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An optical ring cavity containing distributed nonlinear elements is proposed as a simple meta-
phorical model for investigating the dynamic properties of spatial chaos in a system far from
thermal equilibrium. If the coupling between the elements is unidirectional, the stability of the
disordered structure can be determined by the spatial Lyapunov exponent. This fact implies that
spatial chaos is almost dynamically unstable and is replaced by spatiotemporal chaos. However, in
the case of bidirectional coupling, the spatial chaos is self-induced over a wide range of the control
parameter, which means that a memory function is formed cooperatively in the system. We predict
several cooperative phenomena and describe their physical origin in terms of nonlinear dynamics.
In particular, characteristics of spatial chaos applied to information storage are studied in detail.
Applicability of predicted phenomena such as a cooperative all-optical switching, multivibrator
operations, flip-flop operations, as well as spatial chaos memory, is discussed.

I. INTRODUCTION

Collective behavior, which arises through the interac-
tion of elemental components, is currently of interest in
nonlinear dynamics. Whether these components are neu-
rons, amino acids, and so on, the collective behavior of
the whole is qualitatively different from the sum of the in-
dividual parts. This concept is referred to as a Gestalt
from the German philosophical concept that the whole is
more than the sum of its parts. In this paper, a nonlinear
optical system consisting of distributed nonlinear ele-
ments is proposed as a promising candidate for a system
which possesses novel collective functions. Our basic
perspective is to create cooperative function through the
summing of simple elements.

So far, the study of optical systems has been restricted
to individual elements, such as lasers and bistable optical
elements.""? Of course, research has been done to achieve
various types of logic functions by integrating these ele-
ments. However, such a design concept is only an exten-
sion of the idea of semiconductor integrated circuits to
optical systems. In addition, integrated optical logic cir-
cuits developed so far are inferior to state-of-art semicon-
ductor logic devices in terms of switching speed. On the
other hand, attention has been paid to collective devices
consisting of coupled elemental components. This
configuration results in automatic parallel processing and
intelligent behavior. For example, neural networks and
their optical analogue, that is, holographic systems, can
function as associative memory.>* If similar intelligent
operations can be achieved in the form of parallel pro-
cessing, the low processing speed of optical devices may
be overcome sufficiently. The study of collective func-
tions expected to exist in coupled lasers or nonlinear ele-
ments will provide a new insight into practical nonlinear
optical devices.

Dynamics of lasers and bistable optical devices are de-
scribed by simple rules as individual elements. In spite of
their simple dynamic rules, these systems have recently
been recognized to exhibit dynamic instabilities and com-
plex behaviors,® e.g., chaos. Some of these complex dy-
namic behaviors are applicable to signal processing.
However, the collective functions of simple stable ele-
mental components should be studied rather than the un-
stable behavior of individual elements.

This paper proposes a novel collective optical device
which can be implemented using practical nonlinear opti-
cal media. The elements of the proposed system consist
of a nonlinear dielectric material placed between optical
mirrors. An individual element is coupled to an adjacent
element by optical beams. If the optical coupling is ab-
sent, an individual element does not show any active
function. However, the collective elements show very at-
tractive dynamic and static functions as a system when
the optical coupling is introduced. The proposed system
is interesting in terms of nonlinear dynamics; moreover,
it possesses a variety of cooperative functions from the
viewpoint of practical application.

Underlying the proposed system is the general problem
of spatial disorder (chaos), an important general subject
in the field of classical condensed matter. Recently, the
origin of spatial disorder has been discussed in relation to
the problem of dynamic systems. Recently, Aubry has
extensively studied the significance of spatial chaos in an
equilibrium system. He elucidated the complex structure
of commensurate-incommensurate phase transition in
terms of dynamic structure associated with spatial
chaos.® On the other hand, Yumoto and Otsuka recently
predicted the existence of spatial chaos in an externally
pumped nonlinear optical system.” Since then, several
examples of systems which exhibit spatial chaos have
been proposed for optical systems.»® In macroscopic
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nonequilibrium systems such as externally pumped opti-
cal systems, dynamic stability rather than thermodynam-
ic stability plays the essential role. However, the dynam-
ic stability of spatial chaos in nonequilibrium systems has
been left an open question.

In the present paper, we discuss the dynamic stability
of spatial chaos expected in the proposed distributed op-
tical element system, paying specific attention to the po-
tential applicability of spatial chaos to information
storage (memory). In Sec. II the physical background
and motivations of this work will be reviewed in connec-
tion with the spatial chaos problem. In Sec. IIT a concep-
tual model of an optical system with distributed non-
linear elements is described and a fundamental equation
which governs the proposed system is introduced. Sec-
tion IV discusses the bifurcation of spatial solutions and
investigates the dynamic stability of these solutions for
unidirectional and bidirectional coupling. It is shown
that the two different coupling schemes lead to quite
different answers to the dynamic stability of spatial
chaos. In Sec. V we discuss the applicability of some
forms of cooperative behavior that can be expected of the
system, such as all-optical switching, and multivibrator
and flip-flop operations. In particular, characteristics of
spatial chaos are discussed regarding potential applicabil-
ity of spatial chaos to information storage.

II. PHYSICAL BACKGROUND

An interesting aspect of chaos is that a variety of pat-
terns can be produced even though the production rule is
quite simple. Concerning application, we may have two
ways of regarding chaos. From the viewpoint that chaos
implies complicated uncontrollable dynamic behavior,
one may feel that chaos should be avoided since it cannot
be predicted. In fact, the majority of workers try to ap-
ply knowledge of chaos in order to remove the uncon-
trollable aspect of the system. If one views chaos from
another viewpoint, it acts as an “information generator”
which can produce all sorts of possible patterns. From
this standpoint, the study of chaos might be encouraged,
since it plays the part of an ideal information carrier.
Such a viewpoint seems to be supported by only a few
workers, including the present authors.!*!!

The existence of chaos implies that the number of
coexisting periodic solutions increases exponentially
exp(hT) with period T, where 4 is the topological entro-
py greater than zero. These periodic solutions can be ex-
pressed by a binary code in an ideal case and periodic
solutions coexist which correspond to all binary series. If
these coexisting periodic solutions can be used as a
memory, it is basically possible to store information of
log,(h) bits per unit time in a chaotic system. Recently,
Davis and Ikeda proposed that coexisting stable periodic
solutions due to complex bifurcation just before chaos in
an optical system can be applied to a dynamic memory.!°
A positive role for chaos in switching between different
periodic states is also emphasized.!! Unfortunately, in
most cases, these periodic solutions are unstable in the
chaotic regime, and make transitions to other periodic
solutions in the presence of quite small perturbation.
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This is reasonable since temporal chaos can be under-
stood in terms of the transition phenomena between un-
stable periodic solutions.

Another interesting fact exists. If chaos can be gen-
erated as spatial patterns instead of temporal patterns,
spatial chaos, or more strictly speaking a spatially unsta-
ble periodic pattern embedded in the chaotic patterns,
seems likely to be temporally stable. Such a possibility
has been pointed out by Aubry in a completely different
physical context.®

Aubry’s physical system provides a critical test of
chaos memory, and therefore we review his system a little
more precisely. Aubry discussed the Frenkel-Kontrova
system, which can be expressed by the following Hamil-
tonian:

H=(K/2)X,; —X,)?+cosX,, n=1,2,3,...,N (1)

and investigated the spatial structure of the system
{X,X5, ..., Xy} (Xy=X,). The spatial structure can
be expressed as the solutions of the mapping rule ob-
tained by minimizing the Hamiltonian functional (1),

Xn+l—~Xn =Pn/K > (2)

Pni1—Pp=sInX, ;. (3)

Equations (2) and (3) are the so-called standard map, and
almost all the solutions become chaotic if the coupling
constant between the element K becomes smaller than a
certain threshold value. He conjectured that such a
chaotic solution corresponds to a local minimum of
H{X,}. More precisely, a large variety of spatially un-
stable periodic solutions embedded in the chaotic sea are
dynamically stable. The simplest example is the spatially
unstable period-1 cycle solution given by

X,=m p,=0. 4)

If one carries out a linear-stability analysis around this
solution, it is easily shown that this solution in fact stands
for a local minimum of the system.

At a finite temperature, however, various periodic spa-
tial solutions which construct spatial chaos become meta-
stable since the system can overstep the barrier of local
minima thermally. This process is expressed by the fol-
lowing Langevin-type equation:

aX, 0H(X,)

TRl +£,(2) . (5)

Here, { f,(¢)f,(t))=8(t —t')8,,{ f?) is a random force.
The random driving force destroys the metastable state.
As a consequence, the metastable state has a finite life-
time in Aubry’s equilibrium system.

