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We develop a nonlinear theory of a two-photon correlated-spontaneous-emission laser (CEL) by
using an effective interaction Harniltonian for a two-level system coupled by a two-photon transi-
tion. Assuming that the active atoms are prepared initially in a coherent superposition of two atom-
ic levels involved in the two-photon transition, we derive a master equation for the field-density
operator by using our quantum theory for coherently pumped lasers. The steady-state properties of
the two-photon CEL are studied by converting the field master equation into a Fokker-Planck equa-
tion for the antinormal-ordering Q representation of the field-density operator. Because of the in-

jected atomic coherence, the drift and diffusion coefficients become phase sensitive. This leads to
laser phase locking and an extra two-photon CEL gain. The laser field can build up from a vacuum
in the no-population-inversion region, in contrast to an ordinary two-photon laser for which trigger-
ing is needed. We find an approximate steady-state solution of the Q representation for the laser
field, which consists of two identical peaks of elliptical type. We calculate the phase variance and,
for any given mean photon number, obtain the minimum variance in the phase quadrature as a
function of the initial atomic variables. Squeezing of the quantum noise in the phase quadrature is
found and it exhibits the following features: (1) it is possible only when the laser intensity is smaller
than a certain value; (2) it becomes most significant for small mean photon number, which is achiev-
able in the no-population-inversion region; and (3) a maximum of 50% squeezing can be asymptoti-
cally approached in the small laser intensity limit. As a by-product we also study the ordinary two-

photon laser and find, e.g. , photon-number variance and laser linewidth.

I. INTRODUCTION

Laser devices based on two-photon transition processes
have received considerable interest in the last two de-
cades. ' ' These devices were originally believed to lead
to the realization of a continuously tunable coherent-light
source, whose output frequencies satisfy the equation
v, +v2=cu„. Here v, and v2 are the frequencies of the
two photons, respectively, generated by the laser, and
Au„ is the energy difference between the two atomic lev-

els involved. More recently, however, it is the prospect
of generating squeezed light ""' that brought in-
creased attention to the two-photon laser. Because of the
quadratic form of the interaction Hamiltonian in these
two-photon devices, squeezing might be possible under
certain circumstances.

The steady-state photon statistics of an incoherently
pumped two-photon laser (and micromaser) has been in-

vestigated extensively. ' ' ' ' The operation of a two-
photon laser, however, is quite different from that of a
conventional one-photon laser. The self-starting prob-
lem' is encountered in the two-photon laser, whereas a
one-photon laser can build up in the laser cavity from a
vacuum. This is mainly due to the fact that the probabili-
ty for a two-photon transition is several orders of magni-
tude smaller than that for an ordinary one-photon transi-
tion. Besides, other nonlinear processes also compete

with the two-photon lasing transition. Because of all
these difficulties, up to now only a handful of experiments
on two-photon lasers have been reported, ' in sharp
contrast to the wealth of published theoretical works.
Recent development of Rydberg-atom two-photon micro-
masers' ' makes the verification of theoretical predic-
tions possible. Following the early proposal of generating
squeezed light' in a two-photon laser, the possibility of
squeezing in an ordinary two-photon laser was investigat-
ed and ruled out. "'

We have recently shown, ' in the linear theory of a
two-photon correlated-spontaneous-emission laser (CEL)
(consisting of coherently pumped, cascade three-level
atoms interacting with a single mode of the radiation
field), that the phase noise in such a laser can be below
the shot-noise level, i.e., less than that of a field in a
coherent state. ' It was shown that the phase squeezing
can be achieved simultaneously with net linear gain when
the active atoms are prepared initially in a coherent su-
perposition of the top and bottom levels. A maximum of
50%%uo phase squeezing below the shot-noise level [i.e. , total
phase variance ((bP) ) =

—,'(4no) ', no being the mean

photon number] can be asymptotically approached when
the intermediate level of the cascade three-level atoms is
far off resonance with the one-photon transition, while
the top and bottom levels are maintained at the two-
photon resonance. Under these conditions the two-
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photon transition dominates one-photon transitions, and
such a cascade three-level laser becomes equivalent to a
two-level —two-photon laser. The squeezed-state genera-
tion mechanism of a two-photon transition ' then leads
to squeezing of the quantum noise in the phase quadra-
ture.

It is the purpose of this paper to develop a nonlinear
theory of the two-photon CEL (i.e. , active atoms are
prepared initially in a coherent superposition of two lev-
els involved in the two-photon lasing transition). We
adopt a model of an effective interaction Hamiltonian
commonly used by many authors ' ' (in so doing, a dy-
namic Stark shift is neglected ). It can be shown that
this model corresponds to the cascade three-level laser
with the intermediate level far off resonance with the
one-photon transition. ' ' ' ' Following the works on the
CEL, we have developed a quantum theory of a
coherently pumped laser with injected atomic coher-
ence by appropriately generalizing the Scully-Lamb
laser theory originally introduced for incoherently
pumped lasers. In this paper we apply this quantum
theory of coherently pumped lasers to the effective in-
teraction Hamiltonian to obtain a nonlinear theory of the
two-photon CEL. Compared to the linear theory of Ref.
18, the nonlinear theory presented in this work is capable
of investigating squeezing in the laser-phase quadrature
in terms of Hermitian-quadrature operators a& and a2
directly. We find that the injected atomic coherence
leads to laser-phase locking and provides an extra two-
photon CEL gain. The laser field can thus build up from
a vacuum without triggering in the no-population-
inversion region. The amount of squeezing for the in-
quadrature operator a2 is the same as that for laser
phase. Such squeezing is most significant in the no-
population-inversion region and the minimum quadrature
noise is ((haz) ) =

—,', representing SO%%uo squeezing. We
point out that in order to achieve these results, a proper
phase relation must be satisfied among all randomly in-
jected active atoms.

In Sec. II we derive the master equation for the
reduced-field-density operator. This field master equation
is transformed into a Fokker-Planck equation for the
antinormal-ordering distribution Q function of the
field-density operator in Sec. III and that for the
Glauber-Sudarshan P representation' in Appendix A.
As a comparison, we study separately the steady-state
properties of an incoherently pumped two-photon laser in
Sec. IV A and those of a coherently pumped two-photon
laser in Sec. IV B by using the Q-function approach. The
mean photon number, laser frequency, natura1 linewidth,
solution of the Q function, and photon number variance
of the ordinary two-photon laser and the mean photon
number, stable laser phases, approximate solution of the
Q function, and phase variance of the two-photon CEL
are found in Sec. IV. The present results based on the
two-level —two-photon model are compared to the results
of Ref. 18 and the effect of a dynamical Stark shift is dis-
cussed in Appendix B. In Sec. V the noise properties of
the two-photon CEL are further studied in terms of
Hermitian-quadrature operators a, and az, which corre-
spond to laser amplitude and phase quadratures, respec-

tively. For any given laser intensity, we find the
minimum variance in the a2 quadrature as a function of
the initial atomic variables. Finally, a physical explana-
tion to the proper form of the initial atomic coherence
and stable laser phases is given in Sec. VI.

II. MASTER EQUATION

We consider a two-photon single-mode laser (see Fig.
l) with active atoms prepared initially in a coherent su-
perposition of two atomic levels a and c, p'„(t, )~0. The
two levels a and c are of the same parity and intermediate
levels b,- are far off resonance with the one-photon transi-
tion, so that the atomic transition is a two-photon transi-
tion process. The frequencies of the two photons in one
atomic transition from the level a to level c are degen-
erate in a single-mode laser cavity considered in this
work. For simplicity, we use an effective interaction
Hamiltonian to describe the atom-field interaction under
the assumption of large atom-field detunings for the in-
termediate levels (i.e., a two-level —two-photon laser mod-
el). The quantum theory of a coherently pumped laser
has been developed recently by properly generalizing
the Scully-Lamb theory of lasers. We first summarize
the newly developed theory of the coherently pumped
laser here, and then apply it to a two-photon correlated-
spontaneous-emission laser (i.e. , to a two-photon laser
with injected atomic coherence) to derive the master
equation for the reduced density operator of the laser
field.

We assume that the active atoms are injected randomly
into the laser cavity to start the interaction with the laser
field. To be specific we denote t as the injection time of
the jth atom. For a single-mode laser, the reduced densi-
ty operator for the laser field in the interaction picture
satisfies the following equation:

+ —,'y(2apa —a ap —pa a) .

