—7lt (X, t )]—m cr /2 I But (X, t ) IBX, (55)

where in the last step, which involves integration by parts, the integrated pieces vanish because of the periodic bound-
ary conditions. Then by using (16) and (55) the Eulerian correlation function can be written

Cz, (X,r)=(1/2n. ) f dX f dX' f dm f dm'M(y, r, m, m')exp[im(x+X X) im'(x ——X—') —(m +m' )cr /2],

where

M (y, r, m, m '
) = ( 1 Im m '

)E ( [r)ut (X, t +r )Ir)X ][dut (X', t ) IBX' ]exp [
—i [m alt (X, t +r )

—m '
rid (X', t ) ] I )

and recall that y is the one-dimensional version of (22).
By using (32), (39), (40), and (57) we find

(56)

(57)
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oo 2 oo

M(y, r, m, m') =
j =1 s =1 j =1 s =1

1 2 2

ay, , (x')

ax'

X(co co Imm')E [p, cos(co, r) —qi, sin(col r)]p&,J1 J1 1 J2'2

J1=1 s1=1 j2=1 s2 =1

t'

00

X exp i —g g (P,p, +Q, q,
j=l s=l

ay, , (x')
'

(co, co, /mm')
J1 J2

a2
X cos( (di 7 )Jl

J1$1 J2$2

a2—sin(co r)
J1 1 J2 2

X exp —g g (AJ /2coi )(P)~ + Qi, )
j=l s=l

(58)

where

P, =m p,, (X)sin(co r ),
Q, = mfa, (X)cos(co,r) —m'P, (X'),

(59)

(60)

and since we can control the occupation of the states by the convergence factor h (k ) we have extended the upper bound
on the various sums over j to infinity. The derivatives in (58) can be evaluated to obtain

oo 2 oo

M(y, r, m, m') =—
j =1 s =1 j =1 s =1

1 1 2 2

BO..., (x )

ax

ak, , (x)
ax'

X(1/mm')A, [co 5 6, , cos(co r)
1 Jl JlJ2 sls2 J1

—[P, cos(co r)+Q, sin(co r)]

XA P, Iexp —g g (A /2' )(P, +Q, )

j=l s=l
Finally, by using (41), (42), (59), (60), and (61) it is tedious but straightforward to show that

M(y, r, m, m')= —(1/mm')I[a D(y, r, m, m')/By Br ]—[a D(y, r, m, m')/Bya~] Iexp[ mm'D(—y, r, m, m')],
where

D(y, r, m, m')=[(m +m' )/2mm']Cl (0,0) —CI „(y,r)

and the Lagrangian displacement correlation function CL „(y,r) is given by

(61)

(62)

CL„(y,r) =(2/Lp) g (A, /co, )cos(l y)cos(co, r)=(1/2mp) f [A(1)/co (l )]cos(ly)cos[co(l)r]dl . (64)
j=1

We note that the last expression of (64) corresponds to the limit that L is arbitrarily large.
Since M(y, r, m, m') depends upon y =X—X' but not upon z=(X+X')/2, we can make the transformation from X

and X' to y and z in (56) and by using (62) we obtain
2

B D(y, r)
By B~

(65)exp[im(X —y) —m D(y, r) —m o ],B4D
Cz, (X,r) = —(1/2m) f dy f dm(1/m )

By B

where, since D(y, r, m, m'=m ) is independent of m, we have suppressed the display of m and written D(y, r). The fre-
quency wave-number spectrum Sz, (k, n) is the two-dimensional Fourier transform of (65) which yields

2

Sz, (k, co)= —f dy fdr(1/k )
a D(y, 7)

By BH
z B D(y, r)

By 87
exp[ —i(ky cur) —k D(y, r) —k—~'] . (66)

Hy using (53), (63), and (64) we can write

D (y, r) =(Eo/2rrp) f [h (1 )/co (l )) I 1 cos(ly )cos—[co(1)r]]dl . (67)
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Equation (66) establishes the relationship between Lagrangian and Eulerian spectra, and is the vehicle by means of
which we will explore the difference between the two.

It is also useful to compute the Eulerian wave-number spectrum Sz, (k ) which by analogy with (52) is given by

S~„(k ) =( I/2') fS~,(k, co)des .

By using (66) and (68) we find

(68)

BD 0SF„(k)=—(1/k )f '
exp[ —iky —k D(y, O) —k cr )dy, (69)

where we have used (67) to show that B D(y, O)/By Br=0. The important physical properties of (66) and (69) will be dis-
cussed in Sec. IV.