If one intends to make such a lifetime longer such that
these solutions can be utilized as a spatial memory, the
elemental part X, should be constructed with a macro-
scopic system. However, one cannot ensure that such a
macroscopic system in general obeys the simple
relaxation-type dynamics driven by the force
F,=0H(X,)/d3X, derived by the Hamiltonian functional
in Eq. (5). In particular, in nonequilibrium macroscopic




39 COOPERATIVE DYNAMICS AND FUNCTIONSIN A . .. 5211

systems, there is in general no need to satisfy the follow-
ing potential condition:

oF, OF,
= . (6)
dX,, 0X,
In a macroscopic nonequilibrium system, the dynamics
cannot in general be expressed in terms of the relaxation
process towards local minima given by Eq. (5). Under
this situation, however, it seems to be rather difficult to
realize spatial chaos as frozen spatial patterns and the
possibility arises that spatial chaos is replaced by tur-
bulence (spatiotemporal chaos) due to dynamic instabili-
ty.

The first question then arises: Is spatial chaos dynami-
cally stable in macroscopic nonequilibrium systems? The
possibility of the existence of spatial chaos in nonequili-
brium systems has been proposed by Yumoto and Otsu-
ka.” They pointed out that the polarization state of light
changes chaotically in a nonlinear-refractive-index medi-
um which is excited by counterpropagating beams (de-
generate four-wave mixing scheme). If these spatial
chaos solutions are dynamically stable, their system be-
comes an ideal candidate for realizing spatial chaos
memory. Unfortunately, the dynamic analysis of their
system is very difficult and no information has been ob-
tained regarding its dynamic stability.

Let us go back to Aubry’s system again. Aubry’s sys-
tem can be interpreted as an assembly of elements each of
which has the on-site potential V(X, )=cosX,. The ex-
istence of local minima of on-site potential means that
each element has a memory capacity. In the limit of
small coupling K —0 between the elements, any structure
in which the states of each element are arranged random-
ly on the potential X, =2k, (n is an integer) appears to
be stable. Such structures are the random limit of spatial
chaos solutions. Therefore the memory capacity per unit
element provided by the most random spatial chaos is
equal to the number of local minima of each element.
The memory capacity does not decrease very much even
if coupling between the elements is introduced. Firth
claimed along this line that diffusive coupling (cross talk)
between optically bistable pixels does not drastically de-
crease the memory capacity of pixel arrays.” However, in
a system in which spatial chaos is ensured by the ex-
istence of many local minima in “on-site” potential of
decoupled elements, the memory capacity should rather
be decreased due to the coupling between elements. Our
perspective is to increase the memory capacity drastically
by introducing spatial chaos into the system by coupling
simple elements which individually do not have local
minima, i.e., memory capacity. The second question then
arises: Is it possible to realize spatial chaos in a collective
system when elements which have no memory function
are coupled to each other by a suitable coupling mecha-
nism? Even though the answers to the two issues men-
tioned above are positive, there still remains a basic ques-
tion concerning the possibility of controlling the spatial
chaos as memory: Can spatial chaos memory be ad-
dressed easily? In particular, is it possible to switch be-
tween spatial chaos patterns by external control?

If the answers to the above questions are positive, then

we can construct a memory device by summing simple
elemental parts. That is the “cooperative formation of
memory functions.” The main subject of this paper is to
investigate the above three issues. We will show that
such a spatial chaos memory device can be realized by a
collective nonlinear optical element system.!? Although
the configuration of the proposed system is rather com-
plex and is not appropriate for practical use, it is very
convenient for examining the memory function of spatial
chaos. In this sense, the proposed model can be con-
sidered as a metaphorical model of spatial chaos memory.

III. MODEL

In the conceptual model of the proposed system shown
in Fig. 1, nonlinear elements possessing third-order sus-
ceptibility are arranged in an optical ring cavity. These
elements interact via counterpropagating light beams
(AP, A) that are introduced through the mirrors
which separate the elements. The forward and backward
propagating waves couple through the nonlinear refrac-
tive index grating formed in the medium. This effect
makes the analysis quite difficult. Therefore we assume
that the refractive-index grating diffuses very fast and we
neglect the mutual coupling through the refractive-index
grating. Then the Maxwell-Debye (or Bloch) equation
which describes the motion of electric fields E{*), EJ® and
the nonlinear phase shift introduced into the electric field
at each cell ¢\, ¢’ can be reduced to the following delay
differential equations:

Eft +15)= A+ B exp{i[¢f (1)
+¢{)k_l)]}E}~k—l)(t), (7

FIG. 1. Conceptual model of a nonlinear optical system with
distributed nonlinear elements.
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Eft +15)= A+ B expli[¢f TV (1)
+okFOPEKIG),  (8)
7(3¢'¥(2) /1)
=—¢X (1) +g[(1—e =) /a)|EF(0)]?
+qf dse S|Ef(t+1/c—2s/c)|?, 9)
T(d¢¥(2) /a1 )
—¢‘k><t)+q[(1—e—a1>/a1|E“"(t>|2

+qf dse_‘”|E (t+1/c—2s/¢)|*. (10)
Here, c is the velocity of light, B =1"Re ~%/2 s the cou-
pling coefficient between the adjacent cells (R is the mir-
ror reflectivity, a the absorption coefficient, and / the cell
length), ¢{¥ is the linear phase shift across the kth cell,
and g=sgn(n,)[a/(1—e )] (n, is the quadratic
coefficient of the nonlinear refractive index). The deriva-
tions of these equations are given in Appendix A.

To extract the essence of a coupled element system, let
us simplify these equations further. First, we assume that
the variation of the electric field intensity during the tran-
sit time through the cell is negligible, i.e., tx =1/c, —0.
Next, we assume that absorption by the medium is negli-
gible, i.e., al —0. Then, Egs. (9) and (10) reduce to

(3¢ (1) /0t )=
T3¢y (1) /31)=

—¢F O+ EFOP+HIEF D, A
¢"<’ OD+IER@P+IEL @) . (12)

Since (3¢ (1) /3t —dK (1) /3t )= — (¥ (1) — p(2)),
the term |¢(k) 1) — ' R(2)] goes to zero asymptotically.
Thus we may set ¢ (1) =@ (t)=¢, (¢

We consider the llmlt of large dissipation, i.e.,
B=VR <<1 with A“‘)ZB O(1).'* Then, from Egs. (7)
and (8), the field intensities at the kth cell are expressed as

;-k)(¢k_l)E|E(k)(t)'2
_A(k)Z{1+2Bn(k)cos[¢k—l(t)+¢é)k—l)]} ,
(13)
B )= EF (D]
= A1+ 2By cos[ ¢y (D +F TV,
(14)
with
n(I:l'()zAI(:k_l)/AI(Tk)’ TI(Bk):Al(;k-i—l)/Agk) .

The dynamics of nonlinear phase shift ¢,(¢)
=o' (1)=¢% (1) thus obey a simpler dynamic equation,

¢ =—¢; +f(k) ¢k*l)+f(Bk)(¢k+l) . (15)

Henceforth we often consider the ideal case in which
the input fields as well as the llnear Fhase shift do not de-
pend on the cell, i.e., A% = A=Ay, ¢9=¢,. In
such a case, superscript (k) in the nearest-neighbor cou-
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pling forces in Eqgs. (13)—(15) can be discarded and the
dynamics of the system obey the following simple equa-
tion of motion:

Thi=—br + (i )+ f5( i 1), (16)
with
SrB(d

The analyses in the following sections are based on model
equations (13)-(15) or (16) and (17).

)= A} p[1+2B cos(¢, +¢,)] . 17

IV. SPATIAL BIFURCATION
AND DYNAMIC STABILITY

A. Unidirectional coupling

First let us consider the case of undirectional coupling,
ie., AY¥'= A4 and 4 =0 and examine the dynamic sta-
bility of stationary spatial structures. In this case, the

stationary solution ¢, of Eq. (16) is determined by the
mapping rule

b 1=fr(ds) . (18)

The properties of the solutions of mapping rule Eq. (18)
are well investigated.!* In particular, the solution is
shown to exhibit complicated bifurcation phenomena
when the nonlinear parameter, that is, 42 in our case, is
changed. The spatial structure which can exist in our
case are those whose spatial period is N or its divisor that
satisfy the following boundary condition:

bni1=0; . (19)

However, let us forget this restriction for a moment and
look at the bifurcation phenomena based on Eq. (18).

There are three types of solutions in Eq. (18), namely,
stable periodic solutions, unstable periodic solutions, and
nonperiodic solutions. Among the solutions which can
be obtained by iterating the map Eq. (18), only stable
periodic solutions and observable nonperiodic solutions
(i.e., chaotic solutions) can be seen. The result is shown
in Fig. 2(a) assuming B =0.1 and ¢;=0. Unstable
periodic solutions and nonobservable nonperiodic solu-
tions are not seen in this figure, however, the global be-
havior can be understood. In short, the stable period one
cycle solution exhibits successive spatial period-doubling
bifurcations leading to spatial chaos. Within the chaotic
regime, a lot of stable periodic solutions whose period
pF#1 are embedded as windows.

Among these solutions, spatial solutions which satisfy
the boundary condition of Eq. (19) and are dynamically
stable can exist as stable structures. The dynamical sta-
bility of these solutions can be examined by the linear-
stability analysis of Eqs. (16) and (17). The spectrum of
the small deviation around the stationary solutions
8¢, =84, exp(At) is governed by the following charac-
teristic equation:

(A+1)¥=exp(Na)sgno, o= H Fr(dr) (20)

k=1

where



COOPERATIVE DYNAMICS AND FUNCTIONSIN A . ..