Here 0 is the cavity-mode frequency, v is the actual laser
frequency, a (a ) is the field annihilation (creation) opera-
tor, p is the reduced density operator for the jth atom
and the field in the interaction picture, y is the cavity-loss
rate, and

FIG. 1. Atomic levels of a two-level —two-photon laser.
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(2.2)

is a step function used here to ensure that the jth atom
begins its interaction with the laser field at time t =t .
Note that AV is the interaction Hamiltonian of the jth
atom with the laser field in the interaction picture, which
is obtained from that in the Schrodinger picture AV
through the unitary transformation

V =exp[i va at +iH"(t —t )]V~

Xexp[ —iva at —iH"(t —t )], (2.3)

p(0) =p""(0), (2.4)

where AH" = g ~ fico„~ A~ & ( 3'~ is the free Hamiltonian
of the jth atom, and Ace~ is the energy of the atomic state

Corresponding to the unitary transformation pre-
scribed in Eq. (2.3), the field-density operator p in the in-
teraction picture coincides with its counterpart p

'" in
the Schrodinger picture at time t =0,

(2.7)

V, =g~a & & c'~a'+g*(a')'~c'& & a ~, (2.8)

in which a dynamic Stark shift is neglected. Here g is the
effective coupling constant for the two-photon transition
between levels a and c. Using the transformation given in
Eq. (2.3), the effective interaction Hamiltonian fiV in the
interaction picture can be found readily

is the decay operator for the jth atom and I ~ is the de-
cay rate of the atomic level A. Equations (2.1) and (2.6)
are two basic equations for studying laser problems in-
volving either coherent pumping or incoherent pumping
in the good-cavity limit (I „))y).

We now derive the master equation for the reduced-
field-density operator p of the two-photon CEL (see Fig.
1). When the laser field is far off resonance with the in-
termediate levels b, , the interaction of the radiation field
with atomic levels a and c via the intermediate levels b;
can be described by the following phenomenological
effective interaction Hamiltonian ' ' ' A V in the
Schrodinger picture:

and the reduced-density operator for the jth atom in the
interaction picture, p =Trfp, coincides with that in the
Schrodinger picture p~ at the injection time t of the jth
atom,

(2.5)

V, =g~a'& (c'~a e

+g*(a ) ~c'&(aj~e

where

6 —co 2v —co co 2v

(2.9)

(2.10)

dt p f= —t B(t —t )[V,p f]——'(I ~p I+p fr&),J J' J 2 J J (2.6)

where

Treating active atoms in the field as independent of
each other as in the Scully-Lamb laser theory, we find
that the reduced density operator p obeys the following
equation in the interaction picture:

is the detuning for the two-photon transition.
Summation over the randomly injected atoms in Eq.

(2.1) may be replaced by integration over the injection
time t, i.e. , g e(t —t )~r, J ' dt, where r, is the
atomic injection rate. The equations of motion for the
field-density matrix elements are found after the substitu-
tion of Eq. (2.9) into Eq. (2.1),

i (ht —co, t. Ip„=—i (fl —v)(n —m)p„—ir, dt [ge "' [ (n +1)(n +2)p,„+z, — m(m —1)P,„, z]

+g*e " ' [v'n (n —1)p~„z, —v (m +1)(m +2)p~„, +z])

+y ( v+n1)(m +1)p„+i +&
—

—,'y(n +m)p„ (2. 1 1)

p ~ ~m nb~n(b~ m) ~ (2.12)

Here p ~„„„(2, 3 ' =a, c ) are the matrix elements of
the density operator p as found from Eq. (2.6). To facil-
itate the calculation of p ~„~,we introduce b„„such
that

b,'„+~= —I,b,'„+2 ig*v'(n +1—)(n +2)
—i (At —cu t. )Xe "'b

a, n (2.13b)

for t ~ t, . From now on we consider equal atomic decay
rates I,=I b—= I only. The solution of Eqs. (2.13) in
terms of initial conditions b„„(t ) can be found easily

Upon substitution of Eqs. (2.7), (2.9), and (2.12) into Eq.
(2.6) one obtains the equations of motion for b~ „,

b ~ „=—I,b,' „—igV (n +1)(n +2)
X I [cosy„i (b, /0„—) siny„]b,' „(t, )

—i [2gV'(n + l)(n +2)/Q„]
i (ht —cu t. )

(2.13a)
—i 2vt.

Xsiny„e 'b~„+2(t )I, (2.14a)
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—(1/2)(I +i h)(t —t. )
b~„+2(t)=e

X {[cosy„+i(b, /0, „)siny„]b 1 „+~(t ).
—i [2g'&(n +1)(n +2)/0„]

Xsiny„+, e 'cj „(t )], (2.14b}

where

y„= ,'Q„—(t t ), —

Il„=[4lgl (n + 1)(n +2)+b ]'
(2.15)

Substituting Eqs. (2.14) into Eqs. (2.12), one obtains
p~„„„(t)expressed in terms of the density-matrix ele-
ments of the operator p ~~(ti ) =p(t, )ep ~(t ), since the jth
atom is injected at time t . The coarse-grained time rate
of change for the field operator p is readily found from
Eq. (2.11) under the condition y « I, i.e., the laser field
does not change appreciably on a time scale of atomic
lifetime. In this case one can make the approximation

l

Paa
P (t )=,2j I vt.

pea e

J
—i2vt.

pace

Pcc
j=1,2, . . . (2.16)

where p„, p„, and p„=p,', are the same for all atoms.
Using Eq. (2.5), the master equation for the laser field is
obtained after the integration [here n'—= (n +1)(n +2),n":—n (n —1), etc.]

p(t. )=p(t) for the field operator when t/) t —I '. For
atoms entering the cavity (much) earlier than t —I
i.e., ti & t —I ', one may still replace p(t/) with p(t} by
noting that p decays with an overall factor

—I (t —t. )
e ' (&1. In other words, the coarse-grained time
rate of change for the field operator p can be obtained by
substituting Eqs. (2.14), via Eqs. (2.12), into Eq. (2.11)
and using Eqs. (2.15) and p(ti ) =p(t).

For the two-photon CEL we are interested in the fol-
lowing initial condition of the injected atoms in the
Schrodinger picture:

p„={ ,'ap„[n'+—m—'+i(n'—m') 5+(P /4 a)(1 +5)(n' —m') ]p„+ap„i/n'm'p„+z +z

+ iSp„[1—(P/4a )(1+i5)(n ' —m ') ]i/m 'p„+ z

iS*p—„[1+(P/4a)(1 i 5)(n—' —m')] n'p„+2 I /g„

+ {ap„v'n "m "p„2 i —,'ap„—[n"+m" i (n"——m")5+(p/4a)(1+5 )(n" —m") ]p„

iSp„[1—+ (P/4a )(1+5)(n"—m ")]i/n "p„2
+iS*p„[1—(P/4a)(1 —i5)(n" —m" )] m "p„2I/g„

—i(Q —v)( n—m)p„+y (n +1)(m +1)p„+& +i ——,'y(n +m)p„

with

(2.17)

=1+ [(n +1)(n +2)+(m + l)(m +2)]+ (1+5 )[(n +1)(n +2)—(m +1)(m +2)]
2(x 16m

(2.18)

where

2r. lgl'
S = . , 5=6/I" .

(I 2+g&P ' I +t'Q ' (2.19)

Here a and p are the linear-gain coefficient and saturation parameter of a two-photon laser, respectively. The
coefficient S is associated with the atomic coherence (p„) terms.

Equations (2.17) and (2.18) are very similar to the field master equation in a two-level-one-photon laser with injected
atomic coherence in terms of the "primed" quantities n ', n ",etc. These quantities are, however, quadratic in the pho-
ton number, refiecting the difFerence between the one-photon and two-photon lasers. On the other hand, Eq. (2.17)
reduces to the master equation for an ordinary (i.e., incoherently pumped) two-photon laser when p„=p,*, =0.

The equations of motion for the diagonal elements p„„ofthe field-density matrix are obtained immediately from Eqs.
(2.17) and (2.18) by setting m =n,

p„„=—[1+(n +1)(n +2)P/a] '[a(n +1)(n +2)(p,~„„—p„p„+z „+2)—i/(n + 1)(n +2)(iSp„p„„+2c+.c. )]

+ [1+n (n —1)P/a] '[an (n —1)(p,~„z„2—p„p„„)— n (n —1)(iSp„p„2„2+c.c. )]

+y(" + )p +i, +i y"p (2.20)
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III. FOKKER-PLANCK EQUATION
FOR THE Q REPRESENTATION

Anticipating the possible squeezing of the laser field in
the two-photon CEL, we choose to use the Q representa-
tion ' for the field-density operator p in this work. The
Q representation is an antinormal-ordering distribution
function defined by

Q(e, r*)=~-'(e~p w), (3.1)

where
~
@) is a coherent state, a~ @) = 8~ 6 ), and 6'* is

the complex conjugate of 6'. One of appealing properties
of the Q function is

0~Q(6', 6*)~n. ' for all 6' . (3.2)

The expectation value of an antinormally ordered func-
I

Again Eq. (2.20) reduces to the equation of photon proba-
bility for an ordinary (i.e., without injected atomic coher-
ence) two-photon laser when p„=p,', =0. The steady-
state photon statistics of the two-photon CEL can be
studied from Eq. (2.20) by setting the time derivative
equal to zero (p„„=O). Besides the usual diagonal cou-
pling between p„„and p„+2 „+2 due to the two-photon
transition, however, there exists an additional coupling to
off-diagonal density-matrix elements p„„+2and p„+2 „.

