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The nucleus is represented as a Kerr-Newman source, under the assumption that the angular
momentum of the source is equal to the intrinsic spin angular momentum of the nucleus. The
theoretical values of the hyperfine splitting obtained from a solution of Dirac's equation for this
model of the muon, the positron, and the proton agree with the observed values in muonium, posi-
tronium, and hydrogen, to within the uncertainty in the respective QED corrections —except for an

unaccounted factor of 2. In hydrogen one also has to introduce the observed value of the magnetic
moment of the proton. The singularity in Dirac's radial differential equations is shifted from the
origin, where it is located in the case of Oat space, to a pair of conjugate points on the imaginary
axis of the radial coordinate. Consequently, the energy eigenvalues have a trace of an imaginary
part, making the bound states of our model unstable.

I. INTRODUCTION

The Kerr'-Newman metric is a solution of the coupled
Einstein-Maxwell field equations for a source possessing
mass, charge, and an intrinsic angular momentum. In
this paper we wish to explore the consequences of treat-
ing the atomic nucleus as a Kerr-Newman source under
the assumption that the angular momentum of the
source is to be identified with the intrinsic spin angular
momentum I&A of the nucleus. The hyperfine splitting
(HFS) was chosen for study, because in Kerr-Newman
geometry, the magnetic quantum number m appears ex-
plicitly in Dirac s radial differential equations, in contrast
to the HFS degeneracy in flat space. Besides the mass
and charge, there appears in the Kerr-Newman metric a
third parameter a, having the dimensions of a length. a is
a measure of the scale of the spatial distribution of the
electromagnetic field inside the source. By studying the
asymptotic form of the metric and of the electromagnetic
field at large distances from source, one deduces that the
angular momentum J and the magnetic dipole moment
p~ of the source are given by

J=am~c

pg) eZa

Here, we have already used the mass m~ of the nucleus
and its charge eZ. Putting now, in accordance with our
basic assumption,

For the proton, muon, and positron, with Iz= —,', a, as
given in (4), is equal to —,

' the Compton wavelength of the
nucleus. Using (4) in (2), we get

eZA
2m e

This relation fits the muon with a gyromagnetic ratio
equal to 2, except, of course, for the magnetic anomaly,
for which we have to invoke QED. Now, our results on
the HFS in muonium agree with the experimental values
to within 0.94 ppm, except for a missing factor of 2. In
the case of positronium, our theoretical value of the HFS
agrees with the observed value to within 68 ppm, corn-
pared to the deviation of current theory of 66 ppm.

The proton's magnetic moment is, of course, not equal
to 1 nuclear magneton, as would follow from Eq. (5), but
is greater by a factor of 2.79. If we apply this factor of
2.79 to our theoretical values of the HFS in the ground
state of hydrogen, in addition to the factor of 2 appearing
in the case of muonium and positronium, we obtain
agreement with the experimental value to within the un-
certainty in the QED corrections which we had to apply,
namely, to within 2.6 ppm. In the ground state of hydro-
gen, the experimental HFS value is known (1984) to the
fantastic accuracy of 6 X 10 ppm, a target which theory
is not likely to reach before the turn of the century.

J =I~A,

we obtain for the constant a the following expression:

m~c

(3)

(4)

II. DIRAC'S EQUATION
IN KERR-NEWMAN GEOMETRY

Dirac's equation in Kerr geometry was separated by
Chandrasekhar, and the separation was then extended to
Kerr-Newman geometry by Page. Using Boyer-
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Lindquist coordinates, and on omitting a common exter-
nal factor of exp[im y —(iEt /fi)], Chandrasekhar
showed that the four components of the Dirac spinor,
which he denotes by F„F2 and G, , Gz, can be separated
into the forms

( 1+x2) k( 1+x2)1/2FdF
dx

+[—toe(1+x ) —aZx+m

+cox(1+x )'~2]G, (9)

R (r)S (0)
Fi = . , F2=R+i&2(r)S(m —0),

(r ia—cosH
(6) (1+x ) = —k(1+x )' G

dG
dx

R (r)S(m —0)
Gi R+in(r)S(0), G2= r+ia cosH

(7)

R (r)=[F(r)+iG(r)],
R+ i&2(r) =U'[2lb (r)][F (r) iG (r—)],

where the functions R (r) and R+ i&2 obey a pair of simul-
taneous first-order ordinary linear differential equations
with complex coe%cients. It was shown by Pekeris that,
on writing

+[co@(1+x )+aZx —m

+cox(1+x )' ]F .

