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Based on an envelope-function approach developed in a previous publication [de Sterke and Sipe,
Phys. Rev. A 38, 5149 (1988)], we give criteria for the experimental observation of gap solitons.
Moreover, the theory is extended in several respects —it is shown that in the limit of harmonic time
dependence, our treatment is equivalent to the effective-mass approximation in condensed-matter
physics. Further, we derive equations of motion for the fields under more general conditions than
before, including third-harmonic generation by the optical nonlinearity. By use of Hamiltonian
methods it is shown that third-harmonic generation in periodic structures has quite dift'erent prop-
erties than in homogeneous materials.

I. INTRQDUCTIQN

In a previous paper, ' to be referred herein as I, we
presented an envelope-function formalism to describe the
electrodynamics of nonlinear periodic structures. This
method allowed us to give a comprehensive analytic
description of phenomena which were previously ob-
served in computer experiments by Chen and Mills. '

Among these phenomena is the remarkable property
that, for certain values of the intensity, these nonlinear
periodic structures can be transparent to electromagnetic
radiation with a frequency falling within one of the stop
gaps. This is in sharp contrast to the properties of linear
periodic stacks, which reAect such radiation very strong-
ly. As a part of their computer experiments, Chen and
Mills ' also calculated the electric field profiles within
the stack, and showed that the envelope function of the
field can attain a hyperbolic secant shape. For this
reason, they introduced the term gap soliton to refer to
such field profiles. Our analysis in I showed that there is
indeed a soliton mechanism underlying the transmissivity
properties of the nonlinear periodic stacks, so that this
nomenclature is very appropriate. In our previous paper
our analysis was focused directly on a description of the
efI'ects observed by Chen and Mills. In the present paper,
we consider the matter in a broader perspective and also
study the limitations of the present approach more sys-
tematically.

The physical mechanism behind the remarkable
transmissivity properties of nonlinear periodic stacks can
be briefly explained. The incoming radiation is chosen to
have a frequency falling within one of the stop gaps of the
structure, but very close to one of the edges. In the linear
limit, only exponentially growing and decaying envelope
functions are possible and, for a finite stack, an exponen-
tially decaying envelope function results, leading to a
very low transmissivity. But if the intensity of the radia-
tion is high enough in a region inside the stack, the struc-
ture can be tuned locally out of the stop gap. In order to
accomplish this, the nonlinearity must have the appropri-

ate sign. Exponentially growing and decaying solutions
to the left and right of this region can then be connected
in the high-intensity region to form a self-consistent solu-
tion which is finite everywhere. A series of such high-
intensity regions, connected by qualitatively linearly
behaving regions where the envelope is first decaying ex-
ponentially from one high intensity and then rising to
meet another, can, of course, also occur. Our analysis in
I showed that the envelope function in this case is given
by one of the Jacobi elliptic functions. The periodicity of
these functions assures that the field itself is then period-
ic, which, in turn, implies that the stack is transparent if
this period fits an integer number of times in the stack
length. This behavior is illustrated in Fig. 1.

distance
FIG. 1. Solid line: modulus of the envelope function within

the nonlinear stack at a given wavelength and energy flow.
Dashed line: same, but in a simple linear stack. Notice that the
field at the back surface of the structure is fixed by the boundary
conditions. For stack length D2 the nonlinearity has negligible
influence. For length D~ the nonlinear stack is perfectly trans-
parent in contrast with its linear counterpart.
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In I we considered envelope functions which modulate
a Bloch function of the periodic structure. This ap-
proach, which is often used in condensed-matter physics,
differs from that used for most optical problems (e.g., for
distributed feedback lasers and corrugated waveguides ),
in which it is customary to describe the electromagnetic
field by envelope functions modulating forward-traveling
and backward-scattered waves. The treatment in terms
of Bloch functions, however, has appeared to be more
fruitful in the present problem. We found previously that
considering only a single Bloch function and its associat-
ed envelope function gives a good qualitative and quanti-
tative description of the computer experiments of Chen
and Mills. ' The reason for this is that, by choosing the
frequency of the incoming radiation to be very close to
one of the edges of a stop gap, as described in the previ-
ous paragraph, only the Bloch function associated with
that edge has to be included explicitly. In actual experi-
ments, for example, in optical fibers, the stop gaps may be
too small for such a treatment to be sufficient, so that the
Bloch functions associated with both edges of the stop
gap may have to be included. In the present paper we
derive equations appropriate to that situation. A similar
generalization also allows us to consider the possible use
of these nonlinear periodic structures for third-harmonic
generation.

Apart from generalizations of our previous treatment,
we also present some consequences of the theory. In the
present paper we show that, in the limit of harmonic time
dependence and tuning to a stop gap, our treatment gives
identical results as those following from a method which
is very similar to the well-understood effective-mass treat-
ment from condensed-matter physics. This result allows
us to better understand the approximations leading to our
envelope-function approach.