Overall, due to the presence of the initial atomic coher-
ence represented by terms containing p„and p„ in Eqs.
(2.17) and (2.20), the study of the two-photon CEL (in-
cluding steady-state laser operation, noise properties,
etc. ) can be easily accomplished by converting the field
master equation into a Fokker-Planck equation for a
quasiprobability distribution function of the field opera-
tor p. This is the subject of the following sections.

tion F,„„(a,a ) can be evaluated with the help of the Q
function as

(F,„„(a,a )) = fF,„„(6',6'*)Q(6', 6'*)d 6 . (3.3)

In order to transform the field master equation (2.17)
into a Fokker-Planck equation for the Q representation of
the field density operator p, we rewrite Eq. (3.1) in the
following form by using the expression of the coherent
state' in the photon-number states and p„=( n

~ p ~
m ):

Q(@ @,)
) ~ ~g~2 (@*)"&

0 '~n .m .
(3.4)

To derive the Fokker-Planck equation for the Q function,
the following formulas are helpful:

a
e '~' g =(m+1)e

aw
(3.5a)

e'+2 @/ef'+)@[' e- ' n-
ab

=(m +1)(m +2)e (3.5b)

Similar expressions for 6* and n are given by the replace-
ments 6"~A'*, m ~n

Taking the time derivative on both sides of Eq. (3.4),
substituting the master equation (2.17) into Eq. (3.4), and
using Eqs. (3.5) we obtain an equation of motion for the Q
function. Assuming that the mean photon number of the
two-photon CEL is much larger than 1, the equation of
motion for Q(6', A*, t) takes the following simple form
after neglecting 1 compared to

~

6'~:

T

aQ(e, e, t) . a, 1 a'
aD 2 ag'

—a(p„—p„) (1—i5) B~N~ + — 6 +c.c.

1
2

—
—,
'

( I +5 )P(p„+p„) @
~ @ +— 6 —c.c.

a8 2 a&2

a'
2

a' a a"+ap„4 ~8~ +2 6+c.c. + L(8, 6*,t)
a@a@* a@a@* a~ ae'a(e")'

+;S;., 2' ~*+ '+~"+'" 2' ~i~i'+ ' ~'-.
2a ah' ah'

P(1+i5)
2(x

a2

2 ()@2
@(g)'+— @'—c.c. a a

, +2 A'" +c.c L(N, @*, )t

a2
Q(6, 8', t)

a@a~ 2 a~ 2 a@*

+i (II—v) 6 — g* Q(@,b*, t),a a
aa ae' (3.6)

with
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p, a, 1 a'
1+—"

I
@I'+ — &

I
& I'+ — @'+c.c.

a a a6' 2 ay~

+P"+"' 2
'

g~g~ + " g
16o. BD

'2 —1

Q(8, @*,t) . (3.7)

Equation (3.6) contains derivatives of all orders in 6 and 8" due to the presence of the inverse operator in L (6, 6*,t).
In order to obtain the Fokker-Planck equation for the Q function, we can expand Eq. (3.6) in terms of the derivatives
and keep terms up to second order in the derivatives. Notice that the third- and higher-order derivative terms do not
contribute to the calculations of the first and second moments, which are of interest for our present purpose. Conse-
quently, we can safely neglect the third- and higher-order derivative terms here.

Since no zeroth-order term is left except in L, we need only expand L(6', 8*,t) up to first order in the derivatives,
yielding

Q(8, 6*,t)
1+

~
a~'P/a

p a a „)e)'Q(ee t)
a(1+ [@'P/a) a& a~* 1+

J
~ i'P/a

(3.8)

Dropping terms containing third- and higher-order derivatives in Eq. (3.6) and neglecting 1 compared to
~

6', one ob-
tains the Fokker-Planck equation for the Q representation as

aQ(6'6'*, t) a a adt;+ D, + Dtt;+c. c. Q(@,d*, t),
at a oaor* " aa' (3.9)

where the drift and diffusion coefficients for the Q function are

d, =
[ @~&~'[(p„—p„)(1—'|i)—2 (gP„& + . . )/I ]—2'Sp„@*I/(I+~&~ P/ ) ——,'7'8+ '( —fl)6, (3.10)

D@&+
= +

4 2p„+(I+6 )(p„+p„) +(igp„6' +c.c. )/I
pl~I'

1+ e'P/a 2'
P~@ (p„—p„)+(iS*P„6' +c.c. )~@ P/a+ (I+

I
~I'p/ )' (3.1 la)

iSp„ +
1+

I
& I'P/a

+
4 ~ la@ [(p„—p„)(1—i6) —2i (gP„6' +c.c. )/I ]—2iSp „Ia(1+ 6 P/a)

2

[2i (3P„g*+p„g)/I —(p„—p„)(1—i 5)—(1+5 )(p„+p„) D~ P/a]2(1+ 6 P/a)

(3.11b)

As a comparison we give the Fokker-Planck equation
in the Glauber-Sudarshan P representation in Appendix
A. One can see from Eqs. (3.10) and (A6) that, to the
leading order (i.e. , after dropping 1 as compared to ~B~ ),
the drift coefficient d& for the Q representation is the
same as the drift coeScient d & for the P representation,

(3.12)

whereas the diffusion coefficients in the Q and P represen-
ons are different, D . +D, D ~~ +D ~~. For ex

ample, the cavity-loss rate y contributes to the diffusion
coefficient D& ~ [see Eq. (3.1 la)] for the Q representa-
tion, in contrast to the Fokker-Planck equation for the P
representation. The reason for this is that the Q function
is an antinormal-ordering distribution function. Without
the injected atomic coherence (P„=O), Eqs. (3.9)—(3.11)
reduce to the Q's Fokker-Planck equation for an ordinary
two-photon laser.

To facilitate the analysis of the laser intensity and
phase, we rewrite the Fokker-Planck equation (3.9) in

terms of intensity and phase variables, I and P, via the re-
lation 6=&Ie'~,

aQ, (I,y, t)
at

8
dt — d~+ Dtt + D~~aI a

where

a2
+2 Dty Q2(I, Q, t),aIa/

(3.13)

Dlt 2I[D~t+ +Re(Dace ' ~)],
1

D&&=—[D ., —Re(D&&e ' )],
DI~=Im(D~~e ' ~)

(3.14a)

(3.14b)

(3.14c)

dt =2&I Re(dqe '~)+2D (3.1Sa)

are the intensity, phase, and cross diffusion coefficients
for the Q function, respectively, and
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Im(dye '&) —I Im(D/ge ' ~)
9 (3.15b) Paa Pcc Pcc Paaa( —

) a( —
)

4I 2 4( 1+I Pla )

are the intensity- and phase-drift coefficients for the Q
function, respectively. Also we have let

iSp„~(1+2I iila)+ sin(8 —2 ),2I (1+I P/a)
(3.19b)

Q(6', 8', t) =2Q, (I,P, t),
so that

fQ(8, @",t)d'8= fQ, (I,P, t)dI dg= 1 .

(3.16a)

(3.16b)

Note that the relations (3.14) and (3.15) are very general,
valid for a Fokker-Planck equation in any representation.
As can be seen from Eqs. (3.10) and (3.11), the terms
2D&&+ in Eq. (3.15a) and I 'I—m(D&&e ' ~) in Eq.
(3.15b) are smaller than their respective leading drift
terms by a factor of I '= ~@ and, consequently, can
be neglected under the previous assumption that the
mean photon number is much larger than 1.

Substituting Eqs. (3.10) into Eqs. (3.15), one finds

Isp., I

Dz&= cos(8 —2P) .1+I Pla
(3.19c)

IV. STEADY-STATE OPERATION
AND PHASE SQUEEZING

Without the injected atomic coherence (p„=0), the drift
and diffusion coefficients are phase insensitive and reduce
to those for an ordinary two-photon laser. With injected
atomic coherence (p„&0), however, all of the drift and
diffusion coefficients become phase sensitive, i.e., depend
on phase P. As we will see in the following sections, this
leads to phase locking and subsequently squeezing in the
two-photon CEL.

dh =(G —y )I,

d~=v —0,—[aI(p„p„)5—
(3.17a)

We investigate the intensity and phase properties of the
two-photon CEL by using the Q function in this section.
From Eq. (3.3) one gets

+2i Sp„ i [cos(8—2p —arctan5)

+(1+5 )' (I P/a)

Xcos(8—2P)]] /(1+I P/a),
(3.17b)

with

2aI (p„—p„)+4
~ S p„ i sin( 8—2P —are tan5 )

1+I 13/a

(3.17c)

dy=d d =d (3.18)

An extra contribution to the gain (as compared to the in-
coherently pumped laser) due to the injected atomic
coherence p„ is evident from Eq. (3.17c). Moreover, this
contribution does not vanish as 1~0. As will be seen in
Sec. IV, this leads to the observation that the two-photon
CEL can build up from a vacuum without external
triggering, in contrast to an ordinary two-photon laser.