5213

20
(a)

(Dk 10

(rad)

ll‘llllll]ll11l|'l|

— spatially stable

10

o

A2

15

— dynamically stable
--- dynamically unstable

FIG. 2. (a) Bifurcation diagram for ¢,=0 and B=0.1. (b) Realized process of spatial bifurcation by increasing or decreasing input

parameter A4°.

N
a=(1/N)S Inlfp(d;)l 1)
k=1

is the “‘spatial Lyapunov exponent” of the periodic solu-
tions of ¢,,é,, ...,dy. Obviously, the structures whose
a <0 correspond to the “stable” periodic solutions of Eq.
(18) and the structures whose a >0 correspond to ‘‘unsta-
ble” periodic solutions of Eq. (18). The structures of
a <0 (>0) are referred to as spatially stable (unstable)
structures hereafter. The existence of spatially unstable
structures implies that the number of spatial structures
increases exponentially with the system size N. Therefore
the sign of the spatial Lyapunov exponent and the dy-
namic stability of the structures are extremely crucial as
criteria of whether the latent memory capacity is positive
or zero, as was discussed in Sec. II. Equation (20) indi-
cates that the dynamic stability of the structures are
closely related to the spatial stability. The solutions of

Eq. (20) are given by
A=—1+4+exp(alexpli2nm/N) (0 >0),
A=—1+exp(a)exp[ —i(2nm+m)/N] (0 <0).

(22a)
(22b)

Therefore the spatially stable structures, e.g., a <0, are
dynamically stable since all real A <0. Even if a becomes
positive through spatial bifurcations, when o <0, i.e., the
bifurcation is an inverted type, all real A are found to be-
come negative for 0 <a <In|1/cos(7/N)|.

This means that if a spatially stable period-p cycle
structure is realized, period-doubled structures
pX2,pX22% ... which are born through the inverted bi-
furcation from the period-p cycle structure are shown to
exhibit a dynamically stable transition by the continuous
change in A2. This process is depicted in Fig. 2(b).

Now, let us discuss the dynamic stability domain of
realizable spatial structures from the global viewpoint.
As has been discussed so far, the dynamic stability

15F

14F

13F

[« U
(rad) 12

3 —— stable

1t t ---— unstable <
L@ E (b)

“ o 1 1 1

1

A2

FIG. 3. (a) Iterative solution for N=6, B=0.1, and ¢,=0. (b) Stationary solution as a function of 42 Solid and dotted curves
correspond to dynamically stable and unstable solutions, respectively. (c) ¢, (¢) (k=1,2,...,6)vs 4 2,
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domain roughly coincides with the spatial stability
domain in the case of N >>1. The spatial stability
domain is nothing more than the stable periodic solutions
of the map Eq. (18). As a consequence, realizable spatial
structures include the period-1 cycle solution, its period-
doubled solutions (2") and period-p cycle solutions as
well as their period-doubled solutions p X 2", which are
embedded as windows as shown in Fig. 2(a). The stability
domain of these windows becomes narrower exponential-
ly as p increases and therefore it is negligibly small for
large-p values.

Let us explain the stability domain further for the case
of N=3X2. In this case periodic structures of period 1,
2, 3, and 6 can exist. Figure 3(b) depicts the bifurcation
structure which gives all the possible stable and unstable
periodic solutions. It is easy to see that there are two
classes of periodic structures. One implies the period-1
cycle solution connected to the trivial solution of ¢, =0

as A —0, and 1X2" cycle solutions period doubled from
the period-1 cycle solution. This sequence is referred to
as S(1). The other class of solution consists of period-N
and period-p cycle solutions (p is any integer %1,N)
which appear via tangential bifurcation, and p X 2" cycle
solutions period doubled from the period-p cycle solu-
tions. This sequence is referred to as S(p). As for N =6,
S(6) and S(3) are realized. From the viewpoint of the
map solution of Eq. (18) [Fig. 3(a)], the stable branches
which are shown by solid lines in Fig. 3(b) are observed as
window phenomena of the map solution. These dynami-
cally stable domains, which are born via tangential bifur-
cations, are isolated from each other and the stable
domain of longer-period solutions, for instance S(6), be-
comes narrower exponentially.

The problem here is the connectivity between these iso-
lated stability domains. Does the S (1) structure connect
to the S(6) or S(3) structures by increasing 42 continu-
ously? This is not the case. S(6) and S(3) [generally
S(p(s£1))] form isolas as is seen in Fig. 3(b) and they are
of course isolated from S (1) as well as from other isolas.
In fact, these window structures are isolated and are
found from the computer experiment not to connect to
S (1) by the continuous increase in 42 Such a manner is
shown in Fig. 3(c), where ¢,(¢) (k=1,2,...,6) are plot-
ted as 42 is increased very slowly. Now, let us start from
the S (1) structure. Since N =6, the period-2 cycle struc-
ture belonging to S (1) appears as a dynamically stable
structure at first. As A2 is increased, the stationary solu-
tions exhibit instability and make a transition to spa-
tiotemporal chaos (STC) through periodic oscillating
solutions. This solution exists even when A2 reaches the
stability domains of S(6) and S(3). In other words, S(p)
(p=3 or 6) coexist with STC, which is generated from
S(1). In addition, the computer experiment indicates
that the basin of attraction of S(p(s£1)) is extremely
small compared with that of the temporally varying solu-
tions. Roughly speaking, the size of the basin of attrac-
tion is proportional to the scale of the domain of dynamic
stability.

The complicated spatial structures with long periods
are almost impossible to realize with unidirectional cou-
pling. The stability domain of realizable structures is ex-
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FIG. 4. ¢,(t) (k=1,2,...,N) vs P. B=0.3, ¢,=0, and
N=23. (a) Unidirectional, (b) bidirectional. Inset: Enlarge-
ment around P =10. In this case, symmetric period-N solutions
are realized and “multifurcation” into 12 different states is seen.
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FIG. 5. Typical patterns of spatial multifurcated structure.
(a) For the low-P regime: P=3.2, N=103, B=0.5, ¢,=0. (b)
For the high-P regime: P=11.18, N=60, B=0.5, and ¢,=0.
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tremely narrow and the basin of attraction is extremely
small. In addition, the realizable solutions are almost
spatially stable, thus they are not spatial chaos. The spa-
tial chaos is dynamically unstable and is converted into
spatiotemporal chaos in the unidirectional coupling
scheme. In other words, all the spatially unstable pat-
terns, which are expected to possess a finite memory
capacity, are dynamically unstable. Therefore the actual
memory capacity in the unidirectional coupling scheme is
zero. However, a dramatic change takes place in the case
of bidirectional coupling, which will be discussed in Sec.
IV B.

The unidirectional coupling scheme is not so interest-
ing as a means of realizing spatial chaos, i.e., information
storage. However, this scheme can provide interesting
cooperative phenomena as will be described later in Sec.
VA.

B. Bidirectional coupling

Next, let us consider the case of bidirectional coupling
where A= AY= 4. In this case, the dynamics are
dramatically changed. Although the interactions be-
tween the nearest-neighbor cells are symmetric, Eq. (16)
lacks the potential condition of 34, /3¢, _,
=93¢, _/d¢,, and thus there is no Lyapunov functional
which corresponds to a Hamiltonian (or free energy) in
equilibrium systems. Therefore one cannot ensure an ap-
proach to static configurations. Indeed, STC takes place
in a regime of quite high intensity (P= A%+ 42). In
contrast to the unidirectional case, however, self-induced
spatial disorder is found to be stabilized over wide re-
gions. Here, we first show an example of numerical simu-
lation. The ¢, are plotted, except for transients, as P is
increased (or decreased) very slowly in time in the case of
bidirectional coupling [Fig. 4(b)]. We see that ¢, varies
stepwise with P, being accompanied by hysteresis, al-
though the STC appears on the higher intensity side
(P =20). On the low-intensity side of each step, ¢, is
multifurcated into N different static values. This multi-
furcation implies that the spatial distribution of ¢, is
frozen into a state with different values at different sites.
Moreover, the global structure of hysteresis as well as of
bifurcation does not depend on the system. (We exam-
ined systems of size up to 711.) The inset is an enlarge-
ment around the input intensity of P=10. Since Eq. (16)
does not have a Lyapunov functional, it is very difficult to
judge rigorously whether the N-period cycle solution is
really the “ground state” or not. Two typical patterns of
spatially multifurcated structure are depicted in Fig. 5.
These are obtained for low-P (P=3.2) and high-P
(P=11.18) regimes. In the low-P side, the spatial struc-
ture looks almost like a period-2 cycle pattern into which
“defectlike” structures are inserted. In the high-P side,
the spatial structure is quite irregular, but it seems to
wander between different period-2 cycle structures.
Therefore let us then look at the stable domain of
period-2 cycle solutions which forms a basis for the “mul-
tifurcated” structure.