We further show that the equations for the envelope
functions can be derived from an effective Hamiltonian.
The physical interpretation of the conserved quantities in
this description gives additional insight into the proper-
ties of the nonlinear periodic structures. The equations
which we derived in I can be obtained from a two-
dimensional rotationally symmetric effective Hamiltoni-
an. The conservation of angular momentum in such
Hamiltonians corresponds then to the conservation of the
Poynting vector in the original physical problem. The
Hamiltonian itself has a less obvious interpretation, but
we show that the minimization of the action integral,
which directly leads to the Lagrangian formalism in clas-
sical mechanics, is equivalent to the minimization of the
time-averaged free energy associated with the elec-
tromagnetic radiation in the nonlinear periodic structure.
We demonstrate that the description of third-harmonic
generation can also be cast into a Hamiltonian form. In
this case, one has to consider an effective Harniltonian
describing two rotationally symmetric systems which,
through a nonlinear coupling, can exchange angular
momentum, corresponding to the exchange of energy be-
tween the fundamental and its third harmonic in the non-
linear stack. We next contrast this Hamiltonian with a
Hamiltonian from which the equations for third-
harmonic generation in a homogeneous slab can be de-

rived. The differences between these two suggest that
third-harmonic generation in these two environments ex-
hibit some very important differences. As an example of
this, we show that the phase-matching condition in the
periodic structures is less strict than in nonlinear homo-
geneous slabs. '

The organization of this paper is as follows. We first
give a brief overview of the most important equations we
derived in I. We also present various criteria for the va-
lidity of this treatment and for the experimental observa-
tion of the gap solitons. In Sec. III we then show that in
the limit of harmonic time dependence, our equations can
also be derived through a standard effective-mass treat-
ment. We then extend our analysis in Sec. IV to include
multiple Bloch functions explicitly. In Sec. V we present
the Hamiltonian description of some of the properties of
the nonlinear periodic stacks, and some of the results are
discussed in Sec. VI. Appendixes present details we re-
quire of the band structure in the Kogelnik approxima-
tion and some comments on the form of the electromag-
netic free energy we adopt.

II. OVERVIEW AND CONSEQUENCES
OF PREVIOUS RESULTS

a2= —4vry~ '(x) [E(x,t)]
at2

(2.1)

where c is the speed of light in vacuum, y' (x) is the non-
linear susceptibility, and e(x) is the periodic dielectric
function. The only restriction on g' '(x) is that it has the
same period as the dielectric function. The method of
multiple scales' is now used to derive an equation for the
envelope function only. In order to do so, different time
scales, t =p t (p «1, a=0, 1,2, . . . ), and length scales,
x =p x, are introduced, where xp is the length scale
over which the dielectric function is periodic and t p is the
fastest time scale in the problem, e.g., the inverse of the
carrier frequency. All new variables are subsequently
considered to be independent. Further, the electric field
is written in an asymptotic series E =pe, +p e2+
This expansion for the field, as well as the new time and
space variables, are introduced in the wave equation [Eq.
(2.1)], and terms with equal powers of p are collected.
The thus obtained equations are solved, starting with the
terms proportional to p, until the desired level of approx-
imation is obtained. Finally, then, the expansion parame-
ter p is set equal to unity.

In carrying out this procedure we have to make an an-
satz regarding the first term in the asymptotic series for
the electric field. The simplest such ansatz, and the one
used in I, is

In this section we provide an overview of the key re-
sults in I, and use them to establish the conditions neces-
sary to observe soliton effects in periodic dielectric stacks
with a Kerr-type nonlinearity. The analysis starts with
the wave equation for the electric field E (x, t), with a
driving term due to the Kerr nonlinearity

2
a' a2—c E(x, t)+e(x) E(x, t)

ax at2
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e, ( x, t)= a( x, t)y (x)e ™+c.c. , (2.2)

E(x, t)= a(z, t)qr (x)

+ +At d ' yt(x)
Ba (z, t)

1~m

l tt)
Xe +c.c. , (2.4)

in agreement with Eq. (2.2). In Eq. (2.4), d is the period
of the dielectric function and co and co& are the angular
frequencies associated with the Bloch functions y and

respectively. Further, the dimensionless coupling
coefficient A& between two Bloch functions is

2ic (l~n~m )
CO~ COm

(2.5)

with the operator Q given by

d0= —ic
gX

(2.6)

The coordinate z is a spatial coordinate in a frame mov-
ing with the group velocity cu' associated with the state
m, thus z—:x —co' t. A major result of I is that a(z, t),
which is defined through a (z, t) =&La(z, t), satisfies the
nonlinear Schrodinger equation

i + —co" +a ~a~ a=0,. Ba 1 „82a z

at 2 az' (2.7)

where y (x) is a Bloch function and a (x, t) is an as yet
undefined envelope function, which varies on a much
slower length scale, c.c. denotes complex conjugation.
The Bloch functions of the stack form a complete, or-
thogonal set, but because these functions satisfy the wave
equation, rather than the Schrodinger equation, the
orthogonality relations contain the dielectric function as
a kernel, thus

& ~lelm ) —= J yt*(x)e(x)y (x)dx =5t, (2.3)
0

where L is a normalization length. In I we found that the
first two terms in the asymptotic series provide an ade-
quate description of the field, leading to an expression for
the electric field

give a correct description of the results of Chen and
Mills. Under more general circumstances we have to
write the principal component of the electric field as the
sum of two or more terms.