IV. DISCUSSION
p, = (1/2) f h(1)dl (72)

The Eulerian spectra given by (66) and (69) are central
results of this paper. We will show that in general they
yield expressions which are different from the corre-
sponding Lagrangian spectra given by (51) and (52). In
this section we shall discuss these important differences,
but before doing so it is useful to examine in more detail
the conditions for the weak-interaction approximation to
be valid. For fluid systems the expression for the Hamil-
tonian given by (2) is an expansion in powers of
[J(u)—1] which in the one-dimensional case is given by

(70)

c = (p/2) f [h(l )1'/~'(1)]dl (73)

If, for example, we use the dispersion relation for sound
given by (44), then we find that the effective wave speed is
simply the speed of sound. Finally, we define the Euleri-
an length scale v such that

We note that p is a measure of the length scale at which
the convergence factor h(l ) limits the participation of the
small scale modes. Secondly we define the effective wave
speed c such that

(v/p) =E[A, ] . (74)

E[A, ] =(Eo/2mp) f [h(1)l /co (1 )]dl . (71)

Thus, as a heuristic criterion we can require that E[A, ]
given by (71) be somewhat less than unity for the expan-
sion in (2) to be valid.

We shall find it convenient for the following discussion
to define three useful parameters. The first is the previ-
ously defined Lagrangian length scale p which we now
define more precisely as

If that expansion is to be valid, then A, must be small rela-
tive to unity. We can estimate the strength of the non-
linear interactions by computing the expectation value of

By using (25), (39), (41), (42), and (53) it is straightfor-
ward to show that

By using (71)—(74) it is easy to show that

v= (Eop/irpc )' (75)

D (y, r) =v'F(y, r) (76)

and

For most distributions v is approximately equal to the
root-mean-square Lagrangian displacement and we will
find that it plays an important role in our discussion of
the Eulerian spectra. We note that the ratio v/p must be
somewhat smaller than unity for the expansion in (2) to
be valid.

By using (67), (72), and (73) we define the dimensionless
function F(y, r) such that

F(y, r)=(2c 2/p) f [h(1)/co (l)]I 1 —cos(ly)cos[co(1)r]jdl . (77)

Then by using (66), (76), and (77) we find
2

S~, (k, co)= —(v/k) f dy f dr B F(y, r)
By Br

exp[ —i(ky —cow) —(kv) F(y, r) —(ko ) ] . (78)

We note that the above discussion is specific to the one-
dimensional system. For a three-dimensional system the
convergence factor is a function of the three-dimensional
vector I. Further, for a stratified fluid it is likely that
there is one length scale which corresponds to the cutoff
of horizontal wave numbers and a different length scale

which corresponds to the cutoff of vertical wave num-
bers. The treatment of the three-dimensional system is
otherwise analogous to that for the one-dimensional sys-
tem. We also point out that the above discussion con-
cerns only the compressional potential energy. For
stratified fluids there is also an expansion for the gravita-
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tional potential energy which must be considered. In a
typical case the gravitational nonlinearities tend to be
smaller than the compressional nonlinearities, and in any
case the treatment of the two is entirely similar. The
specific discussion in the remainder of this section is for
the one-dimensional compressional wave system. The ex-
tension to more general systems is obvious.

We shall now examine the general features exhibited by
(78), first for small values of the product kv, and then for
large values. The factor exp[ —(kcr) ] simply accounts
for the small but nonzero size of the Eulerian cell and for

in (78) to obtain

$~,(k, co)= g $~, (k, co),
j=0

where

(79a)

our purposes here we may set this factor equal to unity.
For small wave numbers such that kv«1 it is useful to
expand the factor

exp[ (k—v} F(y, r)]

and

S~,o(k, co) = —(v/k ) f dy fdr ' exp[ i(k—y —cur)]2 B F(y, r)
By B

Sz„(k,cu)= —v [( —1)'Ij!)(kv) 'j "fdy f dr[F(y, r)]J B F(y, r) B F(y, r)
By 2Br '

By Br

2

(79b)

Xexp[ i(ky ——cur)], 1&j & ao . (79c)

By using (77) it is straightforward to show that (79b)
yields

SE„O(k,cu) =(4m v c Ip)h (k )

X [5(co—co(k ))+5(co+co(k ))] (80)

which by using (75) is easily seen to be the same as the
Lagrangian frequency wave-number spectrum given by
(51). The term from (79c) denoted by Sz„,(k, co) is also of
order (kv) . However, as we will demonstrate later, it is
also smaller by the factor (v/p) and can be viewed as a
correction which in general tends to smear the delta func-
tions in (80}. The remaining terms from (79c), for which

I

I

2&j & oo, are proportional to (v/p) and are of order
(kv) '1 " so that if kv«1, then they can be neglected.
Thus, if v «p and if kv « 1 for all values of k which are
of interest, then we have obtained the well-known result
that in this limit the Lagrangian and Eulerian spectra are
equivalent.