Substituting Eqs. (3.11) into Eqs. (3.14), one finds that
at two-photon resonance (b =0),

being a saturated gain. Here we have introduced the no-
tation g*p„=~g p„~e' . Compared to the drift
coefficients for the P representation [see Eqs. (A9)], we
note that the intensity- and phase-drift coefficients for the
Q and P representations are the same to the leading or-
der,

&e & =&:e.:&—1= &I &
—1

for the mean photon number, and

&(6&)'&=& (6&)'.:&—&:.&: &=&(5I)'&—&I&

(4.1)

(4.2)

&(~y)'& = &(5y)'&-
4&@&

' (4.3)

where 5$=(()—Po, $0 is one of possible steady-state laser
phases, and &(5P) &=&!(ha&) &/&fi & represents an-
tinormally ordered phase variance.

The equations of motion for the intensity (photon num-
ber) and phase of the laser field are obtained by using Eq.
(3.13),

„&I&=&d,&,
dt

(4.4a)

(4.4b)

The equations of motion for antinormally ordered
(photon-) number and phase variances are also obtained
from Eq. (3.13) as

for photon-number variance, where & =a a is the photon
number operator, .:.:denotes antinormal ordering of the
operators a and a, and 5I =I —&I &. In the case of
laser-phase locking and large mean photon number,
&

6' »&1, the phase variance of the laser field can be re-
garded as &(b,P) & =&(ha&) &/&8 &, where a2 is the in-
quadrature operator of the laser field [see Eq. (5.1b)].
Consequently, we have the following relation for laser-
phase variance [see Eqs. (5.7)]:

Da=yI +

(3.19a)

aI [Sp„—p„+(3p„+p„)IP/a]
(1+I P/a)

2~SP„~I(1—3I i3/a)
sin(8 —2 ),(1+I Pla)

&(5I) & =2&dt5I &+2&Dent &,
dt

"
&(5y)'& =2&d, 5q&+2&D„&,

dt

(4.5a)

(4.5b)
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(5I5$) =(d 5$)+(d~5I)+2(D,~) .
dt

(4.5c)

We can assume that the quasiprobability distribution
function Q2(I, P, t) is well peaked at the mean photon
number no-(I ) and, if they exist, locked phase values

Po in steady state. Thus we can expand di and d& in Eqs.
(4.4) around (Io, go) up to first order in 5I and 5$ and find
that the steady-state mean photon number no and locked
phase values Po satisfy the following deterministic equa-
tions:

di(no Po)=0,

dy(np Pp)=0

(4.6a)

(4.6b)

In the following we investigate the incoherently pumped
(p„=O) two-photon laser and the coherently pumped
(p„&0) one separately.

Consistent with our assumption no))1, Eq. (4.6a) is
equivalent to [see Eq. (3.17a)]

(4.7)

2aI (p„—p„)G(I)= 1+I @la
(4.8a)

and Eqs. (3.17b) and (4.8a) give the corresponding phase-
drift coefficient

d~=v —0—
—,'G(I)5 . (4.8b)

Note that both drift coefficients are phase insensitive, and
population inversion p„)p„ is needed in this case to
have a positive gain and overcome the cavity loss. The
gain G as a function of laser intensity I, Eq. (4.8a), is plot-
ted in Fig. 2. One sees that, starting from zero, the gain
G increases with I for I (&o./P and reaches its max-
imum value

The ordinary two-photon lasers were studied theoretical-
ly in Refs. 4, 7, 8, 10—13, and 15 using other methods.
Recently, the two-photon micromaser was investigated
both theoretically and experimentally by Haroche
et al. ' ' Without the initial atomic coherence (i.e.,
P„=O), Eq. (3.17c) yields the saturated gain for an in-
coherently pumped two-photon laser

A. Incoherently pumped two-photon laser, p„=0 ,„=~SI(p„—p„) (4.9)

To appreciate the effects of injected atomic coherence
on laser operation, we first derive some results for an or-
dinary two-photon laser using the Q-function approach.

at I =&a/P. [Note ~S~ =a&a/P due to Eqs. (2.19).]
For I )v'a/P, the gain G decreases with I. In order to
meet Eq. (4.7), G,„)y must be satisfied. When this is

1.2

0.8

0.6

0.4

0.2

100 200 300 400 500

FIG. 2. Gain G of an ordinary two-photon laser as a function of the laser intensity (photon number) I for P/a=10
a(p„—p„)=10 . The long-dash —short-dash line represents the cavity loss rate y. The two cross points are two intensity-locking
points. The cross point with larger I is a stable locking point while the one with smaller I is an unstable locking point.
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Q, (I)= exp gr d (I')
rr 0»rr(I' (4.15)
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—2

1 )1/2] (4.10)
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For the simple case p„=1,p„=O, 6=0, the photon-
number variance and half the natural linewidth are
found from Eqs. (4.17) and (4.13b), respectively,

((ae)') =— n, ,
2 ono —y

4+no+ y
D~~(no) =

8no

(4.18a)

(4.18b)

One can compare these expressions with those of an ordi-
nary one-photon laser ' having the same mean photon
number no and cavity-loss rate y,

(4.19a)

a, +y
D,'~(no) =

8no
(4.19b)

where a, is the linear gain (coefficient) for the one-photon
laser. When G,„ is slightly larger than y, i.e., when the
two-photon laser is just above its "threshold" y, Eq.
(4.10) gives n -o/ ia/P and, consequently, Eq. (4.8a) gives
ano=y. When n, =ano=y, i.e., when both lasers are
near threshold, the photon-number variance in the two-
photon laser is 50% more than that in the one-photon
laser, ((bn ) ) =1.5((b,R') ) i, and the linewidth of the
two-photon laser is 150% more than that in the one-
photon laser, D&&(no)=2. 5D4&(no). In another case
G,„=V a /p)) y, Eq. (4.10) gives no =2a /py, so that
ano ))y (also, nov'p/a &) 1). Consequently, we find
from Eq. (4.18a) that ((5&) ) =

—,'no. This is 50% larger
than the photon-number variance of an ordinary one-
photon laser operating far above threshold (a, &)y ) with
the same mean photon number no, ((b,R)),=no [se'e

Eq. (4.19a)].

B. Coherently pumped two-photon laser, p„&0

d& = —2ISp„cos(9—2P) . (4.20)

Since Bd
&

/BI =0, the stable locking conditions for
steady-state laser operation at (no, go), which satisfies
Eqs. (4.6), can be written as

As compared to the incoherently pumped two-photon
laser, two major differences are seen in Eqs. (3.17) when
initial atomic coherence p„ is present. Namely, there
now exist phase locking and an extra two-photon gain.
We will first examine the phase locking of the laser field
and then find the laser intensity. For simplicity, we as-
sume an actual resonant two-photon transition,
A=co„—2v=O, from now on. For the present effective-
Hamiltonian model, in which a dynamic Stark shift is
neglected, this could be achieved by setting the cavity-
mode frequency 0=—,'co„=v. When the dynamic Stark
shift is included, this could be obtained by offsetting the
cavity-mode frequency, 0= —,'co„—S with g real, as dis-
cussed in Appendix B.

When 5=0, v=0, the phase-drift coefficient given in
Eq. (3.17b) reduces to

&di(no, gp) BG(n, g )

aI "' aI
Bd~(no, go) &0.

(4.21a)

(4.21b)

Equation (4.21a) is similar to Eq. (4.11). The stable laser
phases in steady state are thus found from Eqs. (4.6b),
(4.20), and (4.21b) as satisfying sin(8 —2go) = 1, i.e. ,

Po= —,'[0+ —,'sr+( —1) vr], k =1,2 . (4.22)

Depending on initial field fluctuations, the laser phase
will be locked to either Po or Po in the steady state. No-
tice the difference from those of an incoherently pumped
two-photon laser with injected signal' and a coherently
pumped one-photon laser, where only one phase is
stable, and the similarity, on the other hand, to that of a
squeezed-pump laser, where there exist two stable
phases. '

We now consider laser intensity at two-photon reso-
nance (b, =0). As a matter of fact, P is locked to Po,
given in Eq. (4.22), regardless of the laser intensity vari-
able I. Thus, the laser gain G(I, Q) [see Eq. (3.17c)) as a
function of I can be replaced by that at stable phases Po,

Ii/p/a(p„p„)+2 p„ I—
G(I, yo) =2ISI 1+I P/a

(4.23)

where Eqs. (2.19) have been used. Besides the usual two-
photon gain [first term in the numerator on the right-
hand side (rhs)], there appears an extra two-photon CEL
gain induced by the atomic coherence. In contrast to the
case of an ordinary two-photon laser, the gain G(I, QO)
does not vanish as I approaches zero due to the existence
of the extra CEL gain. This means that triggering may
not be necessary in the two-photon CEL. In Fig. 4 we
plot the gain G(I, Po) as a function of I for p„)p„,
p„,=p,,„and p„&p„, respectively. One sees that popu-
lation inversion p, )p„ is not necessary when
4 Sp„ I

) y in order for the laser field to overcome the
cavity loss and to be stable. In fact, as we will discuss in
the following, large squeezing of the laser field occurs in
the p„&p„region. Also, as is evident in Fig. 4, the gain
G (I, go) assumes diff'erent behavior depending on wheth-
er or not there is a population inversion. When p„)p„
and

4lsp. , l &y&G,„=lsl(p„—p„) /(1 —2lp„l),

there are two positive solutions of no to Eq. (4.7). Similar
to the case of the incoherently pumped two-photon laser
(see Sec. IV A), only the larger one satisfies Eq. (4.21a)
and therefore is stable. When p„)p„but y & G,„, or
p„&p„and y &4ISp„l, there is no positive solution of
no to Eq. (4.7); thus there is no stable operation point for
the laser. In any other case, i.e., when y &4ISp„l, only
one positive solution exists and it is stable. With:n the
last case, the laser field can build up from vacuum via
spontaneous emission (i.e., without triggering), as can be
understood from Fig. 4.