In I we limited ourselves to electromagnetic fields
which have harmonic time dependence, with envelopes
which are at rest in space. The latter restriction implies
that the state m has a vanishing group velocity, and,
therefore, that this state borders a stop gap. It also im-
plies that y can be chosen real (see also Appendix A).
The form of A& in Eq. (2.6) prescribes that m only cou-
ple to states l with identical crystal momentum. This
means in the present situation that y& is also real and that
l borders a stop gap as well. Since z is the spatial coordi-
nate in the frame traveling with the group velocity cu',
our restrictions allow us to replace z by x in Eqs. (2.4)
and (2.7).

The restriction to harmonic time dependence implies
that we look for envelope functions of the form

a (x, t) =P(x)e

Using this expression, Eq. (2.7) can be rewritten as

5P+ —co" ' +a ~Q~ /=0 .
1 „d 6

(2.9)

(2.10)

+ g A, d [&L g&(x)]™ X

Xe ' '+c.c. , (2.11)

where co=co +6 is the angular frequency of the incom-
ing radiation. The angular frequency 6, which is much
smaller than either co or co, can thus be interpreted as a
detuning between the frequencies of the incoming radia-
tion and that associated with the state m.

The general solutions to Eq. (2.10) can be written in
terms of Jacobi elliptic functions. In the limiting case in
which the envelope function g is real, however, the solu-
tion is simply

Under the two restrictions mentioned above, the electric
field can now finally be expressed in g as

E(x, t)= P(x)[&L p (x)]

m =67TcomL g x (pm x dx
0

(2.8)

subject to the appropriate boundary conditions. In this
equation, m" is the group-velocity dispersion associated
with y and a is the e6'ective nonlinearity of the modu-
lated Bloch state,

P(x)= A sech(Bx),

where the parameters 3 and B are defined as

A =( —25/a )'

8=( —25/co" )' '

(2.12)

(2.13a)

(2.13b)

In agreement with the expectations, the first term in the
expression for the electric field in Eq. (2.4) is the dom-
inant one. The much smaller, second term, is however
necessary, for example, to calculate the energy Bow
through the system and thus has to be retained. To
denote these contributions to the electric field, therefore,
we use the terminology principal terms and companion
terms in a slight generalization of the notation in I. Al-
though we shall see in Sec. IV that the ansatz in Eq. (2.2)
is inappropriate in certain situations, it is sufficient to

Equation (2.12) represents a soliton at rest in space, with
a height A and with a width of about 1/B. In I we
showed that the field given in Eqs. (2.11) and (2.12) has
the same properties as the gap solitons found in numeri-
cal studies by Chen and Mills. ' Because the reality of
the envelope given by Eq. (2.12), and the fact that we
have restricted ourselves to Bloch functions with this
same property (see Appendix A), we find that the energy
fiow associated with the field in Eqs. (2.11) with (2.12)
vanishes. For small, but finite, values of the energy Row,
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however, the envelope function still resembles the func-
tional form in Eq. (2.12) quite closely. In particular, un-
der those circumstances, the height and the width of the
envelope function of the electric field are still approxi-
mately given by 3 and 1/B. This allows us to formulate
a criterion which must be satisfied in order to observe the
gap soliton experimentally.

In order to observe the soliton and its related effects
(described in I), it is necessary that the length of the stack
D is larger than the width of the soliton, or

D~1/B . (2.14)

Through Eqs. (2.13) we can express this inequality in
terms of the group-velocity dispersion, the effective non-
linearity and the maximum amplitude 3 of the envelope
function, as

(2.15)

3 -'=S
2' d 7 (2. 16)

where n is the average linear refractive index of the stack.
The fact that the Bloch functions are of order unity also
allows us to approximate by o. =6~su g' ', where g' ' is
an average nonlinearity [cf. Eq. (2.8)]. Defining the non-
linear correction to the index of refraction to be n' Sd,
we easily find that y~ ~=cn n' ~/(12m ). These substitu-
tions give then

co Sdnn' 'D cu" (2.17)

To simplify this expression we now use the Kogelnik ap-
proximation. This approximation, which is valid in the
limit of small (linear) refractive-index variations, allows
us to find approximate Bloch functions and dispersion re-
lations (see Appendix A). Within this approximation we
find the group-velocity dispersion to be m" =2c /
n(An)co [Eq. (A12)], where (b, n) is the first Fourier
component of the (linear) refractive-index profile [Eq.
(A2)]. The final expression is now obtained by writing
cu =~c/dn, since m is at the edge of the Brillouin zone,
giving rise to the condition

(din)(n '5 )A' ~ 1 (2.18)

where JV is the number of periods in the stack. Since Sd
is the maximum energy Aux in the material and we want
to avoid optical damage, we can take Sd to be the non-
linear change in the refractive index just below the dam-
age threshold.