Stationary solutions for the bidirectional case are
determined by the following rule, which corresponds to
Eqgs. (18) and (19) for the unidirectional case,

5215

$k=fF($k—l)+fB($k+1)r $1=$N+l . (23)

This rule defines the following two-dimensional mapping
rule, which determines @, ,=(d;,,¢;) from

D) =4y, i —1):
F=($k,$k—1)'—‘>($k+1’$k )=(f3“($k _fF($k~1)),$k) .
(24)

Here, ‘““spatial instability” is used to imply that a positive
Lyapunov exponent exists in the dynamic system along
the spatial structure (¢;,4,, . . . ). On the other hand, the
“dynamic stability” of the spatial structure (¢,,é,, - .. )
is determined by the sign of roots (A) of the following
linearlized characteristic equation for the small deviation
around the stationary solutions 8¢, =8¢, exp(At ):

A8 = =8¢ + [y 108Gy _+ f5 (100 1 -
(25)

Here, we introduce the function

Sr(@)=fp(d)=1fp(d) . (26)
When P= A}+ A} is small, the period-1 cycle solution
&, =x, satisfying x, = fp(x,) is a stable structure. How-
ever, the period-1 cycle structure becomes dynamically
unstable and bifurcation takes place as P exceeds the crit-
ical value P,. In this regime, the period-2 cycle structure
bi _1lor ¢y )=x,, and . lor ¢y _)=x,, which is
determined by x,=fp(x,) and x,=fp(x,), is realized
similarly to the unidirectional case. The dynamic stabili-
ty of these period-2 cycle solutions is found to be greatly
different from that for the unidirectional case. Let us ex-
amine the dynamic stability index A for two coupling
schemes, assuming N (cell number) is even. From a sim-
ple analysis of Eq. (25), the following equations are given:

FIG. 6. Schematic illustration of a heteroclinic crossing.
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(1) S=f"(x,)f"(x,)>0,

—1+1[S]'%cos(6/2) (bidirectional) 27

~ | —=1+15|""%xp(i6/2) (unidirectional); (28)
(2)§<0

‘— 1+1[s] 172j cos(6/2) (bidirectional), (29)

—1+1S|"%i exp(i6 /2 )(unidirectional); (30)

where 6=2kw/N (k=0,1,2,...,N).

As for the unidirectional case, the dynamically stable
region (A <0) almost coincides with the region of S| <1
where the period-2 cycle solutions are spatially stable.
As a result, the region where the period-2 cycle solutions
are realized is extremely narrow as was described in Sec.
IV A. In the bidirectional scheme, the situation drastical-
ly changes. In short, the period-2 cycle structures be-
come dynamically stable (A <0) even in the spatially un-
stable region; when P is increased, S first reaches 1 and
the period-2 cycle structure appears at this point. This

(rad )_1

5.97

P+

2A2(1 + Bcos($r + $0) | + 242B
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structure is stable following Eq. (27). When P is in-
creased further, S increases in a negative direction. The
period-2 cycle structure in the unidirectional case be-
comes unstable when S becomes smaller than —1 due to
Eq. (30). In the bidirectional case, to the contrary, the
period-2 cycle structure is dynamically stable even when
it is spatially destabilized, i.e., S <—1. [See Eq. (29).]
This fact implies that the local feedback due to the bi-
directional coupling much stabilizes the period-2 cycle
structure.

1. Spatial heteroclinic structure

The fact that the spatially unstable period-2 cycle
structures can exist stably in time is the key to the ex-
istence of spatial chaos. The period-2 cycle structure is
represented by two-dimensional vectors x,=(x,,x,) and
x5=(x,,x;), which are both the fixed points of the
second iteration of the spatial evolution rule

""=F(F(®)). The spatial instability means that the
spatial evolution of a small deviation 6® (=®—x, or
® —x;) from the period-2 fixed point (i.e., ®=x, or x;) of
the second iteration ®"'=F(F(®)) separates from x, or

2A2[1 + Beos($x + ¢0)] — 2A%B

4.71 (rad)

4.08

FIG. 7. Heteroclinic complex computed numerically based on the recursive relation of Eq. (24), where P =5, B =0.3, and ¢,=0.
Solutions cannot exist in the shadowed regions, since — 1 <cos(é, +,+¢,) < 1. This structure is obtained by choosing the appropriate
branch from among mapping solutions physically. Therefore this structure is considered to form part of the actual heteroclinic com-

plex.
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x5, such that 8¢, «<exp(v*k). Here, the second iteration
is determined from Eq. (24) and v* (Jv*|>1) is one of
the two characteristic roots of the following variational
equation:

IF(F(®))

"=
8<I> <1>:x2

SP=GoP . (31

The spatial instability (i.e., [v*|>1) takes place only for
a real root. Since detG=1, there is another root v~
(|v~] <1). Therefore x, (x3) is a hyperbolic fixed point
accompanied by manifolds W, and W, passing through it
(Fig. 6). Consider the motion of the vector ® governed
by the second iteration ®''=F(F(®)). The vector ® ap-
proaches x, (x3) along W,, whereas it separates from x,
(x3) along W,. In the vicinity of x, (x3), W, and W, are
in the directions of eigenvectors q* corresponding to the
two roots Gq* =v*q®. Manifolds W, and W, are called
the unstable and stable manifolds. If W, of x, and W of
x5, cross transversally, a so-called heteroclinic orbit is
produced and the orbit of the second iteration
& =F(F(®)) near x, and x) is expected to exhibit ex-
tremely complex (i.e., chaotic) behavior.'*

Does a heteroclinic crossing take place in our system?
To investigate this problem, the two manifolds W, and
W, should be determined from Eq. (24). It is easily
found that F is formally multivalued since it includes an
inverted function f, '. Therefore we chose the branch by
appropriate physical selection. The result of numerical
computation is shown in Fig. 7. It is apparent that W, of
x, crosses W of x5 and the complex of W, and W, forms
a multifolded complicated structure. This indicates that
heteroclinic chaos appears as a spatial structure. More-
over, since x, and xj are dynamically stable, the spatial
structure which corresponds to heteroclinic chaos is ex-
pected to be stable in time.

What kind of spatial pattern does this heteroclinic or-
bit produce? A state vector ® starts from the neighbor-
hood of x,, and separates from x, along W, and switches
to W,, finally approaching x5. Since x; is a hyperbolic
fixed point, ® is repelled by x; and separates from x;
along W,. Thus the heteroclinic orbit indicates the ex-
istence of a spatial structure which switches between x,
and x) chaotically in the manner x,—Xx3—X,— - -+ The
switch from x, to xj corresponds to the “defect” shown
in Fig. 5. Figure 8 is an enlargement of the defect. The
defect is considered to be the interface, i.e., “kink,”
which connects two types of period-2 cycle structures.

FIG. 8. Enlargement of the “defect” structure.
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(rad )2} 2t ’ A
(b) (d)
l A4 A . Py Al l 1 1
1 6 11 16 21 1
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FIG. 9. Two types of “kink” structures for N =21, P=5.0,
B=0.3, and ¢,=0. (a) and (b) spatial arrangement of (a) a-type
and (b) b-type kinks; (c) and (d) spatial return map.

2. Stability of heteroclinic chaos structures

The heteroclinic orbit ensures the existence of a variety
of structures including periodic structures. However,
these structures are not always dynamically stable. A
good example is the two types of kinks shown in Fig. 9.
These kinks are stationary solutions of Eq. (23) and the
a-type kink is found to be temporally stable. On the oth-
er hand, the b-type kink is not temporally stable. It is an
intermediate structure when the center of the a-type kink
shifts by two lattice sites, as shown in Fig. 10. (Note that

4l I —
2}
L . (a)
" 6 11 16 21
3} |
P, N\/\/\fr\/\/\/\/\/
(rad) l ) o . » (b)
1 6 11 16 21
|
TV
2t !
. (c)
1 6 11 16 21

FIG. 10. Relation between a-type and b-type kink structures.
(a) a-type kink structure, (b) b-type kink structure, (c) two-
lattice site shifted a-type kink structure. N=21, P=35.0,
B=0.3, and ¢,=0. b-type kink structure appears on the way
from (a) to (c).
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two lattice sites comprise a fundamental unit for the
movement of kinks.) The motion of our system is ex-
pressed by an orbit in N-dimensional phase space
(1,5, .. .,0x). We call this space I' space hereafter.
The a-type kink is a stable fixed point in the I" space.
Another a-type kink whose position shifts by two lattice
sites [see Fig. 10(c)] is also a stable fixed point. The b-
type kink corresponds to an unstable saddle point along a
path which connects these two fixed points in the T"
space. Let us actually show evidence of the fact that the
b-type kink forms a saddle point. In the transition pro-
cess (a kink)— (b kink)—(a kink), two cells are subjected
to the largest change. They are ¢, and ¢,,, indicated by
arrows in the case of Fig. 10. Now, we rewrite them as ¢,
and ¢,, respectively, and observe the motion in the I'
space projected on this two-dimensional plane (¢,,é,).
Let us first deviate only ¢,,¢, from the a-type kink state
and then observe the temporal evolution of the projected
motion. The obtained flow lines are shown in Fig. 11.
There exists a saddle between the two a-kink states [Figs.
10(a) and 10(c)] indicated by a and a’, and this saddle cor-
responds to b-kink state [Fig. 10(b)]. The motion at first
rapidly relaxes toward a slow manifold, which is a
straight line connecting a, b, and a’, and then relaxes
slowly along this manifold toward a or a’. As a result,
this manifold is nothing more than a steepest descent
from a to a’ (or a’ to a). In Sec. V B, this steepest descent
will be shown to play an important role for switching be-
tween chaotic patterns. As is shown in the following, the
a-type kink is considered to be a fundamental unit in spa-
tial chaos. Therefore we simply call this structure “kink”
hereafter.