Here, m is the magnetic quantum number,

r =ax,
E me

co =I~
m, c m~

and, to a high degree of approximation,

(10)

where b, is given in Eq. (13) below, Chandrasekhar's com-
plex equations can be transformed into simultaneous real
equations for the functions F and G, which in the context
of the nuclear source take on the form

b. =a (1+x ) . (13)

The constant k is an eigenvalue of S(0), which obeys
the (real) differential equation

1 d . dS cu sinO dS
sinO + + (

&
+Q)EcosH)

sinH d 0 d 0 (k +co cosH) d 0

2
m —

—,
' cosO

sinO 4 +26)Em co E

+ ( —,
' cosH+coe sin 0—m) —co cos 0+k S=0 .

( k +co cosH )
(14)

The parameters e and k are thus two coupled eigenvalues which are to be determined from the boundary conditions
obeyed by the solutions of Eqs. (9), (10), and (14).

For large values of r (r ))a, x ))1), Eqs. (9) and (10) reduce to Dirac's radial equations in flat space

F+ E+ —E G =0,
dr r Ac r

(15)

+ G — E+ +Eo F =0,
dr r itic r (16)

where Eo=m, c, and

ko= —(j+—,'), j=i+—,
'

k o
= + (j + —,

' ), j= I —
—,
'

(17)

III. NORMALIZATION CONDITION

We take as the normalization condition

I= F, +F2 + G, + Gq dV=1,

where d V denotes the spatial volume element. In Boyer-Lindquist coordinates,

dV=(r +a cos 0)dr sinHdHdg,

(19)

(&0)

and the normalization integral becomes, in view of (6), (7), and (13),
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I=2vr f dr f sin8d8IR (r)I [S (8)+S (m—' 8)]
0 0

+2m f dr f sin8d8 —IR(r)I [S (8)+S (vr 8)]—(r +a cos8)
0 0

=4vra f dx f sin8d8IR(x)I S (8)+8rra f dx f sin8d8
z0 0 0 0 1+x

(21)

The normalization condition (21) requires that S (8) be integrable in the range 0 (8& n, an«hat IR I' be in«grable
in the range 0(x & co. The angular function S(8) is not symmetrical with respect to the equatorial plane. The singu-
lar points of the second-order differential Eq. (14) are 8=0 and 8=m. . At each of these singular points, one of the two
independent solutions is not square-integrable, and is rejected on that account. Taking the square-integrable solutions
at each end of the range, we integrate (by power-series expansions) until the midpoint at 8=m/2, where we match the
ogarithmic derivatives of the solutions. This matching condition yields the eigenvalue k, for given values of e and m.

The situation is radically more complicated in the case of the radial function R (x) which, equivalently to Eqs. (9) and
(10), obeys the second-order differential equation

dR dR

dx dx
ice(1+x )dR y ix—y . . Z+ ~X z z i2 R ()—2i coax —i aZ+ N x k
(k +ibex) dx (1+x~) (k +ibex )

(22)

where

y=[ —co@(1+x )+m —azx] . (23)

The square-integrability condition can be satisfied only
for the positive value of v. In the case of Eq. (22), on the
other hand, the roots of the indicial equation at x =0 are

v=0, 1, (25)

and both independent solutions are square-integrable in
the range 0 & x ( ~. Indeed, x =0 is not a singular point
of the differential equation (22). This equation has only
one singularity on the positive real axis, namely, at
x = ~. The physical implication of this result is that we
have no eigenvalue problem for e.

One way out of the difficulty is to ask, where does a
second singularity of the differential equation (22) occur?
It is located at the points

&+x =0, x =+i . (26)

Indeed, the points r =+ia are what the points r+ and r
of black-hole theory reduce to in the nuclear context.
While it was welcome at first to find that in the nuclear
context the function b, (r) does not vanish in real space,
we are now forced to look for the singularities of b, (r), in
order to regain our eigenvalue problem.

It follows that the range of integration of Eqs. (21) and
(22) has to be extended by adding the segment x =i ~0,
or the segment x = —i ~0. The choice between the two
segments is made by the requirement that the path of in-
tegration must terminate at a singular point, so as to al-

Now, in Hat space, the solutions of Dirac's equations
(15) and (16) near the point r =0 are of the form
r'g„" +„r",r" g„" OG„r", where

(24)

low us to pick only one of the two independent solutions
at that point. For example, in the case of m = + —,

' (paral-
lel alignment of the spins of the electron and nucleus), the
point x = +i is singular, while at the point x = —i both
independent solutions are square-integrable over the
singularity of (1+x )

' in the last integral of Eq. (21).
Hence, we start with x =+i For .m = —

—,
' (antiparallel

alignment), the opposite is true, and we start with
x = —i. As a result, the eigenvalues e and k are slightly
complex. The fact that the Dirac Hamiltonian in Kerr-
Newman geometry is Hermitian when the independent
variables are real does not guarantee Hermiticity when
one of the independent variables becomes complex.