If 1 « kv, then because of the factor

exp[ —(kv) F(y, r)]

only small values of y and 7. will contribute to the in-
tegrals and we can generate an expansion in powers of
1/k v by expanding F(y, r) in powers of y and r to obtain

Sz, (k, co)=(v/k) f dy fdr[(c /p )M+ . ]expI —
—,'(kv) [(y/p) +(cr/p) ]—i(ky —err)]

=(4m v c /p)(v/p) [M(1 lkv) + . ](p/2mc)expI —,'[(pcs/k—vc) +(p/v) ]}, (81)

where

M=2p h(l)l dl . (82)

For typical choices for the convergence factor in (82) the
dimensionless parameter M is of order unity. While the
specific arrangement of the parameters here is somewhat
arbitrary, the above choice has been made for ease of
comparison and manipulation between these and subse-
quent expressions. We note first that the frequency
wave-number spectrum given by (81) is not proportional
to the delta functions which confine the system to the
dispersion surface, and hence from an Eulerian frame
point of view the system is not wavelike. For large values
of kv the dominant behavior of (81) is the power-law de-
cay which is proportional to (1/kv) and this is true in-
dependent of how the convergence factor h (k ) is chosen.

Hence, if 1«kv, then the Eulerian frequency wave-
number spectrum is in general significantly different from
the corresponding Lagrangian spectrum.

We can also obtain an expansion in powers of kv for
the wave-number spectrum Sz, (k } given by (69}. This
expansion is useful if kv «1 and is most easily obtained
by noting that its terms are given by

$~„~(k)=(1/2') f$~, (k, co)den . . (83)

By using (80) and (83) it is straightforward to show that

S~„o(k)=(2vrv c /p)h(k)2 (84)

which by using (75) for v is easily shown to be the same as
the Lagrangian wave-number spectrum given by (52). By
using (77), (79c), and (83) it can be shown that
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SF„(k) =(2~v'c '/p)(v/lJ, )'N(k )2,
where

N(k)=2pc'f [h(k —l)(k —I)'
—h(k)k ][h(l)/co (l)]dl (86)

which is dimensionless and for typical choices for the
convergence factor is of order unity. Thus, we find that
for smal1 kv the Eulerian wave-number spectrum is equal
to the Lagrangian wave-number spectrum plus the
correction term given by (85). The remaining terms, for
which 2 &j & ~, are of order (kv) '~ " so that if
kv((1, then they can be neglected.

If 1 «kv, then by using (81) and (83) it can be shown
that

Munk' has synthesized a variety of observations of
oceanic temperature and velocity fields into a single uni-
fying structure. The model assumes that these fields are
due to a random superposition of linear internal waves
and empirically adjusts the wave amplitudes in order to
obtain agreement between their model and the various
marginal spectra associated with the above collection of
observed fields. While the GM model provides a useful
and surprisingly reliable catalogue of existing experi-
ments, it is empirical and does not presume to provide a
first-principles explanation for the observed spectra. It is
our ultimate goal to use the methods described in this pa-
per to obtain such a first-principles explanation.

There have been other attempts to do this (for a recent
review see Pomphrey' ). By making the weak-interaction
approximation, the action rate equation given by

S~,(k)=(2~ vc /p)(v/p) [M(1/kv) + . )

X(1/V2~)exp[ —( —,
' )(p/v) ] . (87)

aA, = g g IT,+' [A A, —(A A'+A, A )]
'8 t

The Eulerian wave-number spectrum given by (87) is in
general significantly different from the Lagrangian wave-
number spectrum given by (52). We note that, indepen-
dent of the specific choice for the convergence factor
h(l ), the power-law decay proportional to (1/kv) is ob-
tained. In fact, the only detailed dependence upon the
convergence factor is through the second moment in-
tegral M given by (82). Hence, we find that in the decay-
ing region of the Eulerian wave-number spectrum all de-
tailed information concerning the Lagrangian frame de-
cay is lost and we simply find the (1/kv) decay. This
means that, independent of the detailed dynamics in the
Lagrangian frame, we will always find the same large
wave-number decay in the Eulerian frame. This also
means, however, that experiments which focus upon the
large wave-number decay in the Eulerian frame are not
capable of obtaining detailed dynamical information.