It was mentioned above that the estimate in Eq. (2.18)
only holds if the energy flow is small enough so that the
actual envelope function is given by hyperbolic secant in
Eq. (2.12) to a reasonable approximation. This notion
can be quantified by the condition that the maximum am-
plitude of the actual envelope function, which was denot-
ed by QI+ [see Eq. (3.21) in I], does not differ very
much from the value 3 for the soliton in Eq. (2.12), or

We now make use of the fact that Bloch functions are of
order unity, so that we can define a maximum time-
averaged Poynting vector amplitude Sd in the medium by

I+=A (2.19)

By using the definition of I+ in I and the application of
the Kogelnik approximation, it is found that Eq. (2.19)
can be rewritten as a condition on the energy flow

6
(n (2)g) (

bn
(2.20)

COggp

where cog p
is the size of the gap which borders the state

Notice that the right-hand side of this equation is
much smaller than unity.

Equation (2.18) gives a necessary condition for the ex-
perimental observation of the gap soliton and its related
effects. It is not sufficient, however, since, given the
length of the structure and the energy flow, the detuning
6 should have a certain minimum value as well. If 6 were
very small, B would be very small as well, and the ex-
ponential growth of the envelope function, starting from
the back surface, would not be rapid enough to reach
high-field intensities within the length of the stack. The
above discussion avoids this matter altogether, since the
detuning is eliminated in the derivation leading to Eq.
(2.18). Consequently, the detuning is implicitly assumed
to be chosen in an optimal way. The following argument
gives us a relation between 6 and JV, and between 6 and
Sd. An optimum detuning can be estimated by approxi-
mating the envelope function in the wings of the field dis-
tribution by a simple exponential, which is correct in the
limit in which the nonlinearity vanishes. In I it was
demonstrated that the amplitude of the envelope function
is about QI at the back of the structure. We further
know that the nonlinearity starts to play a role when the
amplitude of the envelope reaches the value A. The op-
timum value of the detuning of the structure can thus be
deduced from

QS e'D=~ . (2.21)

1 c 1

4~ 6d (An)

]/2

ln
16 6d 3 1

n
3m. c n' 'S (2.22)

This complicated 6 dependence is due to the fact that 6
enters both 3 and B.

Finally, we address the validity of the envelope func-
tion in the form of Eq. (2.11), with a single principal
term. In Sec. VI of I, we presented a criterion [Eqs. (6.4)
and (6.5)] for this validity. In the form as given in I it is
not very practical, however, and we have rewritten it in a
form which is similar to Eq. (2.20) using the various
definitions in I and using the Kogelnik approximation. It
is found that

If 5 were larger than the value following from this condi-
tion, the maximum field strength would be larger than
necessary, thus causing unnecessary optical damage. If 5
were smaller, on the other hand, the field strength would
not grow rapidly enough within the stack for the non-
linearity to be important. By Eqs. (3.12), (3.22), and (4.8)
in I, we know that I is proportional to the energy flow.
Again using the Kogelnik approximation, Eq. (2.21) can
be rewritten as
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(n "'S)« I .
(bn)

(2.23)

This means that the refractive-index change due to the
nonlinearity should be much smaller than the linear index
differences in the stack. The inequality in Eq. (2.23) is
very stringent, and our numerical experience indicates
that it should be interpreted in terms of large factors (at
least about 100 or 1000 or so). Further, we have found
that for practical situations, the conditions in Eq. (2.20)
and (2.23) on the energy flow are essentially similar. We
thus see that Eqs. (2.18) and Eq. (2.22) assure that our
gap soliton and its associated phenomena can be observed
experimentally. These conditions, however, were derived
under the condition that the energy Aow is small enough
to satisfy Eq. (2.20) [or, equivalently, Eq. (2.23)].

III. EQUIVALENCE TO THE EFFECTIVE-MASS
FORMALISM

In this section we show the equivalence of our
envelope-function approach to the effective-mass approxi-
mation, '" in the limit of harmonic time dependence and
vanishing group velocity. There are several reasons for
stressing this relation. First, the effective-mass approxi-
mation is a well-understood tool in solid-state physics,
and the experience with this formalism helps in the appli-
cation of the envelope-function approach to problems in
nonlinear optics. More important, the derivation of the
effective-mass formalism is quite different than the
method of multiple scales we employed in I. For this
reason, it sheds a different light on the limitations of the
envelope-function approach, and on the validity of the re-
sults. Actually, the derivation of the envelope-function
equation using the effective-mass formalism requires that
the envelope function should vary slowly on the scale of
three lattice constants, rather than on the scale of a single
one. This result is not obtained when using the method
of multiple scales. Finally, the effective-mass formalism
points the way to more general electromagnetic fields for
which a description with more than a single Bloch func-
tion is required.

The derivation of the equations of the effective-mass
approximation has been widely published. ' " These
derivations, however, are based on the Schrodinger equa-
tion, whereas our present interest lies in the wave equa-
tion for the electric field [Eq. (2.1)]. The two derivations
are nevertheless quite similar, so we only give the major
steps. Instances where the quantum-mechanics treatment
differs from the present wave treatment are highlighted.