The period-2 cycle structures are not realized when N
is odd. The period-2 cycle structures into which at least
one kink is inserted are realized instead. Let us investi-
gate what type of spatial structures are dynamically
stable. To examine this, we made the following numeri-
cal experiment. The system is first set to the regime
where P is small and the trivial period-1 cycle solution is
stable. Then P is increased to the point where period-2
cycle structure appears by adding a small noise randomly
in time and space to the linear phase shift (¢%*') or to in-
put electric field (A% or A3?) as a seed. After that,

(rad)

3.2—3 T T

2.9 R

P2

2.6+ J
/ a

2.3 + L

2.3 2.6 2.9 3.2 (rad)
P

FIG. 11. Flow lines projected on (¢,,¢,) plane. N =21,

P=5.0, B=0.3, and ¢,=0.
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FIG. 12. Spatial arrangement indicating the minimum dis-
tance between kinks. N=21, P=2.7, B=0.3, and ¢,=0.

the system is left alone for a long period of time and sur-
viving stable patterns are observed. We call this method
“noise-seeded bifurcation.” During the transition pro-
cess from period-1 to period-2 cycle structures, various
heteroclinic chaos patterns can be obtained instead of
period-2 cycle structures due to the effect of external
noise. From the observation of surviving patterns, the
following empirical rule is obtained.

Rule. Surviving stable structures are structures where
kinks are inserted into period-2 cycle patterns and the
distance between kinks is sufficiently large.

Then, how high can we increase the density of kinks in
the present system? The approach to this problem is to
evaluate the distance at which the kink pair can coexist.
Let us consider the arrangement of two kinks as shown in
Fig. 12(a). To decrease the distance between kinks and
obtain the kink configuration shown in Fig. 12(b), one of
the kinks should be shifted by two lattice sites. This
means that the system must pass through the saddle
point in the I" space which corresponds to a b-type kink

FIG. 13. Fundamental structures which construct dynami-

cally stable heteroclinic structures. + ——+ —, a structure
and + —, B structure.
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FIG. 14. Examples of stable heteroclinic structures consist-
ing of @ and S structures. N=21, P=5, B=0.3, and ¢,=0.

shown in Fig. 9(b). The transition from (a) to (b) in Fig.
12 does not occur spontaneously, therefore an external
perturbation (see Sec. V B) is needed to induce such a
transition. On the other hand, the structure shown in
Fig. 12(b) is found to be unstable and spontaneously un-
dergoes transition to the structure shown in Fig. 12(c)
based upon the numerical experiment. As a consequence,
Fig. 12(a) represents the minimum distance between two
kinks. From an extensive numerical simulation we
confirmed that even if the spatial structure contains many
kinks, the minimum distance mentioned above is the fun-
damental unit for an arbitrary pair of kinks to be able to
exist stably. Thus the following rule is obtained.

Rule. Consider the a structure which contains a kink
and is formed with 5 lattice sites and the 3 structure
which is a fundamental unit of period-2 cycle structure as
shown in Fig. 13. Structures which are obtained by arbi-
trary combination of a and 3 are dynamically stable.

Figure 14 shows examples of such structures.

30+

(rad)

FIG. 15. Multistable structure of period-2 cycle solutions as
a function of P. B=0.3 and ¢,=0. Period-1 cycle solutions are
also shown.
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3. Interheteroclinic structures

The heteroclinic chaos structure which is produced
within one period-2 cycle structure has been discussed so
far. This structure is referred to as an “intraheteroclinic
structure.” If P is large enough, there are many dynami-
cally stable period-2 cycle structures coexistent at a fixed
value of P, as shown in Fig. 15. This is because the in-
verse function fp(¢)”! has many branches with respect
to a slight change in ¢. The intraheteroclinic structures
exist within each period-2 cycle branch. Multifurcated
structures, which are seen at each step of hysteresis in
Fig. 4(b) represent such intraheteroclinic structures; the
different steps correspond to different period-2 cycle
structures.

In addition to the intraheteroclinic structure, an ‘‘in-
terheteroclinc” chaos orbit, which connects different
period-2 cycle structures, exists in our system. Examples
are shown in Fig. 16. These structures are dynamically
stable, although their dynamic stability is found to be
weak compared with intraheteroclinic structures. The in-
terheterostructure enables the spatial structure to wander
between many period-2 cycle branches. This means that
very irregular spatial structures may be realized in the
high-P regime. A part of the fully chaotic structure
which is seen in Fig. S(b) can be boiled down to these in-
terheteroclinic structures.

The structures which have been discussed so far are
“interface” solutions switching between the same or
different period-2 cycle solutions regardless of whether it
is an intra- or an interheteroclinic structure. However,
spatial chaos structures cannot always be explained only
by the combination of these interface structures. In
sufficiently-large-P regions, spatially unstable and tem-
porally stable fundamental periodic solutions are not re-
stricted to the period-2 cycle solution. In other words,
chaotic patterns, which make rounds between an ex-

15
¢k IU: ]
(rad) 1
F 1
S o 13 e
k
1S o
P, 1oy
(rad)
5 ! P .?u xxxxx 113 AAAAA l-gl
k

FIG. 16. Examples of interheteroclinic structures. N =20,
B=0.3, $;=0, and P=10.
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tremely large variety of different fundamental periodic
structures, exist stably in time. To indicate this, one
should examine dynamically stable spatial structures by
reducing the system size, i.e., N, such that intra- or in-
terheteroclinic structures cannot be inserted into the
chain. As will be shown in Appendix C, various dynami-
cally stable spatial patterns exist in a sufficiently-small-N
system in high-P regimes. It is no longer sufficient to say
that these structures are formed of period-2 cycle struc-
tures. With an increase in P, the number of coexisting
spatial patterns increases.

One of the interesting problems in spatial chaos is how
transitions between these spatial patterns take place as a
result of external perturbations. In short, a network
structure involving various patterns, which is formed by
external perturbations, is an interesting problem to inves-
tigate. Appendix C attempts to describe such a network
structure. This problem is important from the practical
view point of controlling the transition between different
spatial patterns. Relating subjects will be described in
Sec. VB.

V. COOPERATIVE FUNCTIONS

In this section, we describe cooperative phenomena in
both unidirectional and bidirectional interaction schemes
in terms of applicability to signal processing as well as to
spatial chaos memory.
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A. Domino dynamics in unidirectional coupling

In unidirectional coupling, dynamically stable spatial
structures are restricted to spatially stable periodic solu-
tions, and spatial chaos structures are not realized as
stable stationary solutions. However, if the system is
operated in a relatively low input intensity regime, it ex-
hibits some interesting cooperative dynamics which can
be applied to novel all-optical signal processing, including
all kinds of multivibrator operations, flip-flops, and a
complete set of logic gate operations.'®!” If the excita-
tion intensity A is small enough, the period-1 cycle solu-
tion, i.e., the trivial uniform solution, ¢, =@, which con-
tinues to ¢, —0 at 4 —0, is obtained from Eq. (18) as

é= A} 1+2Bcos(d+d,)] . (32)
Due to the existence of the cosine function, output ¢ ex-
hibits a multivalued function of 42 This phenomenon is
nothing more than an ordinary dispersive bistability
(multistability). Of course, the uniform solution exhibits
spatial period-doubling bifurcation when A2 is increased
and period-doubled structures appear. However, the
bistable region always exists and the system can be
operated as a bistable device. Figure 17 shows examples
of the input versus output characteristics for different cell
number N, assuming B=0.2 and ¢,=0. Dashed curves
indicate unstable branches. It is clear from the figure

10 ——— 10— - 10
| N =2 | IN=3 | N =4
8 8t 8t J
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¢ \\ L \\ 3 \\ 4
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FIG. 17. Stationary solutions ¢, as a function of input power 4? for uniform excitations in the case of unidirectional interaction.
B=0.2 and ¢,=0. Stationary solutions corresponding to S(p) (p=41) are omitted for brevity.
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that an S-shaped bistable region appears just before the
spatial period doubling takes place. If the system is
operated as a bistable device in the hysteretic bistable re-
gion which has the spatial period-doubling regime on the
upper branch, interesting cooperative dynamics, which
will be discussed below, are expected to take place.
Assume that N >>1 and the system is set on the upper
state ¢, of the S-shaped bistable region (see the regime
4.3< A%2<5.7 in Fig. 17.) and a single cell (k =1) is ex-
cited by an optical pulse A4 pz superimposed on the input
bias 42. Then, ¢, tends to relax to a new ‘‘destination”

ot =ri"(¢,)=AT[1+2Bn{ cos($, +d,)]
=A4ig'(¢,) (A7=47+4))