The stable no in any of the above situations is
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FICi. 4. Gain G of the two-photon CEL at stable phase Po as a function of the laser intensity I for a=10, P=10
Ip„I =(p,~„}',and curve i, p„=0.8, p„=0.2; curve ii, p„=p„=0.5; curve iii, p„=0.2, p„=0.8. A smaller Is value is used for
curve ii so that all three curves have the same linear gain GI &

n =ov a/p[ ISI(p„—p„)y
+ [Isl'(p..—p„)'y -'

+4Isp. , Iy-' —1]'"I, (4.24)

D (no o)= Is
2no(1+No )

x [Ip„I+p.,No

which reduces to Eq. (4.10) when p„=0 as expected. As
a result of the extra two-photon CEL gain, no in Eq.
(4.24) is larger than that in Eq. (4.10) for the same param-
eters a,g, y, and p„—p„(&0). Note that the range of
stable laser intensity no changes dramatically according
to the sign of p„—p„:

Dip(40) =0

4ano(p„+p„)+y ISp„I+
8no no

Isp., I+ (p„+p„)(—,
' +No )No ]+

no

(4.26b)

(4.26c)

no) [(+q +1—g)tz//3]'~, p„)p„

no ([(+g +1+rj)a/f3]', p„(p„ (4.25b)
No =no&P/ct

(4.25a)
where

(4.27)

while no can be any positive value when p, =p„, where
q=2Ip„/(p„—p„)I. The ranges of no for p„~p„are
in contrast to the usual two-photon laser studied in Sec.
IV A.

Using Eqs. (4.7) and (4.23), the steady-state dN'usion
coefficients are found from Eqs. (3.19) to be

D&I(no, go) = [ISINo(p„+3p„)+2yN&
1+No

+2lsp. , l(1+3N', )(1+N,') '],
(4.26a)

is a normalized mean photon number and represents the
degree of saturation.

The diffusion matrix

Dry D

is positive definite at the locking points (no, Po). An ap-
proximate solution for the steady-state quasidistribution
Qz(I, Q) can be found by linearizing the Fokker-Planck
equation (3.13). Expanding the drift coefficients di and
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d& and the diffusion coefficients DII, D&&, and Dl& around
the two locking points (np, Pp) [k =1,2; see Eqs. (4.22)
and (4.24)] up to first and zeroth order in 5I =I —np

5/k =P —Pt, respectively, and noting that Dr&(go) =0
and

ad, (y, )/ay=ad, /aI =0, (4.28)

one finds the linearized Fokker-Planck equation ex-
pressed in terms of intensity and phase variables, I and P,

—Qz(I, P, t)=-a i3 r)dr(no 4o) I Drr—( n o, P ) Q2 ( I,P, t )

5/i, D&&—(np, rtro) Qz(I, P, t) for P near Pk, k =1 or 2 (4.29)

where

adr(n p, yo)

BI
41Sp., I

+y(N'o —1)

1+N

ad, (,)' = —4lsp. , l,

(4.30a)

(4.30b)

Dyy(no, yo)

lad, (y, )/apl 4n.

1+N, lp., l '(p..+-,'+No)
8np(1+No)

4ano+ y

p 8 IS p„ I

(4.32}

2

Q2(I, rtr)=Ni& g exp
lBd (n, P )/i)Il

(I —np)
2Drr("o 0o)

lad (P )/Bgl
(y yk)2

2Dyy(np Pp)

(4.31)

where Nz& is a normalization constant to be determined
from Eq. (3.16b). This quasidistribution Q2(I, Q) consists
of two identical elliptical peaks at the two locking points
(no, Pp). The widths of the peaks for the intensity I are

and Dri(np, go) and D&&(no, atro) are given in Eqs. (4.26).
The linearized Fokker-Planck equation (4.29) has the
steady-state solution

where Eqs. (4.26b) and (4.30b) and the relation
p„+p„=1 have been used. Another way to find the
photon-number and phase variances is by using the
Qz(I, Q) in Eq. (4.31). Similar to the incoherently
pumped laser discussed in Sec. IV A, this approach gives
the same results for ((b,P) ) as Eq. (4.32). The phase
variance in Eq. (4.33) differs from that of a field in a
coherent state with the same mean photon number no by
a factor of (4anp+y)/8lSp„l. The squeezing in the
laser-phase quadrature occurs whenever this factor be-
comes less than unity. For a significant squeezing to
occur, we must then have a small normalized photon
number Np « lp„l &

—,
' (but still keeping np »1, i.e.,

1«np «&a/pip„l). This can actually be achieved
when (see Fig. 4),

p„&p„, 4lSp„l —y~0+, a/P& 10 (4.33)
Drr(no, gp) /l i}dr(no, Pp) /r)Il,

while the peak widths for the phase P are

D«(n„y )/lad&(y )/apl .

Since Q (I,2Q} is sharply peaked at (no, Pp) (k =1,2),
the antinormally ordered photon-number and phase vari-
ances in steady state, ((5I) ) and ((5P) ), can be ob-
tained from Eqs. (4.5) by the same approach as we used in
Sec. IV A, i.e., by setting d/dt =0 and expanding dr, d~,
Drr, D&&, and Dr& around the two locking points (np atro)

up to first order in 5I and 5P„. In general one needs to
solve three coupled first-order algebraic equations to ob-
tain ((5I) ) and ((5P) ), since both ((5I) ) and
((5P) ) are coupled to (5I5$). For the present situa-
tion, however, this is not the case because of Eqs. (4.28).

From Eqs. (4.3) and (4.5b) the steady-state phase vari-
ance is found to be (note that Po will be either Pp or Pp)

V. SQUEEZING OF QUADRATURE VARIANCE

To demonstrate the squeezing of the phase noise in the
two-photon CEL more rigorously, we investigate the
variance of the phase quadrature a2. We define the Her-
mitian quadrature operators of the field as

—
intro y i $0a, =(ae '+a e ')/2,

a2=(ae —a e )/2i,
—i ttro t i PO

(S.la)

(5.1b)

(In this case 4ano « y =4lSp„ l. ) Consequently,
((bP) ) =(8no) ' can be approached asymptotically.
That is, a maximum of 50% squeezing of the phase noise
can be achieved in the two-photon CEL.

This result agrees with the conclusion reached in Ref.
18. For completeness we compare, in Appendix B, the
results in the present paper with those in Ref. 18 in the
region where both are valid.
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where Po is chosen to be one of the steady-state locked-
phase values [see Eq. (4.22)]. In this way, a

&
is associated

with the amplitude of the laser field while a2 with the
laser phase, as we will see later. The quadrature opera-
tors a ] and a 2 satisfy the commutation relation

d (8,o Czo)=0 i =1 2 (5.10)

(@,, 6z)=(C,o, 6zo), in steady state. Consequently one
finds, by expanding d; in Eqs. (5.8) around (p, o, @zo) up
to first order in 58, and 5@z, that C,o and bzo satisfy the
deterministic equations in steady state

[a„az]= ,'i .— (5.2)

Corresponding to Eqs. (5.1), the c-number quadrature
variables are

Since Po in Eqs. (5.3) is one of the steady-state locked-
igophase values, one knows from 6o=+Qnoe that

@,=(8e '+ C*e ')/2,

6z=(8e '—6'e ')/2i .

(5.3a)

(5.3b)

6'",o=( —1)"+no, k = 1,2

Azo=0
(5.1 1)

aQ(e, , e„t)
at

a a a'
d, — dz+ D„

In terms of 6, and 6z the Fokker-Planck equation (3.9)
takes the form

[Alternatively one can find 6', o and Po from Eqs. (5.10) by
requiring 6'zo=0. ] A comparison of Eqs. (5.5) with Eqs.
(3.15) shows that, to leading order, at the steady-state
locking points given in Eqs. (5.11)

a2 a2+ Dzz+2 D, z
B2 I 2

X Q ( 6' „6'z, t ), (5.4)

di(8&o @zo)=dr(no 0o)/2V "o

dz( @10 @20) dp(no 4'0)+no

(5.12a)

(5.12b)

—i/0d
&

=Re(d @e ), (s.sa)

where the new drift and diffusion coefficients are related
to the old ones by

which agree with Eqs. (4.6) and (5.10). Similarly, com-
parison of Eqs. (5.6) with Eqs. (3.14) gives the relations
between the various diffusion coefficients at the steady-
state locking points given in Eqs. (5.11) as

—i/0
dz =1m(d@e ),

—i 2/0D» = ,'[D&&++Re(D&—&e ')],
—i 2@0

Dzz = ,'[De&, —Re(D&@e —')],

(5.5b)

(S.6a)

(5.6b)

D„(6', , A' )=D (,P )/4

zz(@io @zo)=D&&(no 0o)no

12( @10 @20) zDIQ(no 4'0)

(5.13a)

(5.13b)

(5.13c)

—i 2@0D, z
=

—,
' Im(D eq e ') . (5.6c)

Also in terms of 6, and A'z one finds from Eqs. (5.1), (5.2),
and (3.3) that (a;) =(6';) (i =1,2) and

The association of 6, with the intensity and 8z with the
phase is obvious from Eqs. (5.11)—(5.13).