I

The effective-mass approximation makes use of a set of
functions y„z (x ), which are defined in terms of Bloch
functions at a convenient location ko in the Brillouin
zone, "

(3.1)

where

(bk)=k —ko . (3.2)

The parameter ko is selected such that the dispersion
curve has an extremal point at this position in the Bril-
louin zone (BZ). In our simple one-dimensional
geometry, this implies that ko is either in the middle of
the Brillouin zone or at an edge. In more general, three-
dimensional geometries, however, ko can be anywhere in
the Brillouin zone. This choice of ko assures that the
Bloch functions associated with this position have a
definite parity. Note that this choice of ko is also con-
sistent with our assumption of vanishing group velocity.

Just like the Bloch functions, the set of functions

g„ i, (x) forms a complete, orthogonal set, with the dielec-
tric function as a kernel [cf. Eq. (2.3)]; thus

Lf q„*„(x}e(x)y (x)dx—= [nklelmq]

=5„5(k—q) (3.3)

in simplified notation. ' From now on, the square brack-
ets refer to matrix elements with respect to y„&(x),
whereas the usual bra-ket notation is reserved for matrix
elements between Bloch functions.

We now consider the wave equation [Eq. (2.1)] again
and neglect third-harmonic generation by the optical
nonlinearity. In the limit of harmonic time dependence,
it can be written as

The total electric field is now expanded in terms of the
functions y„&(x), thus "'

E(x)= g f dq A„(q)y„(x) .
BZ

Substituting this expansion into the wave equation, left
multiplying by y* &, and integrating over the normaliza-
tion length L it is then found that the functions A„(q)
satisfy

—c —12vrco y' ( )lEx(x)l E(x)=e(x)co E(x) .2d E(x)
dx

(3.4)

[co z +c (bk) (mlm )]A (k)5„5(k q)+ g [2c(hk)(mls—ln )+c (bk) (min ) )A„(k)5(k q)—
n

n&m

+ & g g f dq, f dq2 f qd3A„, (q&) A„*, (q&) A„(q )3a „„„5(k—q&+q2 —q3)
2Q)

n
l ll2n3

=m A (k)5„5(k —q), (3.6)

where a „„„is an effective nonlinearity, very much like a introduced in Eq. (2.8),
L«X'"(x)V~ ~ (x)%. ~ (x)%n ~ «)qn (3.7)
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Notice that the matrix elements in Eq. (3.6) are those
with respect to the Bloch functions at kp. Because the
orthogonality relations include the dielectric function
[Eq. (2.3)], matrix elements such as ( m

~
n ) are not known

a priori in general. This constitutes a major difference
with applying the effective-mass formalism to the
Schrodinger equation. We now rewrite Eq. (3.6) symboli-
cally as

and

[mk~&i~nq]=[2c(hk)(m~Q~n )+c (bk) (m~n )]
X5(k —q)(1 —5„). (3.13)

[mk~&o~nq]=[co k +c (Ak) (m~m )]5„5(k—q)

(3.12)

&A=co A . (3.8)

Just as in the standard derivation of the effective-mass
formalism, "we introduce a canonical transformation to
reduce the size of the off-diagonal elements in the matrix
representation of the operator & through

For now we do not consider the nonlinear term in Eq.
(3.5), but return to it below. As in the effective-mass for-
malism, the size of the off-diagonal terms (associated with
the operator &,) can be reduced in size if the operator S
is chosen such that

A=e 8,
which gives rise to

(3.9)
&0+[&„S]=0. (3.14)

Using this equation, and the definition of the operators
&o and A, , we see that the matrix elements of S are

( e &e )8 =—&8 =co 8 . (3.10)

Expanding the operator e in a power series in S, it is
found that

5'=%+ [&,S]+—,'[[%,S),S]+ (3.1 1)

where [C, , C2] denotes the commutator of C, and C2.
We assume that S is small in the sense that the expansion
leading to Eq. (3.11) is valid.

Now define the operators &o and .H& through their
representation in the basis of the functions y„„(x),as fol-
lows:

[2c(bk)(m~Q~n )+c (bk) (m~n )]
~n, ko ~m, k,

X5(k —q)(1 —5„). (3.15)

In the effective-mass approximation, '" one is usually
only interested in terms of order (b,k) or lower, so that
higher-order terms in (Ak) are dropped. We follow this
convention presently. It should be mentioned, however,
that this limitation is not strictly necessary. ' Using Eq.
(3.15) we can now find the matrix elements of the
transformed Hamiltonian & to be