The procedure which we followed in solving for the ra-
dial function R (x) was first to integrate backwards from
x = ~ to some value x0 for which the asymptotic series
given in Eqs. (A13) and (A14) converge to the preset nu-
merical accuracy. As shown in Eqs. (A4) and (A8), the
asymptotic solutions for F and G depend only on the sin-
gle arbitrary constant A appearing in Eq. (A4). From
x =xo to x =0, the solution of Eqs. (A2) and (A3) is ob-
tained by numerical integration, using an algorithm
which ensures uniform maintenance of the preset accura-
cy. Denoting the values of F and G at the point x =0 by
Fo and Go, we can use Eqs. (9) and (10) to evaluate the
derivatives (dF/dx)o and (dG/dx)o in terms of Fo and
Go. With Ro=(FO+iGo), the ratio (1/Ro)(dR /dx)o is
then independent of the arbitrary constant A. Similarly,
the value of (1/Ro)(dR /dx)o obtained from the solution
originating on the imaginary axis of x is independent of
the single arbitrary constant of that solution. The match-
ing of the two logarithmic derivates of R at x =0 yields
the eigenvalue e, for given values of k and m.

The solution of Eq. (14) for the angular function S(8),
and therewith for the eigenvalue k, is obtained either
directly by the use of the expansion of k in powers of co

given in Appendix C, or by using the matching condition
(D18).
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IV. HYPERFINE SPLITTING

EF= —", (aZ) Ry,2 PN

Po
(27)

and the theoretical HFS values are usually given in the
form

~HFS EF( 1 +~N )MRN (28)

Here, pN denotes the nuclear magnetic moment, and po is
the Bohr magneton. MRN is the reduced mass correction
which, in the case of HFS, is given by'

3

MRN mN+m,
(29)

The term 6N includes the Breit relativistic correction, "
the electron anomaly a„and various QED radiative
corrections RQED which are specific to HFS,

(I+AN)=(i+a, +R&ED+ —,'a Z ) . (30)

Current theory of hyperfine splitting in hydrogenic
atoms is based on the Fermi formula, which was derived
by a perturbation calculation. For the ground state, the
Fermi formula gives

~HFS N A ~(~)N

CN=(I N/I D)MRN(1+SN ),
O'N =(5N —

—,'a Z ),

(34)

(35)

where the value of 5N is taken from the paper of Kinoshi-
ta and Sapirstein. This paper will be referred to in the
sequel as KS. The factor (pN/pD) is required, because
our model has a dipole magnetic moment of pD. We sub-
tract the Breit correction of —,'a Z from 5N, because our
method does not suffer from relativistic insuSciency.

V. MUONIUM

In the diff'erential equations (9) and (10) there appears,
besides the fine-structure constant a, a second parameter
cu defined in Eq. (12). We have used the values

A is, of course, equal to (m, c /2M). Our procedure was
to treat the value of a fundamental constant as if it were
accurate to the last figure, disregarding the stated uncer-
tainty, which for a is 0.8 ppm, for R is 0.076 ppm, and
for c is 0.0043 ppm.

Our theoretical values of the hyperfine splitting are ob-
tained from the formulas

Breit showed that, if' one uses the relativistic Dirac
theory, instead of the Pauli approximation used by
Fermi, then the Fermi formula has to be multiplied by a
factor of (I+—,'a Z ).

We determine the hyperfine splitting from the
difference of the energy eigenvalues e evaluated for
m=+2 and m=

BE=A A(e), b(e)=[E(m=+ —,') —e(m= —
—,')] .

Using the values of the fundamental constants given by
Aguilar-Benitez et al. ,

' we determine the constant
from the relation

—= 137.03604(11),1

me
CO

2 m P

Put

@=co+@

2 2
—1/2

CX Z
[(I;~—a~Z2)~~2+„—~k ~]2

206.768 331
=2.41816529X10 '

(36)

(37)

(38)

(39)

2=2E=m c e= R @=Ac.
a

(32)

A = 1.235 590 72 X 10' MHz . (33)

On multiplying R by c to obtain the Rydberg frequen-
cy, we get

eo denotes the Dirac energy eigenvalue in Hat space,
which is independent of the magnetic quantum number
m, and n is the principal quantum number. We tabulate
below only the deviation e', multiplied by the factor A

given in (33). We have, for the two states of muonium
with m = +—,

' and m = —
—,',

+ —'
1

2

(1128.4118—i 2. 9 X 10 ') MHz
( —1131.1533—i3.0x10 ') MHz

—0.997 581 877 6—i 3.S x1O-"
—1.002418 1224+ i4.o x1o-"

Disregarding, in the first instance, the imaginary parts,
we have

magnetic anomaly,

A 5(e)=2259.5651 MHz . (40) (p„ /pD ) = 1.001 165 911 . (41)

To obtain the HFS, we have to evaluate the constant C„
defined in Eq. (34). (p„+/pD) is simply 1 plus the muon

From the value of (m /m, ) given in (37), we obtain, by
(29), the reduced-mass correction for the muon,
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MR p
=0.985 630 226 . (42)

(1+5„')=1.000 877 73 .