Just as in Sec. IV B, we consider actual two-photon res-
onant transition (co„=2v) in the following. Substitution
of Eqs. (3.10a), (5.3), and (4.22) into Eqs. (5.5) leads to

((&;)'&=(.:(&;)':&
—

—,
' =((5@;)')——,', =1,2 (5.7)

where b a; =a, —( a; ), 5@;= 6'; —( 6'; ) (i = 1,2).
From the Fokker-Planck equation (5.4) one can derive

the equations of motion for the expectation values ( 6, )
of the quadrature operators a, ,

d, =B,A, —bzAz,

dz =6, Az+ CzA, ,

where

A, =[I+(6,+Bz) P/a]

(5.14a)

(5.14b)

(8, ) =(d;), i =1,2 (5.8)
X [a(p„—p„)(8,+ 8z)

((5@;) ) = (2d; 65;) +2( D, , ), i =1,2

(56,5hz) =(d, 5hz)+(dz56, )+2(D,z) .
dt

(S.9a)

(5.9b)

and those for antinormally ordered quadrature variances
((56;) ) as well as for (56,5@z)

+2lsp. , l(@f—ezz)/(@ f+ @zz)]——,'y,

A = —4lsp„ l 6,@ /(4, + 6 ) .

Because of Eqs. (5.10) and (5.11) we note that

A;(8)o, @zo)=0, i =1,2 .

(S.IS a)

(5.15b)

(5.16)

It is reasonable to assume that the quasidistribution
Q ( 6, , 6z, t) is sharply peaked at the locking points,

As we have done in Sec. IV, one can obtain an approxi-
mate steady-state quasidistribution Q (6', , 6z) by lineariz-
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ing the Fokker-Planck equation (5.4). Expanding the
drift coefticients d] and d2 around the two locking points
(6",0, 820) up to first order in 56"=6 —6'" and
6D =6 —~~

an
m 20 w 2 (since 6 zo

=0 ), replacing the diffusion
coefficients by their respective values at the locking
points, and noting that D& 2(6

& 0, @20)
= 0 and

ad, (e„@20) aA, (6,, 6 ) =0,
ae,

i j =1,2, i&j (5.17)

we arrive at the linearized Fokker-Planck equation ex-
pressed in terms of quadrature variables 6' and @

&
an

a~
Q(6', , Az, t)=— adi(&io &20) „a56'", —D„(8,0, 820) Q(6„6'z, t)

1 1

adz(&io &20) 1 for 6', &0
Dzz(6, 0, 6'20) Q(6'„6'z, t), k —'

2 B6'2 ' ' 2 for 62)0. (5.18)

Here for both k = 1 and k =2,

ad, (~„,~20) „aA, (~"„,~„)
a~, " a~,

4ISp., I+) (N,' —1)

1+No

adr(no yo)

BI
(5.19a)

22( @10&@20) 1

Iad, (@„,@„)Ia@,I
4

1+Nol p., I
'(p..+-,'+N'o

&

8(1+No)
(5.21)

I

~sing Eqs. (5.19b), (5.13b), and (4.26b) and the relatio n
p„+p„=1,one finds the total steady-state variance of
a2 as

adz(8&o 820) „aA (6 o 8 o)

2

=ad, (y, )/ay . (5.19b)

The steady-state solution of the linearized Fokker-Planck
equation (5.18) is

Q ( 6', , 6'2 ) =N, z g exp
Iad, (r, "„,~„)Iae, I

2D»(@io &20)

x(6, —6'" )

Iad, (r"„,@„)Ia@,I

2Dzz(&io &20&
g2

(5.20)

Again, %,2 is a normalization constant. The quasidistri-
bution Q(6, , @z) is made up of two identical elliptical
peaks located at the two locking toc ing points

20)=( vno, O) "The wid. ths of the Peaks in the
6, direction are

D, , ( 6,0, Dzo) I I ad; (6,0, 6'20) Ia 6';
I

(i = 1,2) .

We plot the quasidistribution Q ( 8&, 82) in Fig. 5 for the
case p„(p„.

Because Q(8, , Dz) is well peaked at @2=0, the antinor-
mally ordered az's variance in the steady state, ( (56'2) ),
is readily obtained from Eqs. (5.9a) by putting d/dt =0
and e~xanding d2 and D22 around the two locking points
( "„/no, 0) up to first order in 5g"=8 —g di+ v
6D =6. ]o

Owing to Eqs. (5.17), which means that the
fiuctuations in the amplitude (a, ) and phase (az ) quadra-
tures are decoupled, the resulting expression for ((5@z) )
is simple. Substituting this expression into Eqs. (5.7) and

which is just no((b, p) ) given in Eq. (4.33). The total
steady-state variance ((b,a, ) ) can be obtained similarly

~ ~

which is arge in general. Once again the same res lt f
2

u s or
e vanance ((b,az) ) can also be obtained from the

quasidistribution Q(6&, ez) in Eq. (5.20). The same dis-
cussion as that given at the end of Sec. IVB can be re-
peated here. The main conclusion is that a 50%%uo squeez-
ing in the az quadrature [i.e., ((b,az) ) =

—,', which
'

1

half the vacacuum noise level] can be asymptotically
reached when 1«no «&a/PIP„I, and this is experi-
mentally feasible [see Eq (4.33)]..

It is also interesting to find the minimum value of the
quadrature (or phase) noise level at a given laser intensi-
ty. For a given No, ( (b,az ) ) in Eq. (5.21) is a function of
the initial atomic variables p„and IP„I. Under the max-
imum atomic coherence condition

IpccI =(Pa&cc) [P ( Po &]

FIG. 5. Steady-state quasidistribution Q(A', , Az) of the two-
photon CEL on the 6 plane [N=e (6 +iD )' foz or p„(p„.
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1+2NOp„=1—p„=
4(1+No )

(5.22b)

[Since Eq. (4.7) must be satisfied, this requires that the
cavity-loss rate y be adjusted according to Eq. (4.7).]
This is in the p„&p„region, in which No «1 is possi-
ble. Using Eqs. (5.22a) one can show easily that there ex-
ists squeezing of the a2-quadrature (also phase) variance
only when No (1/i/2. Equation (5.22a) is plotted in Fig.
6. For No((1 (but keeping no))1), the az-quadrature
variance increases linearly with No: ((b,a2) )
= (1+v'3No )IS.

VI. DISCUSSION AND SUMMARY

The two main effects of the two-photon CEL, stable
phase locking and squeezing, both stem from the injected
atomic coherence given by Eq. (2.16). That indeed this is
the proper form of atomic coherence, necessary to
achieve quantum noise quenching and squeezing, can be
understood in the following way. Suppose that the initial
atomic density matrix takes the following form:

the minimum value of ((b,a& ) ) with respect to p„can
then be found to be

1 +N ( 1+2N2 )1/2(3+2N2 )1/2
((~.,)'),„= ', ', (5.22 )

8(1+N~~ )

when

Paa
(t, )=

Pcae

I 2coot .

Pace

Pcc
j=1,2, . . . (6.1)

I ~I +i 2(v coo)—in terms containing p„,
I ~I i2—(v coo—) in terms containing P„,

(6.2)

"agS~
I +i (co„—2coo)

When all injected atoms have the same initial coherence
(neo=0) then S~O since ni„))I . When coo is close but
not equal to v, the phase 9 of the atomic coherence [see
its definition after Eqs. (3.17)] is replaced by
9+2(v ~o)t in all the equations of Secs. III—V, as indi-
cated by the first relation of (6.2). Consequently, no sta-
tionary phase locking is possible. Furthermore, the
phase-difFusion coefficients D&& would vary periodically
with time and any noise quenching and squeezing would
be averaged out on a time scale ~coo

—
v~

where p„,p„,p„=p,', are the same for all atoms but
cooWv. If we use this, instead of Eq. (2.16), as an initial
condition we arrive at a master equation for the reduced
field-density matrix, which is similar to Eq. (2.17) but
with the following replacements in the p„and p„ terms
(including their denominators g„and g„z z):

i2( v —~o jt
Pac P ca Pac e

0.75

0.50

0.25

0

FICx. 6. Minimum variance in the a& quadrature (corresponding to the laser phase) as a function of the normalized laser intensity
No =v'piano The long-dash —sh.ort-dash line represents the vacuum noise level ((ba2) ) = —'.
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Introducing the vector model described by the two-
photon optical Bloch equations ' it is possible to give a
simple intuitive physical picture of the two-photon CEL
in a semiclassical framework, same as for a one-photon
laser with injected atomic coherence.