[mk~&~nq]= co k +c (bk) (m m )+4 g I
( «I & Im & I'

r Cgm Cur

rWm

5„5(k—q), (3.16)

where again only terms up to (hk) were retained. The
off-diagonal terms of the transformed Hamiltonian are
proportional to (hk), so that these contribute only to or-
der (b,k) to the energies. But according to Eq. (A8) from
I, the right-hand side of Eq. (3.16) is exactly the angular
frequency at k to second order in (b,k). Equation (3.10)
can thus simply be rewritten as

co '((&k)')8 ((&k) ) =co'8((&k) ), (3.17)

where the k dependence of the expansion coeScients B
was written explicitly. It is important in Eq. (3.17) to dis-
tinguish the number co, which is the square of the angu-
lar frequency, from the function co ( ), which gives
the lowest-order expansion of the dispersion curve about
kp ~ It is now customary to transform this equation to
real space by introducing the function

F (x)= f e' ""8 ((b,k))d(b, k), (3.18)
BZ

which results in

I

The notation co (
—id/dx) in this equation means that

(b k) should be replaced by —id/dx in the expression for
co ((b.k)), to second order in (b,k). " This prescription
turns co into an operator, thus turning the algebraic
equations in Eq. (3.17) into a set of second-order
differential equations [Eq. (3.19)]. From Eq. (3.18) we see
that all Fourier components which lie outside the first BZ
are neglected. For this reason, the formalism is only reli-
able if the functions 8 ((b,k) ) are negligible in the vicini-
ty of the BZ edge. '" In real space this means that the
functions F (x) have to be slowly varying on the scale of
the lattice constant. For this reason we refer to these
functions as envelope functions.

Next we find the relation between the envelope func-
tions and the electric field E(x). Combining Eqs. (3.5),
(3.1), and (3.9) and, again, expanding the exponential, we
find that

E(x)= g f dk(1+S+ )8„((hk))
BZ

co i F„(x)=co—F„(x) .
dx

i(Ak)x
n„ko (3.20)

(3.19)
Using the completeness of the functions y„&(x) and Eq.
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(3.15) for the matrix elements of the operator S, we finally
find for the electric field

E(x)= g F„(x)y„k (x)
n

dF (x)+ g A~„d p~„(x)
P

p&n

(3.21}

in which the coupling coefficient A „ is defined in Eq.
(2.5). Comparing to Eq. (2.11) we see that our present re-
sults are identical to those obtained using the method of
multiple scales, if the summation over n in Eq. (3.21) is

restricted to a single branch m. It now remains to be
shown that the present envelope function F(x) satisfies
the same equation as the envelope function g(x) used in I
and in Sec. II. To this end we first evaluate the nonlinear
term appearing in Eq. (3.6).

We know that, to lowest order, the coefficients A (q)
and B (q) are equal. Since we are only interested in the
lowest-order contribution, the distinction between these
two sets of expansion coefficients may be neglected in
evaluating the influence of the nonlinearity. Thus, taking
the nonlinear term in Eq. (3.6), and determining the
Fourier transform as in Eq. (3.18), it is found that it con-
tributes

. . . f de& f dq& fde3&. (p&)&„* (p&)&„,(p3) f d«' "'"5lk —q, +q, —q3)
+ 3

(3.22)

in real space. Using the definition of the envelope func-
tions in Eq. (3.18), we finally find for the contribution of
the nonlinear term, in real space

2 2

g g g F„(x)F„*(x)F„(x)a
m n

1
Pgg n3

(3.23)

which is the final form for this contribution. Notice,
however, that the integration over k in Eq. (3.22} was
limited to the first Brillouin zone. By the 5 function in
this equation, this then implies that Iq, I+ IqzI+ Iq3I is
limited to the first Brillouin zone as well. From this we
can conclude that the contribution of the nonlinearity is
correctly given by Eq. (3.23), as long as the Fourier
coefficients do not extend beyond about a third of the size
of the Brillouin zone. Equivalently, the envelope func-
tions are required to vary not faster than on a scale of
three lattice constants. We return to this matter below.

We now return to Eq. (3.19) to find a diff'erential equa-
tion for the envelope functions F„(x). For this purpose
we apply the prescription to replace (b,k) by id/dx and-
find, after adding the nonlinear contribution,

2

co F (x)+co" co
d

l
dX

F (x)

CO+2 a IF (x)l F (x)=co F (x),
~m

(3.24)

After a trivial rescaling to obtain similar definitions of the
effective nonlinearity, this equation is identical to Eq.
(2.10). The latter equation is the result using the method

where only the nonlinear self-phase modulation was in-
cluded. In the final step, we remember that 5=co —co

from Sec. II and that 6 is much smaller than both co and
co . Under these condition, we see that Eq. (3.24) can
finally be rewritten as

d2
6F (x)+—co" F (x)+a IF I

F (x)=0 .
dX

(3.25)

I

of multiple scales in the limit in which the time depen-
dence is harmonic and the incoming radiation is tuned to
a stop gap.

We thus see that the method of multiple scales and the
envelope-function formalism give identical results for
harmonic time dependence. The former method is more
powerful, however, as it can be used for a general time
dependence, a possibility not offered by the effective-mass
formalism. An important conclusion from the present
exercise, however, is that for our approach to be reliable,
the envelope function may only contain Fourier com-
ponents within the inmost one-third of the Brillouin
zone. This requirement did not emerge in this explicit
form from the derivation using the method of multiple
scales. This limitation is intrinsic in nature, and holds,
no matter how many branches of the dispersion relation
are explicitly included and no matter to what order in
(b,k) (or, equivalently, in p in the method of multiple
scales) the expansion is followed through.