By (34), (41), and (42), we have

(43)

From the tabulated values of the various terms in 6„
given in KS, and on using Eq. (35), we obtain

TABLE I. Hyperfine splitting in hydrogen. Here
A =1.23559072X10'4 MHz, 2C~=5. 58226706, b, (E)=[@(m
=+

z ) —e(m = —
—,
' )], e=Eo+e',

' —1!2
CX Z

[(ko —a'Z')' '+n —~ko~]'

and E =~ec
2C„=1.975 29102 . (44)

b,H„s=2C„A b, (e)„=4463.2987 MHz, (45)

compared with the experimental value of 4463.302 88(16)
MHz. ' The agreement between the two values is within
0.94 ppm. The uncertainty in a is 0.8 ppm, in m, is 2.7
ppm, and in m„ is 2.7 ppm. The theoretical value for
HFS in muonium given in KS is 4463.3047(1.7)(1.0). But
for the factor of 2, our theoretical value is of the same or-
der of uncertainty.

The factor of 2 is needed in order to make the theoretical
value of HFS agree with the observed value. With this,
as yet unexplained, factor of 2, the theoretical value of
the hyperfine splitting in muonium comes out,

State m

1S]y2
1

2

2S]y2
1

2

2~1/2
1

2

A e' (MHz)

127.206 99
—127.241 78

2' A A(e)p
(MH )

710.103 39
—710.297 60

15.901 40
—15.905 75

88.7659
—88.7901

A A(e) 31.807 15 HFS 177.5560

5.301 07
—5.301 23

29.5920
—29.5929

A A(e) 10.602 30 HFS 59.1849

A A(e) 254.448 77 HFS 1420.4010

Mean (MHz)

—0.194 21

—0.0242

—0.0007

VI. HYDROGEN

In the case of hydrogen we have

m,
COp—

2 mp 1836. 151 52(70)

(46)

(pp lpD ) =2.792 845 6(11), (M~p ) =0.998 367 926 .

Using the value of 5p given in KS; we obtain

( 1+6p ) = 1.001 021 452 .

Hence

2Cp: 5.582 267 06

(47)

(48)

(49)

In Table I we give results for the hyperfine splitting in
the 1S»„2S»„and 2P»~ states of hydrogen. Our
theoretical value for the HFS in the ground state is
1420.4020 MHz, compared with the experimental value'
of 1420.405 751 766 7(9) MHz. Except for the unex-
plained factor of 2, the agreement is within 2.6 ppm. The
theoretical value given in KS deviates from the experi-
mental value by 0.002 308(1278) MHz, i.e., by 1.6 ppm.
The 6p in KS contains also a term of —0.046 MHz stem-
ming from the "static proton structure" effect on HFS.

We wish now to check whether our levels for the 2S»z
and 2P»z states in hydrogen do not conflict with the
measurements of the (2S»z —2P«z) split in the Lamb
shift experiments. In Table I we have used for these

m,
CO =0.5,m+

e

1crfR ps 8

((u, ~ /pD ) = 1.001 159 652 2 .

(50)

The results for the singlet and triplet states of positroni-
um are

states the same value of Cp as for the ground state, even
though there are indications of a slight state dependence.
On the assumption that in the Lamb shift experiments,
the two polarizations with m =+—,

' and m = —
—,
' oc-

curred in equal proportions, the 2S»z and 2P»z levels
would be represented by the values labeled "mean" in
Table I. The difference of the mean values is equal to
0.0235 MHz. This is only 2.6 times greater than the un-
certainty of the experimental value' of 1057.845(9) quot-
ed by Kinoshita and Sapirstein in their comparison of
theory with experiment. The theory is uncertain by 0.018
MHz because of a recently reported jump of 14% in the
measured value of the root-mean-square electromagnet-16

ic radius of the proton. Hence our results do not conflict
with the Lamb shift measurements in hydrogen. Note
that the HFS values for 2S»z and 2P»z states are close
to —,

' and —,'4, respectively, of the HFS value in the 1S»z
state, as in the Fermi theory.