We shall now consider the potential application of
these methods to the problem of the statistical distribu-
tion of oceanic internal waves. There is, of course, a
sense in which this discussion might be considered
premature since internal waves are noncompressional
waves which require at least a two-dimensional system to
exist and we have examined the details of our methods
for only the one-dimensional compressional wave exam-
ple. On the other hand, the mathematical structure of
linear internal waves is well understood (for a formula-
tion in terms of Lagrangian variables see, e.g. , Tolstoy' ),
and except for the imposition of specific relations be-
tween the vector components of the wave field, the
mathematical structure is otherwise identical to that of
our one-dimensional example. While we will not present
the proof here, we have also shown that the large wave-
number decay of the Eulerian wave-number spectrum in
two dimensions is k and in three dimensions is k
We note that this is precisely what would be anticipated
on the basis of dimensional arguments. Hence, there can
be little doubt that the important general features exhibit-
ed by the one-dimensional example will carry over to
three dimensions.

The model variance spectrum proposed by Garrett and

+2T,' ~ [A,'Aj- —
( A, A' —A A' )]I

(88)

has been obtained by Hasselmann and by Benney and
Sa6'man. In (88) A, is the average wave action associat-
ed with the jth mode and the T—' - are coupling
coefficients which depend upon the nonlinear interactions
and conserve wave energy and momentum. Equation (88)
has been used for numerous oceanographic calculations. '

We note that (88) is also well known in statistical
mechanics where it can be obtained by using the master
equation for the phase-space density function derived by
Prigogine in the weak-interaction approximation.

It is well known that stationary solutions to (88) are
given by A =Eo/co which is the average wave action
obtained from the canonical distribution. [We note that
the more general form A =Eo/(co +P k ), where P is a
constant vector, is sometimes quoted in the oceanograph-
ic literature. It is we11 known that this more general form
includes a conserved component of net wave momentum
which is possible in translationally invariant systems. It
is straightforward to extend our treatment to include this
case, but there is no need to complicate the discussion for
our purposes in this paper. ] For linear internal waves the
dispersion relation co approaches a constant for large k
(actually large horizontal component of k, ) and, thus, the
above action spectrum is white for large k . In contrast
the action spectrum proposed by GM exhibits a large
wave-number decay of between k and k . Because of
this it is often assumed that the oceanic internal wave
field is not near canonical equilibrium. As pointed out
earlier, McComas and Muller propose that if generation
and dissipation terms are added to (88), then the GM
spectrum will be a stationary solution to the altered equa-
tion. They present a heuristic construct and some nu-
merical studies in support of this idea. While their re-
sults perhaps tend to support the conjecture, they are too
incomplete to be taken as more than suggestive.

Another possibility is that the ocean is at (or near)
canonical equilibrium. However, we must be careful to
distinguish between Lagrangian and Eulerian variables.
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The canonical distribution yields the action spectrum

AJ =Eo /to~ (or perhaps the more general form), but this
is in terms of Lagrangian variables only. The empirical
GM action spectrum is given in terms of Eulerian vari-
ables and, as we have shown, in the decaying region the
two types of spectra are significantly different. Thus, it is
the kinematic distortion caused by the transformation
from Lagrangian to Eulerian variables which masks the
true Lagrangian wave-number spectrum and produces an
Eulerian wave-number spectrum which exhibits a power-
law decay.

It is our proposal that the observed distribution of
oceanic internal waves corresponds to either case II or
III with the parameters chosen such that the decaying
portion of the wave-number spectrum is within the region
1 &(kv. In either case the large wave-number decay of
the Eulerian wave-number spectrum is the same and
tends to be similar to that which is observed experimen-
tally. The scenario described by case III is attractive be-
cause it provides an explanation for the quasiuniversal
character of the GM spectrum. In this case the overall
level Eo is set by external considerations, but otherwise
the system is self-regulating so that the spectral shape is
determined by internal interactions and is universal. In
both cases II and III the large wave-number decay is
universal and perhaps this is all that is really needed. It
is important to realize that our empirical knowledge of
the oceanic spectra is somewhat sketchy. In a typical
oceanographic experiment it is not the full four-
dimensional frequency wave-number spectrum or even
the three-dimensional wave-number spectrum which is
actually measured. Instead, various one-dimensional

marginal spectra (i.e., weighted integrals) obtained from
the four-dimensional frequency wave-number spectrum
are measured. Because of this the comparison between
theory and experiment is not entirely straightforward.
All we can really seek at this time, is a reasonable theory
that exhibits general features which are similar to those
which are experimentally observed. In order to establish
that our proposal does indeed provide a first-principles
explanation for the observed distribution of oceanic inter-
nal waves we must examine the above issues by detailed
calculations for the full three-dimensional oceanic inter-
nal wave system. It is also important to consider the
effects due to the translational modes. The methods we
have introduced here can also be used to include the
translational modes, but that task has yet to be accom-
plished. Nevertheless, the implications of the results
from our one-dimensional example are clear cut and pro-
vide a compelling motivation to pursue the oceanic prob-
lem. It is also clear that these methods are potentially
applicable to any stochastic Auid system and are, there-
fore, of broad general interest.
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