Finally, comparing Eqs. (3.21) and (2.11) we see how
our formalism should be modified to include multiple
branches of the dispersion relation explicitly. Such a gen-
eralization is the subject of Sec. IV.

IV. TWO-BRANCH APPROXIMATIONS

The ansatz in Eq. (2.2), on which the analysis in I was
based, implies that a single Bloch function dominates the
behavior of the fast component of the electric field. This
was justified in I, since the incoming radiation was tuned
to one of the stop gaps, very close to one of its edges. In
such a treatment, the influence of the remaining states of
the periodic structure is summarized in the group-
velocity dispersion and in the companion component of
the electric field.

It is clear, however, that if the incoming radiation is
tuned to the middle of a stop gap, it is no longer possible
to define a single dominating state; rather, both edges of
the stop gap are equally important. This is just a single
example of a condition under which the ansatz in Eq.
(2.3) is no longer justified, and a more general approach
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has to be taken. This generalization requires that the
principal component of the electric field consists of two,
or more, of the terms as in Eq. (2.3). In Sec. III, the
effective-mass treatment gave the relevant equations for
the case of harmonic time dependence [see, e.g. , Eq.
(3.21)]. After a derivation which is very similar to that in
I, equations for a general time dependence can be ob-
tained by application of the method of multiple scales.
The final, most general results of such a treatment con-
tain a very large number of terms and are not very infor-
mative. In this section, therefore, we concentrate on two
possible experimental situations in which a two-branch
treatment is required and we derive the pertinent equa-
tions for these situations. The first of these was described
above and pertains to the situation in which the incoming
radiation is tuned to the middle region of one of the stop
gaps of the periodic structure. Since the states at both
edges of the gap have to be treated on an equal footing,
both appear in the principal component of the electric
field. The interaction between these two bands is then
considered dynamically, rather than through the group-
velocity dispersion. The second of the situations in which
a two-branch approach is necessary is when third-
harmonic generation by the Kerr nonlinearity is includ-
ed. In this case, explicit inclusion of the relevant Bloch
functions at both co and 3' is required. At present we
only consider the very interesting situation in which both
co and 3' lie within stop gaps. It should be noted here
that a multibranch approach as used in the present sec-
tion is very common in solid-state physics. In the
effective-mass treatment of superlattices, for example, it
is often necessary to include two or more bands explicit-

14

We now thus start with the derivation for the equa-
tions for the slowly varying envelope when the incoming
radiation falls in the rniddle region of a stop gap. In anal-
ogy to Eqs. (2.3) and (3.21), we start with the ansatz that
the principal component of the electric field can now be

written as
t CV

e, (x, t) =a, (x, t)cp (x)e

1 Cc)

+a2(x, t)g (x)e ' +c.c. ,
2

(4. 1)

which satisfies the equation originating from the terms
which are linear in p (see Sec. II and I). Notice that the
states g and y now form the two edges of a single

1 2

stop gap. Just as in I, we now continue with terms pro-
portional to p and find first that the envelopes a, and a2
each travel with the group velocity associated with y

1

and y, respectively. Since these states border a stop2'

gap, it is found that both envelopes are at rest in space.
It is further found that the companion component can be
written as the sum of two terms of the form

Ba, I CtP

Al d cp, (x)e ' +c.c. ,
I X

1Am i, m2

(4.2)

with i =1,2. Next the terms to third order in p are con-
sidered. In evaluating the expressions obtained in this
way, it is important to realize that, since m, and m2 bor-
der the same stop gap, these states have opposite parity,
so that matrix elements such as ( m, I

m z ) vanish.
Another consequence of the fact that m, and m2 border
the same stop gap, is that the angular frequency
defined as

~m ~m
2 I

(4.3)

which may be generated by the optical nonlinearity, is
not necessarily large. This implies that terms with this
time dependence have to be retained. After a calculation
which is very similar to that in I, it is then found that the
two envelope functions satisfy the equations

Ba, 1 8'a, &m IQlm) Ba,
2e '"+~)())la( I'a)+2~, 2))la~I'a)+ 1+2

co Bx ~mI
1

a*a e ' '=0
1122 1 2

(4.4a)

and

Ba, 1 8'a, (m, lnlm, ) Ba,
e'"+~„~~la, I'a2+2~) )2~la, I'a2+

co Bx CO
2 m~

(4.4b)

a" =c'&m, Im, )+4c'
t J I

IX m I, m~

(m; In I l ) ( llnlm, )

M CO I
2 2

J

(4.5)