VII. POSITRONIUM
In positronium, the mass of the nucleus is equal to the

mass of the electron, so that we have from (12) and (29)

State

1S
1S

+ —,
'

1

2

A e' (MHz)

175 131.11—i 832.91
—292 138.96—i 1745.53

—0.500008 8749 —i 2.25 X 10
—1.499 991 123 9+i 4.71 X 10
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Here, we have used the previous notation of m =+—,
'

for the triplet state and m = —
—,
' for the singlet state,

which refer to the value of m, of the electron only, in-

stead of the usual total spin designation of m =1 and
m =0, respectively. Disregarding, again in the first in-
stance, the imaginary part of e', we have

A b, (e') =467 270.07 MHz . (51)

In the case of positronium, there exists an annihilation
channel which makes a contribution to the HFS amount-
ing to some —,

' of the HFS stemming from nonannihilation

origins. ' Our results relate only to the latter part, for
which we get the value '

( 1+5' ~ ) =0.997 621 500 . (52)

Substituting the values given in Eqs. (50), (51), and (52)
into Eq. (34), we get

2C + =0.249694 598 5,
2C + A b, (e') = 116674. 81 MHz .

(53)

Adding the value of the contribution to HFS arising from
the annihilation channel, ' namely, 86728. 19 MHz, we
obtain a total of 203 403.00 MHz, compared with the ob-
served value' of 203 389.10(74) MHz. Our theoretical
value exceeds the experimental value by 13.9 MHz, corn-
pared to the excess of 13.4 MHz given in KS.

Let

VIII. STABILITY

e=e„—ie;, E =m, c (e„ie;) . —2 (54)

The imaginary term in Eq. (54) gives rise to a factor of
e ' ' stemming from the expression exp[ i (Et—/A')],
with

2m, c e,
In muonium,

g. =2 3X]0

1.288 X 10 "
Ei

sec

~=5.5X10 sec .

(55)

(56)

Now, the mean life of the muon is 2. 19709X10 sec.
Hence, in the muonium atom, the electron can stay
bound with the muon for the life of the host. We con-
clude that, except for the missing factor of 2, our model
of the muon as a Kerr-Newman source yields acceptable
values for the hyperfine splitting and for the lifetime of
muonium.

In the triplet state of positronium, e;=6.74X10
Using Eq. (55) with the numerator doubled because of the
reduced mass factor, we get a value of 3.8 X 10 ' sec for
~, which is much shorter than the observed value' of
1.418X10 sec. In the singlet state, e, =1.413X10
giving a value of ~=1.82X10 ' sec. This is of the same
order of magnitude as the observed value' of
1.25X10 ' sec.

In hydrogen,

e, =3.0X 10 ', v=4. 3 X 10 sec,

which is fatal.

IX. DISCUSSION

We set out to test the proposed model of the atomic
nucleus as a Kerr-Newman source by evaluating the
hyperfine splitting in hydrogenic atoms, and comparing
the theoretical values with observations. Such a theoreti-
cal evaluation of HFS was made possible by
Chandrasekhar's separation of the Dirac equation in
Kerr geometry. We found that, in order for this model of
the nucleus to bind the electron in a discrete spectrum,
the radial coordinate r in real space had to be extended
by adding a segment of the imaginary axis of r. As a
consequence of complexifying r, the resulting bound
states proved to be unstable. Except perhaps for muoni-
urn, the instability is fatal for the model.

The instability speaks against extending the real
domain into complex space. If we limit ourselves to real
values of r, then the Hamiltonian is Hermitian, the insta-
bility disappears, but, since the di6'erential equations are
not singular at r =0, we lose the eigenvalue feature. A
continuum of real eigenvalues is possible, depending on
the arbitrary ratio of the amplitudes of the two indepen-
dent solutions at r =0, each of which is square-
integrable. In an e6'ort to regain the boundary conditions
at r =0, we converted Eqs. (9) and (10) into Eulerian
equations of a variational problem, and applied natural
boundary conditions at r =0. The resulting HFS values
were not in agreement with observation.

The conclusion —that the proposed model of the atom-
ic nucleus as a Kerr-Newman source is unacceptable be-
cause its bound states are unstable, and because its HFS
values are oA'by a factor of 2—would be logical, were it
not for the fact that this missing factor is so close to 2, to
within some parts in a million. The theoretical HFS
values fit a source with a gyromagnetic ratio of 1 (as for a
classical particle), rather than 2. In an effort to clarify
this point, we have investigated ' the electromagnetic
field of the Kerr-Newman source, and found that the con-
clusion that this source has a gyromagnetic ratio of 2 is
inescapable. Externally, i.e., for r &&a, the electric field is
close to that of a positive point charge, and the magnetic
field approaches that of a positive magnetic dipole. How-
ever, the internal structure of the electromagnetic field of
the Kerr-Newman source turns out to be extremely corn-
plicated.

The electric charge is smeared out over a circular disc
as a surface charge. The disc is centered at the origin,
and lies in a plane normal to the angular momentum vec-
tor. Its radius is equal to the parameter a. For a net pos-
itive charge e, the surface-charge density is negative
throughout the interior of the disc, becoming infinitely
negative as the rim of the disc is approached. On the
rim, there is a positive line density of infinite intensity
which more than compensates the negative charge distri-
bution in the interior, leaving a net positive charge e.