We focus on steady-state laser operation in which the
phase P is locked to one of stable phase values Pii. The
semiclassical version of the interaction Hamiltonian (2.9)
is given by

V"=gn e ' ~a~)(c~~+H. c. , (6.3)

(6.4)

where

i2vt+ j —i2vt
ace Pcae

where gno is half the Rabi frequency of the two-photon
transition. The Bloch vector of the jth atom satisfies the
following equations of motion:

of the two-photon transition (i.e. , in the Bloch vector
space), all the injected atoms have the same initial condi-
tion and follow the same trajectories in the Bloch vector
space. On the other hand, for the initial condition (6.1)
different atoms have different initial oscillations and fol-
low different trajectories in the Bloch vector space and
the effects sensitive to the phase of the initial coherence
(i.e., phase locking and noise reduction) average out to
zero.

Besides providing an intuitive physical picture for un-
derstanding the role of the phase of the initial atomic
coherence, the Bloch equations (6.4) also yield a similar
simple picture for the time evolution of the atomic-
density-matrix elements and for the relation between the
phase 9 of the atomic coherence and laser phase Po.
First, notice that, owing to atomic decay, a physical pro-
cess happening earlier has a larger probability than that
happening later and thus dominates. We consider the
two-photon resonance case, 6=0, in which the driving
vector Qti is in the uv plane (see Fig. 7). Since

BJ= UJ i (pi' ei2vt pi' e
—i2vt) (6.5a) Qti Bi(t ) =. 4g~p„~cos(9 —2go), (6.7)

wJ pJ —pJ

is the Bloch vector of the jth atom for the two-photon
transition and

2gno cos(2$o)

Qti = 2gno —sin(2$o) (6.5b)

2ip.,

jocose

B~( t~ ) = —2 p„~sin8

Paa Pcc

(6.6)

independent of j (see Fig. 7). Thus, the initial condition
(2.16) ensures that in the frame rotating at the frequency

W

FIG. 7. Initial Bloch vector B (t,-) for the jth atom and
steady-state driving-field vector Q~ for the laser field at one of
stable-phase values $0, 8—2/0= —'n, in the Bloch vector space.

is the two-photon driving-field vector (with g )0 now).
Substitution of the initial condition (2.16) into Eq. (6.5a)
leads to

the condition of orthogonality is cos(8 —2$o)=0, the
same as the steady-state condition from Eq. (4.20), i.e.,

Po= —,'8+ 4~+lvr/2 (1=0,1, . . . ). The driving vector ro-
tates the Bloch vectors B~ (j=1,2, . . . ) downward to
u =U =0, w &0 (i.e., to p~„=0) for even 1 (0, 2, . . . ) and
the laser intensity is increased, due to stimulated emission
of the active atoms. Thus the Po values for even I
represent stable steady states for the field; stimulated
emission gain compensates for the losses. On the other
hand for odd 1 ( 1,3, . . . ) the Bloch vectors BJ
(j = 1,2, . . . ) are first rotated upward to u = v =0, w )0
(i.e., to p,', =0) and the laser intensity is decreased due to
absorption. No steady state other than zero for the field
is possible in this case. The stable steady-state values
(even l) coincide with the values found in the fully quan-
tized treatment in Eq. (4.22). Since for these values the
Bloch vectors BJ are rotated downwards, independent of
the relationship between p„and p„, no inversion is
necessary to have positive gain in the two-photon CEL.
This again supports the conclusion reached in conjunc-
tion with Eq. (4.23). Also classically, if two harmonic os-
cillators with phases P, and P2 are coupled, then the first
osciHator gains energy from the second one if
ir & P&

—
/& &2m and the second oscillator gains energy if

0&/, —$2&sr. In our case the atomic oscillator has
phase 8 and the laser oscillator has plane 2i))o, and indeed,
there is gain for the laser if 0—2go=,'~ and for the
atoms if 8 —2go= —,

'm. .
It is interesting to compare our two-level —two-photon

CEL model with a very similar model of the degenerate
parametric oscillator investigated by Milburn and
Walls. In our case the two-photon transition is driven
by atoms injected into the cavity in a coherent superposi-
tion of the levels involved in the lasing transition. In Ref.
33, however, the transition is driven by a coherent exter-
nal field with amplitude c. (but the noise is treated quan-
tum mechanically). In their paper an eff'ective phenome-
nological Hamiltonian based on a nonlinear second-order
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susceptibility y ()0) is used and the resulting Fokker-
Planck equation for the field generated in the degenerate
parametric oscillator is very similar to ours. Since their
model is, strictly speaking, valid only below threshold the
net gain is negative and also depletion of the pump field is
neglected. Treating @ and 6" no longer as complex con-
jugate to each other and keeping terms up to g (i.e.,
dropping saturation terms), our Fokker-Planck equation
(A5) is reduced to a linear Fokker-Planck equation in the
generalized (complex) P representation. Comparing
this equation with the Fokker-Planck equation (3) of Ref.
33, we find that the two Fokker-Planck equations are ex-
actly the same if we identify the following correspon-
dences (assuming to„=2v =2Q ):

(6.8)

where y; are the cavity damping rates for the signal
(i =1) and pump (i =2) modes used in Ref. 33. On the
other hand, it is precisely those saturation terms that
render our equation valid above threshold and lead to the
possibility of squeezing in the above threshold region.

Before summarizing our results in this paper, we point
out that in the deviation of our master equation for the
reduced-field-density operator, Eq. (2.17), we introduced
the coarse-grained-time-rate approximation as discussed
after Eq. (2.15). If, instead, we carry out a more ela-
borate analysis (e.g. , using the projection operator tech-
nique to eliminate atomic variables) we find extra terms
in Eq. (2.17) which contain p„. While they reduce the
fiuctuations in the amplitude quadrature of the laser field
(e.g., in a linear theory of a coherently pumped one-
photon laser ), these coherence-square terms do not
affect the variance in the phase quadrature nor the
amplitude- and phase-drift coe5cients. Our main con-
clusions (concerning the phase noise) in this paper remain
unchanged when these additional terms are included.

In summary, we have developed a quantum theory of
the two-photon correlated-spontaneous-emission laser.
As compared to standard treatments of the two-photon
laser, ' '" the new ingredient in our approach is the in-
clusion of the possibility that active atoms enter in the in-
teraction region in a coherent superposition of the levels
involved in the lasing transition. The standard treat-
ments deal only with incoherent pumping, with no atom-
ic coherence between the lasing levels. As a consequence,
the possibility of generating squeezed states of light in an
incoherently pumped two-photon laser has been ruled
out. "' We show here that it is precisely the injected
atomic coherence that leads to phase locking, quantum-
noise quieting, and even squeezing of the quantum noise
in the phase quadrature in our treatment.

Starting from a frequently used effective Hamiltonian,
the so-called two-level —two-photon laser model, we first
derive (Sec. II) the master equation for the reduced-field-

density operator of the two-photon CEL using the ap-
propriate generalization of the Scully-Lamb theory to
include the effect of atomic coherence into the laser
operation. In the next step we convert this nonlinear
master equation into a Fokker-Planck equation using
both the antinormal-ordering Q representation (Sec. III)
and the Glauber-Sudarshan (normal-ordering) P repre-
sentation (Appendix A) for the density operator. Both
the Q and P representations give the same drift
coefficients (to leading order) but diff'erent diffusion
coeScients. Steady-state laser operation is studied by us-

ing the drift coeScients of the laser intensity and phase in
Sec. IV. As compared to the ordinary two-photon laser
(i.e., the one without the injected atomic coherence) the
difference are the following: (1) the phase locks to one of
the stable values given by Eq. (4.22}; (2} due to an extra
two-photon CEL gain at the locking points, there is no
need for triggering when linear gain 4ISP„I)y. The
noise properties of the two-photon CEL are investigated
by using the Q function. By linearizing the Fokker-
Planck equation (3.13) around the steady-state locking
points, we obtain the steady-state quasidistribution
Q2(I, Q) and find the phase variance in the steady state.
Under the conditions of Eq. (4.33) the noise in the phase
variable is squeezed and asymptotically approaches one
half of the corresponding value for a coherent state with
the same mean photon number (50%o squeezing). In Sec.
V we investigate the squeezing properties of the system
further, in a more rigorous manner. Using Hermitian-
quadrature operators a

&
and a2 of the field we obtain an

approximate steady-state quasidistribution Q ( 6 „6'2),
which consists of two elliptically shaped Gaussian peaks
located at B,=k+no, 82=0, and find that the percen-
tage of squeezing in the a2 quadrature is the same as that
in the laser phase. In the case of stable phase locking, the
a2 quadrature plays a role analogous to that of the phase.
We also calculate the minimum noise in the a2 quadra-
ture at any given mean photon number no and find that
there is no squeezing in the a z quadrature when
no&va/2p. A maximum of 50%%uo squeezing is found
again when 1 «no « v'a/pIp„I. We stress that a prop-
er form of the initial atomic coherence [see Eq. (2.16)] is
vital to such laser-phase locking and the squeezing of
1aser-phase noise. To achieve this goal all injected atoms—i2vt
should satisfy the relation p,', ( tt ) =p„e ', where p„
is the same for all atoms (v is the laser frequency and t is.
the injection time of the jth atom), so that all injected
atoms have the same phase with respect to the instan-
taneous total laser phase (i.e., including the frequency
part 2vt).