‘FI)COS

roughly within a 7 period. When @} is realized, then the
destination toward which the second cell tends to relax is
determined by ¢3 = 4%g'?(¢¥). In this way, ¢, of the
following cells “falls down” successively in domino
fashion toward destinations determined by the mapping
rule ¢} = A%g'¥(¢%_,). The behavior of destinations of
such domino dynamics is classified into three cases de-
pending upon how A; is assigned: (1) all ¢; remain in
the upper branch, (2) all ¢; switch down to the lower
branch cooperatively, or (3) all ¢; goes up and down be-
tween the upper and lower branches. Any of these three
classes can be selected by choosing the excitation
strength to a k=1 cell which is determined by the rela-
tion shown in the map in Fig. 18(a), where A ?(bias)=4.5,
B =0.2, and ¢,=0 are assumed (see Fig. 17). Case (1) is
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realized in regions A and D, (2) is realized in region B,
and (3) takes place in region C in Fig. 18(a). Correspond-
ing to each of the three cases, the dynamics of our system
differ: (1) ¢,(¢) remains in the upper branch, (2) ¢,(¢)
switches down toward the lower branch, and (3) ¢, (¢) ex-
hibits up-down pulsation at every round trip (astable mul-
tivibration). On the other hand, when all cells are initial-
ly in the lower state ¢,, dynamics can also be classified
into three other categories: (1) all ¢,(¢#) remain in the
lower branch in region A and B of Fig. 18(a), (2) all ¢, ()
exhibit astable multivibration in region C, and (3) all
¢, (t) switch up to the upper region cooperatively in re-
gion D. The details of the operation principle in regions
B and C are explained in Appendix B.

In order to confirm the above dynamics, numerical
simulations are carried out using Egs. (13)-(15), where
Af'=0, N=6, A*=4.5, B=0.2, and ¢,=0 are as-
sumed. Results for the former case are depicted in Fig.
18(b). These results clearly reproduce the analytical pre-
diction. (Results for the latter case also reproduce three
relaxation dynamics, although they are not shown).

Next, let us discuss an all-optical flip-flop operation
discovered in the present system. In ordinary bistable de-
vices, such operations are performed by setting the sys-
tem within the hysteretic region and by applying trigger
pulses. In the all-optical operation, such operations are
basically impossible, since one needs a “‘negative” optical
pulse to realize off switching. This means that one has to
prepare some kind of optical inverter in order to achieve
successive on-off switching by trigger pulses, that is, flip-
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FIG. 18. Relaxation dynamics when single cell (k =1) is excited (nonuniform excitation). (a) Graphical solution for determining
the class of relaxation dynamics, where g(¢)=1+2B cos(¢+¢,). (See Appendix B for details.) (b) Simulated temporal evolution of
¢ (1) for different regions A, B, C, and D, where the system is initially set on the upper branch of the hysteretic curve. N =6,
B=0.2, A*bias)=4.5, and $o=0. Region A, A[,Z(pulse intensity)=0.5; B, 1.5; C, 3.5; and D, 5.5.
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flop or bistable multivibrator operations. (In optoelectric
hybrid bistable devices, such operations have been
demonstrated by employing optoelectrical inverters.!51%)

On the other hand, the present distributed-element sys-
tem can successfully provide such all-optical flip-flop
functions by applying trigger optical pulses with finite
pulsewidth to a single cell. It is easy to see that A p2 of the
trigger pulse should be set in region B or C to realize an
off switch and in region C or D to realize an on switch.
To achieve the flip-flop operation, however, there exists a
minimum duration time for the trigger pulse. The
minimum trigger pulse cutoff timing is determined such
that the greater portion of ¢, has already crossed the
saddle at the trailing edge of the trigger pulses. Such a
“majority” rule concept is easily understood and is
reasonable in terms of domino dynamics. Numerical re-
sults are depicted in Fig. 19, where N =6, A?=4.5,
B=0.2, ¢y=0, and Ap2=8 are assumed. The majority
rule is well reproduced by the simulation for both on and
off switching.

B. Spatial chaos memory in bidirectional coupling

1. Capacity of spatial chaos memory

As was discussed in Sec. IV B, spatially unstable chaot-
ic solutions are dynamically stabilized in the case of bi-
directional coupling by the local feedback mechanism.
From the viewpoint of memory function, this fact has a
very important meaning: The existence of chaotic spatial
solutions implies that the number of spatially unstable
periodic solutions (with period N) increases exponentially
with the number of cells W, i.e., exp(hN), where A is the
topological entropy. In short, the memory capacity of
C =logh /log2 bit [which is derived from 2“¥=exp(hN)]
is created per unit cell if we assume that all the periodic
solutions are dynamically stable. In the present system,
however, periodic solutions are not always dynamically
stable, as discussed in Sec. IV B. Therefore logh /log2

15— —
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gives the theoretical upper limit of memory capacity. In
our system, at least all spatial structures which are con-
structed of arbitrary combinations of a and 3 structures,
are found to be dynamically stable, where a and f3 struc-
tures are formed of five and two cells, respectively. This
fact ensures memory capacity of at least 1 bits/cell. That
is, the memory capacity of our system C (bits/cell) is
evaluated as

1+ =C <logh /log2 bits /cell . (33)

This value seems to be not so large. However, the impor-
tant point is that the memory function has been coopera-
tively created in our system by introducing the bidirec-
tional interaction between cells which do not possess any
memory function when the coupling is absent.

2. Assignment to desired spatial chaos patterns

Is it possible to assign the desired spatial patterns to
our system? If we restrict the spatial patterns to the
structures which are formed of a and 8 structures, it is
quite easy to write any spatial patterns using the follow-
ing methods.

In one method, first, the trivial period-1 cycle structure
is realized by setting the system to the low-P regime.
Then, a weak perturbation which has the same spatial
pattern as the desired pattern is applied to the control pa-
rameter of each cell and P is increased to the multifurcat-
ed region. The linear phase shift ¢ or the input intensi-
ty to each cell 42 (or A3F?) is effective as a control pa-
rameter to be modulated. For example, let us consider
the case that the linear phase shift is modulated. The
seed 8¢, is assumed to be applied to ¢ of each cell, where
i is the cell number to be assigned. Then 8¢;, which has
the a-binary characteristic [ + — — + — in Fig. 13(a)], is
applied to five cells which an a structure should be as-
signed. As for 3 structures, the B-binary characteristic
[+ — in Fig. 13(b)] is applied to two cells. Then, P is in-

trigger pulse

.........

FIG. 19. All-optical flip-flop operation. A’(bias)=4.5, A?=3.5, At /r(pulsewidth)=6, N =6, B=0.2, and ¢,=0. (a) On switch-

ing and (b) off switching.
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FIG. 20. Assignment to a desired spatial chaos pattern by
modulating the linear phase shift ¢,. N=16, B=0.3, and

$o=0. (a) P=2.7, (b) 3.3, and (c) 4.0.

creased to the multifurcated region. By these processes,
the desired structures can be assigned to desired posi-
tions. Once the desired patterns are realized, these pat-
terns are frozen even if the perturbation is removed, and
they are found to be quite stable against external random
noise. Figure 20 shows the assigned spatial patterns ob-
tained at different P values.

Let us consider another method. We showed that
period-2 cycle structures (for even N) or period-2 struc-
tures into which a kink is inserted (for odd N) are the
most stable ground states in the multifurcated region, i.e.,
P> P_. Tt is possible to directly assign the desired spatial
patterns consisting of a and f3 structures. In this method,
the “‘ground-state” structures are realized at first by in-
creasing P beyond P.. Then, a perturbation which has
binary characteristics corresponding to the desired spa-
tial patterns is applied to the linear phase shift (¢F)) or to
the input intensity (42 or 45?) in the form of a
trigger pulse with a finite pulsewidth. This method re-
quires relatively strong perturbations compared to the
former method, but, the spatial information input to the
trigger pulses can be easily memorized as spatial patterns.

3. Switching between desired patterns:
Flexibility of spatial chaos memory

Once the desired spatial patterns are realized, switch-
ing to different spatial patterns is easily achieved by ap-
plying a perturbation which has the same binary charac-
teristics as the new patterns to the linear phase shift (¢}*)
or to the input intensity (A2, 459?) in the form of
trigger pulses as described in Sec. VB2. With this per-
turbation, the old pattern makes a transition to a new
one. There are thresholds for the amount of perturbation
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which must be overcome in order to make transitions.
The threshold intensity depends upon the duration of the
trigger pulse, and has been found to decrease in propor-
tion to (Az/7) ! (At is the pulsewidth). In both cases of
the modulation of A*)? and 4", the threshold is as quite
small (on the order of 1072) if the pulsewidth is much
longer than the relaxation time of the system 7. Our sys-
tem is distinctive in the sense that the transition between
realizable qualitatively different spatial patterns can be
performed quite easily by a slight modulation of the con-
trol parameter. In other words, the memory function of
our system is rich in flexibility.