The magnetic field is generated by current flowing in
the negative direction in the interior of the disc, thereby
generating a negative magnetic moment distribution
there. On the rim flows a positive current of infinite in-
tensity, which more than compensates the negative mag-
netic moments in the interior, and leaves a total integrat-
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ed magnetic moment equal to ea, corresponding to a
gyromagnetic ratio g =2. With the negative currents
flowing throughout the interior of the disc, it could be
that the theoretical HFS values reflect their presence.

Similarly, the instability may indicate that the electron
senses the presence of negative surface charges in the in-

terior of the disc. Indeed, inside a nearly spherical sur-
face of radius a, centered at the origin, the force exerted
by the nucleus on the electron ceases to be attractive, and
becomes repulsive, due to proximity to the negative sur-
face charges covering the equatorial phase.

APPENDIX A: ASYMPTOTIC EXPANSION
OF THE RADIAI. FUNCTION R ( r)

y=(1+x )' —x, O~y ~1, O~x & co (Al)

whereby the equations become

The coefficients in the differential equations (9) and (10)
can be rationalized by changing to the variable

(y +y )
—k(y+y )G+ (I+e)+aZ(y —y )

—(2m cue—)y ——(1 —e)y F=O4 dG 3 CO 3 CO

dg 2 2

(y +y ) +k (y +y )F+ (1 —e) —aZ(y —y )+(2m —cue)y ——(1+e)y G =0 .
dy

In the vicinity of y =0 (x = ~ ), the functions G and F behave like

G(y)= e -' ~y 'P(y), F=/Ie ~ y 'Q(y),A

r
(A4)

with P(y) and Q(y) regular. Here
I /2

r-
1+e

Q.)
( 1 2)1/2 aZE'

( 1 e2)1/2 (A5)

Substitution of (A4) in Eqs. (A2) and (A3) yields

(y +y ) +[((1+y ) —(r+k)(y+y )]P+r —(I+e)+aZ(y —y )
—(2m —cue)y ——(1—e)y Q =0

2 2
(A6)

(y +y ) +[((1+y )+( —r+k )(y +y ))Q+ ——(1—e) —aZ(y —
y )+(2m —toe)y ——(1+e)y P =0 .

r 2 2

Now, put

U=P+Q, V=P —Q,
CO 1

(2m —toe) =a., s =
( 1 2)1/2 '

( 1 2)1/2

and add Eq. (A6) to (A7), obtaining

(y +y ) + 2g —2-y+(g+egi~)y ——(1+e )y U+ — k+ —y — k ——y +illy —esy V=0 .4 dU 2 S 2 4 1 3

2 E E

(A7)

(A8)

(A9)

(A 10)

Subtraction of (A7) from (A6) yields

(y +y ) + —2' +(g—eili~)y + —(I+e )y V+ — k ——y —ilia — k+ —y +sey U=O .
E

(A 1 1)

From Eqs. (A10) and (Al 1) we obtain the following recursion relations for the coefficients in the expansions:

n=0 n=0
U(y) = g U„y", V(y) = g V„y", (A12)
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2$U„=[2~—(n —1)]U„,—(g+7JFK)U„2 —(n —3)U„3+—
( I+a )U„&+ k+ — V„, 7/KV„

'T+ k —— V, 3+sr V,
E

(A13)

n V„=(—(+equi~) V„,+[2~—(n —2)]V„~——(I+e ) V„3+ k —— U„+i'm U„,+ k+ — U„~—srU„
E'

(A14)

Here, Vo is arbitrary. On setting Vo = 1, Uo, U„, and V„ for n = 1,2, 3, . . . are uniquely determined.

APPENDIX B: SOLUTION OF THE DIFFERENTIAL EQUATION FOR THE RADIAL FUNCTION R ( r)

1. Power-series expansion of R (x) near x = +i

In Eq. (22), put

x =i(1—2y),

so that the points x =(i,0, i ) correspo—nd to the points y =(0,—,', 1). With

D = ( k —co+ 2coy ) =k + i coax,

Eq. (22) now reads

(81)

(82)

(y —y )
2

+ —,'(1 —2y) +——(2y —2y ) +[4coe(y —y ) —m+iaZ(1 —2y)]R
d R , dR co p dR 2

dy dy D

+Ik —co —a Z +roe[2m —1 —2i Za+(2+4i Za)y]+4' (1 —e )(y —y ))R

Let

1
[(m —iaZ)(m +1—iaZ) —2m (1 —2iaZ)y]R =0 .