As a by-product of the study on the two-photon CEL,
we also investigate an ordinary two-photon laser and ob-
tain a steady-state mean photon number, laser frequency
pulling relation, laser natural linewidth, and photon-
number variance.
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APPENDIX A: FOKKER-PLANCK EQUATION
IN THE GLAUBER-SUDARSHAN

P REPRESENTATION

We convert the master equation (2.17) for the
reduced-field-density operator p into a Fokker-Planck
equation for the Glauber-Sudarshan P representation' of
the density operator p in this appendix. Expanding the
field operator p in terms of the diagonal P representation,

one finds the expansion for the field-density-matrix ele-
ments,

2@n ge mp„=Jd BP(6', N*, t)e
n!m!

(Al)

Assuming that the mean photon number no of the two-
photon CEL is much larger than 1, we can neglect 1 com-
pared to IA I

and obtain the following equation of motion
for P(D, @*,t):

ap(e, e*,t) . a, 1 a'
aD 2 ag'

—a(p„—p„) (1 —i5) @Al —— 6 +c c.

2
1 a2—

—,'(1+5 )/3(p„+p„) DIDI —— 6 —c.c. +4ap„ lb I

.M(A', 6'*, t)-~war*

a' . /3(1 +i5)
, „,, „ a' Pac ~@ A@2 ~" 4a ar

2

(8*)'—6
a

2

2

+c.c. M(6, 6*,t)

+— 6'+ 6* P(6, 6'*,t)+i (0—v) e — 6* P(A', 6'*,t),
aw ac* ' ' '

aa (A2)

with

1+—I@I —— W el —— C*+c.c./3 g /3 a ~ 1 a'
a a BD 2 BD

+ / ('+' '
2

' glgl2-
16u

2 —1a'
, 6' —c.c. P ( 6, @*,t ) .aa' (A3)

Equation (A2) contains derivatives of all orders in 6 and 8* due to the presence of the inverse operator in M(6, 6'', t).
Upon the expansion of M(6, 6*,t) up to first order in the derivaties we obtain

p a a
1+ I@I /3/a a(1+ I@I p/a) a& a@* 1+ I@I /3/a

(A4)

Substituting Eq. (A4) into Eq. (A2), keeping terms up to second order in the derivatives, and neglecting 1 compared to
8 I, we arrive at the Fokker-Planck equation in the P representation

d + D + D + . . P(N 6* )at a@ ' a@ac* '*' aa'

where the drift and diffusion coefficients in the P representation are

d = [aA' Al [(p„—p„)(1—i5) 2i (gp„h—' +c.c. )/I ] 2iSp„@*I/(—1+ I@ /3/a) —
—,'yA'+i (v —Q)6',

(A5)

(A6)

P 2p„+ ( 1+5 )(p„+p„) —(igp„6 +c.c. ) /I/3I ~l'
2(x1+

I
@I'P/a

/3lb'I (p„—p„)+(iS*p„h +c.c. )Ic I /3/a

(1+
I
Cl'/3/a)'

~ [ —,'a& [(p„—p„)(1—i5) —(2igp„A +c.c. )/I ] iSp„I—1 —I&I'/3/a
(1+ 6' /3/a)

P(1+5')(p,.+p„)l@ 8'
2(1+ l~l'/3/a)

(A7a)

(A7b)
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Rewriting the Fokker-Planck equation (A5) in terms of intensity and phase variables, I and P, through the relation
6 =&re'~, one has

d — d + D + D +2 D P(I Q )
ar ar '

ay ~ ar~ " ay»~ aray
(A8)

where the drift and diff'usion coefficients for the intensity and phase are readily found by using Eqs. (3.14), (3.15), (A6),
and (A7) and g *p„=ig 'p„ ie',
d =(G —y )I,
d& =v —fl —Iar(p„p„)—5+2ISp„i[cos(0—2P —arctan5)+(1+5 )' (I Pja) cos(0 —2$)]I l(1+I Pja),

(A9a)

(A9b)

aI
1+I Pja

2aI (p„—p„)+4
I

Sp„sin�(

0—2$ —arctan5 )
G 1+I Pja

4(p„—p„) 2
I Sp„ I

I ( 1 —3I pja )
+p +3p +1+I P/a (1+I 13/a)

sin(0 —2P —arctan5),

(A9c)

(A10a)

Isp., I

[( 1 I P/a ) c—os( 0—2P —arctan5 )(1+I 13/a)
D P

IP

+2+1+5 (I P/a) cos(0 —2P)] .

D~~ = [p„—p„—2(p„+p„)5 ]+—,'a(1+5 )(p„+p„)4(1+I Pja)
Isp., I

[sin(0 —2P —arct an5)+2+1 +5(I Pja) sin(0 —2P)],2I(1+I Pja)
aI (p„—p„)(1 I P la —)5

2(1+I Pja)

(A lob)

(A10c)

4ano(p„+p„)+y
D~~(no) =

8no
(Al 1)

Using the Fokker-Planck equation (A8), one can calcu-
late the steady-state photon-number variance once
again. The result is the same as that in Eq. (4.17).

APPENDIX B: COMPARISON WITH REF. 18
AND DYNAMIC STARK SHIFT

%'e make comparison of the present work with Ref. 18
in the region where both are valid. The present nonlinear
theory of the two-photon CEL is developed by using the
eff'ective atom-field interaction Hamiltonian (2.8) for a
two-photon transition, which is valid when the intermedi-
ate level b is far off resonance with one-photon transition.
On the other hand, the linear theory of Ref. 18 was de-
rived from an exact interaction Hamiltonian of a cascade
three-level atom interacting with a single-mode laser
field. Consequently the comparison should be made in
the regime of linear theory and large one-photon detun-
ings. We consider the actual two-photon resonant transi-
tion, 5=co„—2v=0, in the following comparison.

The linear theory of the two-level —two-photon CEL

When b, =O, comparison of Eqs. (A10) with Eqs. (3.19}
shows that Dll+Dzz and D&&+D&& are independent of
ip., i, y, and Dip+Dr'y =0

The corresponding equations for an incoherently
pumped two-photon laser can be obtained from the above
equations by setting p„=p,*, =O in Eqs. (A2), (A6a),
(A7), (A9), and (A10). At the stable locking point I =no
given by Eq. (4.10), one finds from Eq. (A10b), G =4Sip„ isin(0 —2P),

d& =v —0 —2sip„ icos(8 —2p),

D,I =[y —2Sip„isin(0 —2$)]I,
D&&

= [y+ 2Sip„ I sin(0 —2P ) ]l4I,
Dl&=sip„icos(0 —2P) .

(8 la)

(8 lb)

(82a)

(82b)

(82c}

Here S =r,g/1, g real, and 0=argp„. From Eq. (4.33)
one finds the steady-state phase variance by using Eqs.
(Bib) and (82b)

((&p)') =
4n0 4isp

1
1

8no
(83)

since G(go) =4ISp„i =y.
The above expressions are valid when Eq. (2.8) is valid

and
I
b, , I

» r, i.e.,

Ib, , I »g, +n„r, (84)

where 6
&

=co,b
—v = v —cob, is the one-photon detuning

of the intermediate level b, and g, is the atom-field cou-
pling constants for the a band b ctransi-tions (tak-en to
be the same).

may be obtained by expanding the drift and diffusion
coefficients in the present nonlinear theory in terms of the
coupling constant g and dropping terms containing g"
(n &2). From Eqs. (3.17) and (3.19) one finds that the
drift and diffusion coefficients for the intensity and phase
reduce to the following expression in the linear theory of
the two-level —two-photon CEL:
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The drift and diff'usion coefBcients given by the linear
theory of Ref. 18 take the following form in the limit

~
b, , ~

&& I (in the notation of this paper):

G =4(r.g', /b, I )lP., l
»n(~ —2tt ), (Bsa)

d
&
=v —fI —( r, g, /5, I ) —2( r, g, /b. , I )

~ p„~ cos( 9—2P ),

(B5b)

De~
= —(2I) '(r, g ~

/b, , I ) ~P„~ sin(0 —2P) .

These expression lead to ((b,P) ) =(8no) ' if one insists
on calculating the phase variance in the Glauber-

Sudarshan P representation, in agreement with Eq. (B3).
Comparison of Eqs. (Bl) with (B5) shows that (I) the

two sets of drift coefficients agree with each other if we
identify the effective coupling constant g by

(B7)

and (2) the elf ective interaction Hamiltonian V, in Eq.
(2.8) does not include a dynamic Stark shift. When the
dynamic Stark shift is included, one should set the
cavity-mode frequency 0=—,'co„—S in order to achieve
an actual resonant two-photon transition (i.e., co„=2v)
in a two-photon laser device.
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