Let us examine such a phenomenon in the simplest
case in more detail. If we deal with switching between
structures which have the same number of a and 3 struc-
tures, this switching process is realized by combining
several shifting operations on the a structures along the
chain. Consider the single shifting operation, which is an
elementary process. As discussed in Sec. IV B, this
operation is realized most easily by shifting the kink
along the ‘“‘steepest descent” path which passes through
the b-type kink state as in Fig. 11. Referring to Fig. 11,
let us investigate further. If we modulate ¢, (or 42) ac-
cording to the above-mentioned rule, it is possible to con-
trol the system’s movement along this path. In the
present case, the modulation of ¢, which has the binary
characteristics of the desired structure [Fig. 10(a)],
should be + 8¢, to ¢,-and — 8¢ to ¢,. Such modulations
are easily understood to move the system along the
steepest descent. Figure 21 shows the relation between
8¢, (applied) and period At which is required for the sys-
tem to cross over the saddle point. If 8¢, is sufficiently
large, At ~8¢, !. This suggests that the motion along the
steepest descent, which is induced by the modulation of
&, takes place according to § =8¢, (driving force), where
s is the distance from stable kink state a (in Fig. 11) mea-
sured along the steepest descent. Formally in the limit of
8¢o—0, the motion becomes a “free motion” (i.e., § =0).
This suggests that the steepest descent is extremely flat.

o9,

(rad)
107

10° y - —
1 10 102 10°
At/t

FIG. 21. Relation between the modulation amplitude 8¢,
and period At /7 which is required for the system to cross over
the saddle point. Adopted parameters are the same as those for
Fig. 11.
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FIG. 22. Switching between desired patterns indicating a rewritable spatial chaos memory. Input signal A,‘,"’Z( k=12,...,N)

having binary characteristics is superimposed to the bias input 42=2.5, where 43=2.5 (P =5). In the binary characteristics shown
in (b), “1” means that 4 %2=0.5 and “0” means 42=0. N=21, B=0.3, and $,=0. (a) Temporal evolution of ¢, (¢) and (b) spatial

arrangement of memorized patterns.

In the limit of 8¢,—0, however, deviation from the rule
At <8¢, ! begins to occur. Then, the “free motion”
comes to be interrupted by the potential barrier and At
goes to infinity at the critical value 8¢,,. This value 8¢,
is extremely small (on the order of 3X107%). From this
value, the potential barrier height at the saddle point AE|
can be evaluated. The AE value can be determined from
the product of the critical perturbation strength, &¢.
and the distance between the saddle point and the stable
kink state in the I" space which is given by A¢, of Fig. 11,
that is, AE, ~8¢,.Ad, ~ 107 3. Therefore AE, is extreme-
ly small. This implies that if switching between the chaos
patterns which have the same number of a and S struc-
tures is governed by the above-mentioned elementary
process, these spatial chaos patterns are connected by the
extremely “flat” steepest descent passing through the sad-
dle point with an extremely low potential barrier. This
may be a reason for the “flexibility” of our system. The
coded modulation of ¢, or 42 results in a transition to a
new chaotic pattern along a steepest descent.

Figure 22 shows an example of the switching process,
where perturbations are applied to 4% in the form of
trigger pulses. Rewritable spatial chaos memory is found
to be achievable.

VI. SUMMARY AND OUTLOOK

Chaos is a complex behavior which is derived from a
simple rule. If we can apply this aspect, it seems possible
to realize complex functions by a simple device. For ex-
ample, chaos possesses an ability to produce a variety of
temporal patterns. If we use this ability, it might be pos-

sible to construct a memory element which stores com-
plex information. This idea is the basic motivation of the
present work. Unfortunately, the ability to produce vari-
ous temporal patterns induces transitions between the
produced patterns, and makes it impossible to distinguish
them. On the other hand, there exists a possibility to sta-
blize produced patterns dynamically if chaos is created in
the space domain instead of in the time domain. The
problem is whether it is possible to construct a device
which can produce dynamically stable spatial chaos by
utilizing a nonlinear optical system far from thermal
equilibrium.

In this paper, we have discussed the stability and dy-
namic functions of spatial chaos which is produced
cooperatively in the proposed collective nonlinear optical
element system. The individual elements do not show
any nontrivial properties in the absence of coupling be-
tween them. If coupling by laser light is introduced, the
coupled system exhibits not only spatial chaos but also a
variety of cooperative behavior.

If the coupling is unidirectional, it is easy to under-
stand that there exist spatial chaos solutions in our sys-
tem. Unfortunately, these spatial chaos structures are al-
most dynamically unstable since the spatial instability is
converted into dynamic instability straightforwardly.
However, if we apply the cooperative properties (domino
dynamics) in the case of unidirectional coupling, novel
forms of optical signal processing, including all-optical
switching, multivibrator operations, and flip-flop opera-
tions can be realized.

As for bidirectional coupling, the dynamics drastically
change. If the coupling exceeds the threshold, spatial
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chaos solutions are dynamically stabilized over a wide
range of input light intensity. In isolation, each element
possesses only trivial properties. However, optical cou-
pling gives each element in the system memory function
having a finite capacity per unit element. Spatial chaos is
shown to be a heteroclinic chaos of unstable period-2 cy-
cle solutions which are born via spatial bifurcation. If we
utilize the simplest heteroclinic chaos, the desired spatial
patterns can be assigned, and switching between chaos
patterns can easily be performed. Moreover, switching
between chaos patterns is possible using extremely weak
signals. This fact suggests that the memory function of
the present spatial chaos is superior to ordinary memory
devices in terms of flexibility.

However, the proposed metaphorical system requires
multiple nonlinear elements, and the realization of such
behavior in practice will require sophisticated fabrication
techniques because of the complex device configuration
of the present system. In addition, the memory capacity
seems to be not so large. The important point, however,
is that spatial chaos in our system satisfies the minimum
demand for information storage functions. This is why
we regard the proposed system as a metaphoric model of
spatial chaos memory. In the spatial chaos memory, the
information storage is accomplished by spatial chaos pat-
terns which are formed by the cooperative interaction be-
tween individual elements rather than by individual ele-
ments themselves. The memory function acquired by
such a mechanism is expected to possess novel properties
(e.g., flexibility).

A state of the nonlinear optical device is specified by
the spatial configuration of the electric field which passes
through the device. With proper device configuration, a
spatially varying electric field can possess spatial chaos as
stationary solutions. The simplest example of such a de-
vice may be the system proposed by Yumoto and Otsu-
ka.” If the Yumoto-Otsuka spatial chaos has dynamic
stability similar to our proposed device, their system will
be applicable to a device which possesses a large memory
capacity. To realize complex functions by applying the
distinctive characteristics of chaos, the dynamic aspect of
spatial chaos in a simpler system like that of Yumoto-
Otsuka should be investigated extensively.

APPENDIX A: DERIVATION
OF FUNDAMENTAL EQUATIONS

We factorize the electric field into slowly varying en-
velopes and carrier waves of frequency @ and wave num-
ber k (w=ck, c being the velocity of light),

E(t,z)=EF(t,z)ei(wt—kz)+EB(t,z)ei(wt+kz)+C_c_ ,
(A1)

where the notations F and B indicate the components
propagating in the forward and backward directions, re-
spectively. If we assume rapid diffusion of the phase
grating due to the formation of standing waves and sup-
pose both adiabatic approximation and dispersive limit,
the Maxwell-Bloch equations are considerably simplified
and become equivalent to the following Maxwell-Debye
equations without phase grating,

5225
a a _ 1 ) ;
2 " alen |FrT Taletia)Eptinkr 2
d 3 — - .
_5;4.% Ep=—3(a+ia')Ep+inEy , (A3)
on | _ 2 2
Tlg? =—n+qUEp|*+|E|") . (A4)

Here, a+ia’ is the complex linear absorption rate, n is
the nonlinear refractive index, Erp=[(1
—e " )|n,lk /a]'?Ey p is the dimensionless electric field
(n, being the quadratic coefficient of the nonlinear refrac-
tive index), 7 is the medium response time, / is the cell
length, and ¢ =sgn(n,)[a/(1—e )].