(4y —4y )
1

&(y)=&(y)F(y), K(y)=y' '(1 —y)

(83)

(84)

where the exponents q and p, chosen so that R (y) does not become infinite, at y =0 and at y =1, respectively, are given
by

m &0
m(0

m +1—iaZ
—m +iczZ

m +icxZ
—m +1—iaZ

Writing

u = 1m + —,
'

I, v = Im —
—,
'

I, s =
fm/

(85)

we have

q=(u+ —,
' —iaZs), p =(v+ ,'+iaZs)—.

Equation (83) can now be written in the form

DLF+coMF =0,
where the differential operators L and M are deAned by

(86)

L = (y —y ) +[u +1—iaZs —(2+2~m ~)y] +(C 2coe aZ —2—iaZco—e)

+[co@(2+4iaZ)+4' (1—e )]y —4' (1 —e )y (88)
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and

M= —2(y —y )
—u —

—,'+iaZs —m +iaZ +(1+2~m ~+4rue —2iaZ)y —4coey~
dg

C= [k m——
( m', + —,

'
) +cue(1+2m)] .

(89)

(810)

The recursion relation for the coefficients F„ in the expansion F=g„" +„y"is

F„+]= [n (n +1+2 m )
—C+a Z +2coe+2iaZcue]F„

(n +1)(n +1+u —iaZs)

—[2me+4cu (1 —e )+4iaZcoe]F„,+4' (1 E )F—„

2' co

(k —cu)
" (k —co)

(811)

with

L„=(n +1)(n +1+u iaZ—s )F„+&+[C—2coe aZ——2iaZcoe n(n —+1+2 m )]F„

+[2coe+4co (1 —e )+4iaZ~e]F„, —4' (1—e )F„ (812)

M„= (
—2n —u —

—,
' —m +i aZs +i aZ )F„+( 2n —1+2

~
m

~
+4coe —2i aZ )F„& 4coeF„— (813)

2. Power-series expansion of R (x) near the point x = —i

We take as the independent variable z, defined by

z=l —y, x= —i(1 —2z),

so that the points x =( —i, O, i) correspond to the points z =(0, —,', 1). With

D =(k +co —2cuz),

Eq. (22) reads

(815)

d R
(z —z~) + —,'(1 —2z) + Ik~ —co~ —a~Z~+cge[(2m +1+2iaZ —(2+4iaZ)z]+4' (1 —e )z 4' (1 ——e )z IR

dz2 - dz

[p~ —p +2m (1—2iaZ)z]R +—(2z —2z ) -+[(—m —iaZ)+(4coe+2iaZ)z —4coez ]R =0 .
(4z —4z'-) D dz

(816)

Now, let

R (2) =K(2)F(z), K(z) =z (1 —z)

so that, for a given point x, K (z) is equal to K (y) defined in Eq. (84). Equation (816) then becomes

(z —z ) + [(u + 1+iaZs) —(2+ 2 m
~ )z]

d F dF
dz2 dz

+ I C —a Z +2iaZcoe+[ cue(2+4iaZ)+4' (1 ——e )]z —4' (1—e )z IF

(817)

Putting

+—[(2z —2z ) +[(U + —' —m +iaZs —iaZ) —(1+2~m
~

—4~@—2iaZ)z 4coez ]IF=0—. (818)
D dz 2

F= g F„z",
n =—0

the recursion relation for the coefficients F„becomes

(819)



39 HYPERFINE SPLITTING IN MUONIUM, POSITRONIUM, AND. . . 527

F„+,= [n (n +1+2~m ) —C+a Z —2iaZc&e)F„
1

n + 1 n + 1+v +iaZs

+ [roe( 2+ 4i a Z) —4' ( 1 e—)]F„,+4' ( 1 e—)F„2
2' CO

L„ M„(k+o)) " ' (k +co)
(B20)

where

L„=(n +1)(n + 1+v +iaZs)F„+, +[C —a Z +2iaZcue n(—n + I+2~mi )]F„

+[—roe(2+4iaZ)+4' (1 e}]F—„,—4' (1—e )F„

M„=(2n +u + —,
' —m +i aZs —i aZ}F„+(—2n + 1 —2im i+4cge+2iaZ)F„ i

4cue—F„

(B21)

(822)

The radius of convergence of the series of F(y) and F(z}
is 1. Hence, at the matching point, where the argument
is —,', the convergence is good.

APPENDIX C: EXPANSION OF k
IN POWERS OF co

Using standard perturbation theory in Eq. (14), k can
be expanded into a power series in co as follows.

1. m =+—,'. We have

k+ = 1 —
—,'(2e —1)co+A(e+ I ) co~

Here, k applies to the 1S,i2 and 2S, iz states and k+ to
the 2P] gz state. For hydrogen, with ~=2.723 086 8

X10, the power series in cu were found to agree with
the value obtained from the matching condition (Dlg}
below to within one part in 10' . Note that the expan-
sions for m = —

—,
' can be obtained from the expansions

for m =+—,
' by reversing the sign of co, a result that is to

be expected from physical considerations.

APPENDIX D: SOLUTION
OF THE DIFFERENTIAL EQUATION
FOR THE ANGULAR FUNCTION S ( 0)

+ „'„(e+I) (7e —2)co

+,„'„,(v+1) (13m —23)co + (C1)
Let

1. Power-series expansion of S (0) near 0=0

k = —1+
3
(2@+1)co—

—,', (e—1)~co

—„'„(e—1) (7E+2)io

—„'„,(e—1) (13e+23)co + (C2)

u=/m+ —,'/, u=/m —
—,'i .

In our case,

(D1)

2. m = —
—,'. We have

k+ =1+—,'(2e —1)co+ —,', (@+1}co

—„'„(e+1)(7e —2)co

+ 2 (@+1) (13m —23)co +3 4

10 935
(C3)

Put

mu+v=2imi, u —u=s, s=
im/

0
z =—'(1 —cosO) = sin

2 2

(D2)

(D3)

k = —1 —
—,
' (2@+1)co——,', (e—1) co

+ „'„(e—1) (7@+2)co

(e—1) (13e+23)co +
10 935

D =k+co cosO=(k +co) —2coz,

S(z) =re(z)F(z), Z(z) =z'"(1—z)"",
(C4) then Eq. (14) for S(0) becomes

(D4)

(z —z~) +[(1+v)—(2+2~m~)z] + (z —z ) +—(u
d~F dF 2' p dI'

dz D dz D

+ [ C+[—2coe+4co (1 —e )]z —4' (1 —e )z )F+—[(—' —m )+( —I +4roe)z —4cue'z ]F=0,
D

(D6)
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where

C=[k —~ —(lm l+ —,
'

) +cue(1+2m)] .

The recursion relation for the coe%cients F„ in the expansion

F(z) = g F„z"
n =0

(D8)

1s

F.+]= 1

(n +1)(n +1+v) [n (n +1+2lml) —C]F„+[2rve—4' (1 —e )]F„

+4' ( 1 —e )F„2+ L„&— M„
(k +co) " ' (k+ co)

(D9)

where

L„,=n(n +v)F„+[C—(n —1)(n +2lml)]F„&+[ 2cue+—4' (1—e )]F„2—4' (1 E)F„—

M„=(2n+v + —,
' —m )F„—(2n —1+2lml 4rve)F—„, 4cveF„—

Equation (D9) yields

(D10)

(D 1 1)

F)
1 C+ CO (v+ —,

' —m) Fo .
(1+v) (k +co)

(D12)

Note that in flat space (co =0) the recursion relation becomes

F„+,= [(n+ lml+ —,') —ko]F„, n =0, 1,2, . . . .
1

n +1 n +1+v (D13)

The boundary condition for the eigenvalue k is that (1 z)" F should —be finite at z =1, or, equivalently, that F(1)
should be finite.

2. Power-series expansion of S( 0 ) near 0=m

In terms of the variable y defined by

y= 1 —z= cos
0 OO

F(y)= g F„y",
2

O

(D 14)

the recursion relation (D9) is changed to

F.+i= 1
[n (n + 1+2l m

l )
—C +2rve]F„—[2coe+4rv (1 e)]F„—

n +1)(n +1+u

(D15)

where

L„&=n(n +u)F„+[C—2coe (n —1)(—n +2lm )]F„

+ [2coe.+4''(I e )]F„ z
—4~ —(1 'e }F„—

(D16)

M„=—(2n +u + —,'+m )F„

+ (2n —I +2
l
m I

+4~~ )F„—4coeF„2 . (D17)

Csiven e, m, and co, one computes F(z) up to z =
—,', say,

and also F(y) up to the same matching point y =
—,'. The

l

eigenvalue k is then determined from the matching con-
dition

1 dF 1 dF
F(z) dz, , &2

F(y) dy, zz

(D18)

Since the radius of convergence of the series expansions
for F(y) and F(z} is 1, these series converge well at the
matching point of —,

' .

In the case of positronium, with co = —,', the denomina-

tor (k +co) in Eq. (D9) becomes very small for m =+ —,',
and the expansion F(z) in Eq. (D8) fails. Instead of the

matching condition (D18), we have used in this case

(m =+—,') the series F(y) in (D14)—(D17), imposing the
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condition that at y =1, F(y) does not become infinite.
Starting with an initial value of k as given by the power
series in Eq. (C2), one finds that the coefficients F„at first
decrease rapidly, reaching a flat plateau where they are of

the same sign. The condition that the height of this pla-
teau vanish yields a rapidly converging value for k, which
turns out to differ from the initial value only in the 18th
decimal.
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