Transforming the time-space coordinates (t—z/
c¢,z)—(t,z) for the forward component and
(t +z/c,z)—(t,z) for the backward component, and in-
tegrating over z for Egs. (A2) and (A3) lead to the follow-
ing formula:

Epp(ttz/c,z)=exp[+i®f p(t,z)]1EE p(2,0) . (AS)
The phase shift @  is given by
P p(t,z)=(ia—a')z/2+ ¢f p(t,2) , (A6)
where ¢ (2,2) is the nonlinear phase shift
¢F,B(l,z)=fozn(tiz'/c,z’)dz’ . (A7)

Equation (A5) tells us that the intensity |Ef z|*> decays
exponentially (Beer’s law),

|Ep p(ttz/c,z)|*=e T | ER 5(1,0)|* . (A8)

From Egs. (A4)-(A8), the following equations are ob-
tained:

Ep(t +1/c,)=exp{—(a/2)+i[¢p(t,])+ o]} Ep(2,0) ,
(A9)
Eg(t+1/c,0)=exp{—(a/2)l+i[¢g(t +1/c,1)

+¢o}Eg(t,]), (A10)

k—1 (k
AS‘.? ) AB)
kth cell
47 y pra——
—_— \ _ J U
0 —— ¢
k) E+1
A ALY

FIG. 23. Conceptual illustration of bidirectional coupling
scheme.
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AP p(t,1)
T at

=—¢p(t,)+q[(1—e ) /al|Ep(,0)]?

t+q [ldze @Byt —2z /e 1/, (ALD
3yt +1/c,1)
T at
=—¢p(t+1/c,D+ql(1—e ) /allEg(1,D)]?
+qfoldze_“z|EF(t_22/c+l/c,0)|2, (A12)

where ¢,=(a’/2)l is the linear phase shift.

A conceptual illustration of the bidirectional coupling
scheme is shown in Fig. 23. Here, we rewrite the electric
field, linear phase shift and nonlinear phase shift of the
kth cell as Ep(1,0)—>E(z), Eg(t,)—EJ(1), ¢o— b5,
dp(t,D—>¢X (1), and ¢p(t +1/c,1)— % (1). Taking into
account the boundary condition at the mirror, the follow-
ing equations are derived from Egs. (A9)-(A12):

EI(.~k+1)(t+l/C):A;~k+”
+V'R exp(—al/2)
Xexp{i[¢¥()+ o EF (1),

(A13)
Eg=Vt+1/c)=AgV
+V'R exp(—al/2)
Xexp{i[d5 () + oV ES (1),
(A14)
at
=—¢¥ () +q[(1—e~ ) /al|EF(1)]?
+gq fo’dse‘alegk>(t+1/c—zs/c>!2, (A15)
ot
=—¢X 1) +g[(1—e =) /allEF(D]?
+qfo’dse*m|E<F’<’(t+1/c~2s/c>|2, (A16)

where A E[(l—e““1)|n2|k/a]”2.71 is the amplitude of
the incident laser light (dimensionless) and R is the
reflectivity of the mirror. If we define the coupling
coefficient B=V'R e "'/ and transit time ty =1 /c, Eqs.
(7)-(10) are derived.

APPENDIX B: PRINCIPLE OF DOMINO DYNAMICS

1. Cooperative switching
As mentioned in Sec. V A, the input field to a specific

cell should be slightly changed from the input field to
other cells in order to realize the domino dynamics. This
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introduces the following cell dependence of coupling
function:

F(g)= A1+ 2B cos(d+ )] (B1)

via the two terms A2 and 9= A4%"V/4%. The
modulation due to the former term is essential for the
operation of domino dynamics. To avoid nonessential
complexity we approximate 7’ by 1 even if A is
modulated. Then the coupling function is expressed as
W= A2g(¢), where g(¢)=1+2B cos(d+¢y).

Assume that N >>1 and that all the cells are set on the
period-1 cycle structure on the upper branch, which is
determined by ¢, = A%g($,). When the input light in-
tensity of the first cell (k =1) is increased such that
A%*— A% (A} EB regime), the destination of relaxation
of ¢, is changed from ¢, to ¢F= A3g(d,). [See Fig.
24(a)]. As a result, ¢, relaxes to ¢ and increases once as
seen in Fig. 15(b). However, since ¢} belongs to the basin
of attraction of the lower branch, the destination toward
which the following cells tend to relax converges to the
lower branch solution ¢, such that ¢3= A2g(s}),
3= A 2g(¢$%), ..., as shown in Fig. 24(a). Therefore
¢ tends to relax to ¢, which is very close to ¢,, and the
destination of relaxation of ¢, is then changed from ¢} to

*= A%g(4,). Since ¢1* belongs to the basin of attrac-

$iA2 ¢IA7

a4

1+ 2Bcos(¢ + ¢o) (a)

$iA? GIAT

=

2

Ly

(b)
1+ 2Bcos(¢ + ¢o)

FIG. 24. Principle of domino dynamics. (a) Conceptual illus-
tration of cooperative switching and (b) astable multivibrator
operations.
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FIG. 25. Coexisting spatial patterns for N =8, B=0.3, P=15, and ¢,=0.
tion of the lower branch [Fig. 24(a)] by the definition of 0.30
region B, all the ¢’s are frozen to the stable spatial pat- m
tern ¢, =Alg(@y), $:=A4%(F)), ..., y=Ag(dy ) 0)
and cooperative switching is realized. %0,
2. Multivibrator operation F)OAZO
Let us choose 4? within the C regime. All behavior in
the first half is the same as that of (1), and the destina- o8
tions of relaxation are changed to ¢F= A32g(4,), o
¢3= A% ($?),.... Asaresult, , increases once as seen S
in Fig. 15(b) and ¢,,¢3, . . ., ¢y relax to ¢;. The different o>
29

dynamics arise in the latter half. Due to the definition of
region C, the new destination of relaxation

*=A3g(¢y)~ A2g(4,) belongs to the basin of attrac-
tion of the upper branch [Fig. 24(b)]. Therefore, new des-
tinations of relaxation of ¢,,¢3,...,¢, are switched to
the wupper branch such that ¢5*= A% (¢}*),
5= A’g(#5*), . . ., and relax successively toward ¢, as
shown in Fig. 24(b). The same process occurs repeatedly
hereafter and astable multivibrator operation takes place.

As emphasized at the beginning of this appendix, we
used the approximation 7%'~1 throughout the above
considerations. The effect of deviation of 7%’ from 1 is
by no means negligible, especially when B is very small
(say, B <0.1). In this limit, the modulation effect reduces
region B (i.e., cooperative switching), thereby widening
region C (i.e., astable multivibrator operation). However,
the modulation effect is not significant if B is not very
small and therefore the above considerations are substan-
tially correct.

APPENDIX C: DEVELOPMENT
OF THE CONNECTIVITY BETWEEN SPATIAL
CHAOS PATTERNS

In the bidirectionally coupling system, the number of
dynamically stable frozen spatial patterns increases with

002

hg
001

pulsation

(b)

FIG. 26. Transition diagram between coexisting spatial pat-
terns. N =8, B=0.3, and ¢,=0. (a) P=15, and (b) P=23.
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P, and finally these solutions are replaced by spatiotem-
poral chaos (STC) as was shown in Fig. 4(b). Stable
frozen structures are considered to form local minima in
I' space. As P is increased, the number of local minima
increases and the relation between these local minima
will be much more complicated. In this appendix, let us
discuss the connectivity between coexisting spatial chaos
structures.

In a large-N system, an extremely large number of spa-
tial chaos patterns appear. Therefore we assume a
small-N system (N =8). Note that the fundamental
structures including a and 8 have no meaning at all for
such a small cell number. To categorize various coexist-
ing structures, we define the norm which indicates a ““dis-
tance” from  the period-2  cycle  structure,
D=[3¥_,|cos(¢;)—cos(¢; _,)I*]'".

Let us perform the following manipulation to charac-
terize the connectivity quantitatively. Assume the system
is set to the pattern i initially. Next, the linear phase
shift @, of all the cells is uniformly modulated pulsewise,
i.e., ¢o— Py +86¢(1), where the modulation width is set as
0<d¢p <2m. After that the system is left alone. We
define the connectivity as follows: T;;=8¢;_,;/2m. This
connectivity gives the transition probability from i to j
when uniform “error” is assumed to be introduced to the
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linear phase shift of all the cells. The transition diagram
between patterns which have different norms can be de-
scribed according to the connectivity T;.

Let us show an example for a relatively small P value
(P=15). As shown in Fig. 25, there exist five patterns
with different norms. The transition diagram between
these patterns is depicted in Fig. 26(a). All the patterns
are connected to the norm-0 pattern, i.e., a period-2 cycle
structure with a large connectivity. This is reasonable
since the period-2 cycle structure is a ground state in our
system. However, the connectivity is weak as a whole
and unidirectional. As a result, it is difficult to realize ar-
bitrary patterns starting from one particular pattern in
this case.

When P is increased, the situation greatly changes.
Figure 26(b) depicts the transition diagram for P=23. In
this case, there are nine different norm patterns including
period-2 cycle (norm-0) patterns. Figure 26(b) omits the
transition to norm-0 patterns. The distinctive feature is
that the connectivity in the transition diagram becomes
much stronger as a whole. Except for norm-4 patterns,
any pattern can be realized starting from an arbitrary
pattern. This means that the increase in P increases not
only the number of spatial patterns but also the connec-
tivity between different structures.
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Solutions cannot exist in the shadowed regions, since — 1 < cos(é, ,+d,) = 1. This structure is obtained by choosing the appropriate

branch from among mapping solutions physically. Therefore this structure is considered to form part of the actual heteroclinic com-
plex.