In these equations we used the diagonal elements of the
operator defined by

The diagonal elements bear a close resemblence to the
group-velocity dispersion [see Eq. (A10) in I]. Notice,
however, that the summation in Eq. (4.5) excludes both
m, and m2. The interaction between these two states is
now, however, dynamically included in the coupled
differential equations through the linear cross terms.
Further, for convenience the nonlinear coeKcients
a [Eq. (3.7)] were written as a," . Equations
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very similar to Eqs. (4.4) have been derived for light
propagation in birefringent nonlinear dispersive media. '

Notice that since m, and m2 define the border of a stop
gap, the associated Bloch functions are real (Appendix
A). The first nonlinear terms in Eq. (4.4) describe the
nonlinear self-phase modulation of the two envelope
functions. Such a term also appears in our earlier treat-
ment [Eq. (2.7)]. The second and third nonlinear terms
are new, and describe the cross-phase modulation be-
tween a] and a2. The second terms simply describe the
fact that the intensities associated with each of the two
envelope functions change the refractive index of the
stack as seen by the other envelope function. A similar
effect is also observed in optical fibers. ' The third terms
describe a similar interaction, except that the mutual
phase of the two envelopes is now important. Such terms
do not play a role in fibers because b is not small in such
media. We briefly return to Eqs. (4.4) in Sec. V.

We next consider the case of third-harmonic genera-
tion under the condition, considered below, that both co

and 3' fall within stop gaps. In the most general case,
we would have to include four Bloch functions explicitly,
namely the two Bloch functions bordering the gap at co

and those at 3'. The ensuing four coupled nonlinear par-
tial differential equations, however, are not very informa-
tive and are not written out here. Instead, we consider
the situation in which both cu and 3' lie close to one of
the band edges, so that an ansatz as in Eq. (4.1) is
justified. Notice, however, that now m, and m2 border

diff'erent stop gaps, in contrast with the situation above.
Within these restrictions, still two possibilities remain—
either m

&
and m 2 have the same parity, or their parity is

opposite. We consider the former possibility only, since,
as we see later, the latter does not give rise to third-
harmonic generation at all. This means that both m] and

m2 are either close to the bottom or to the top of a stop
gap.

With the restrictions from the preceding paragraph
and an ansatz as in Eq. (4.1), we again apply the method
of multiple scales. Considering the terms proportional to
p, we again conclude that both envelopes a&(x, t) and
a2(x, t) travel with their associated group velocity. In the
present situation, this again means that both are at rest in
space. It is further found that e2 is given by the sum of
two terms as in Eq. (4.2). Considering the terms to third
order in p, we find significant differences with the previ-
ous case. First, we obtain different linear terms since the
two states m, and m2 have now identical parity, rather
than opposite. Moreover, we obtain different nonlinear
terms, since different linear combinations of the angular
frequencies co and co are now small. For definiteness,

I 2

we label the band edge closest to ~ by m &, and the edge
closest to 3' by m2.

For the case of general time dependence of the en-
velope functions, the following two coupled equations are
found:

2 2 yi + —co" +—a" e '
'+a&&&&~a&

~ a&+2a&&22~a2~ a~+
2 g ' 2 ~m

cx]&&2Q &
a e 0 (4.6a)

and

Ba2 1 0 a2 &
0 a] 1 yi + —co" + —co" e' '+a2zz2~az~ az+2a22&&~a& ~

a&+ —1+ a2&&&aIe
2 ~ g~2 2 ~m

(4.6b)

where

'V 3~m ~m
1 2

(4.7)

is a low angular frequency (see Fig. 2). Equations similar
to Eq. (4.6) have been derived for the mechanical problem
of transverse elastic waves traveling along a uniform bar
that rests on a nonlinear elastic foundation. ' The ele-
ment co" was defined through Eq. (4.5). We now

I

demonstrate that the terms in Eqs. (4.6) which contain
these matrix elements are negligibly small. First, since
m, and m2 belong to different gaps, both (m

~ ~
m 2 ) and

either of (1~m
&

) or (i~md) are very small, so that ac-
cording to Eq. (4.5), co" is very small as well. Actual-

l' j
ly, in the Kogelnik approximation these small matrix ele-
ments vanish entirely. Second, the angular frequency 6
is not small in the present situation, so that the (small)
contributions of the terms under consideration average
out over times longer than about 1/A. Finally, these off-
diagonal terms are of second order in d/dx, so that, in

analogy to matrix perturbation theory, their effective
contribution is only of fourth order. These terms will

henceforth be neglected.
Equations (4.6) for third-harmonic generation look

very similar to Eqs. (4.4), derived earlier. A most impor-
tant difference, however, is that, apart from a negligibly
small linear coupling term, the envelopes in Eqs. (4.6) are
only coupled through the nonlinearity. In fact, there are
two such nonlinear interaction terms. The fifth terms in
each of Eqs. (4.6) describe the cross-phase modulation
through the intensity associated with the envelope func-
tions. Similar terms appear in Eq. (4.4). The last terms
in the two equations have no counterpart in Eq. (4.4) and
describe third-harmonic generation [Eq. (4.6b)] and mix-
ing of 3' and co [Eq. (4.6a)]. A further interpretation of
these equations is given in Sec. V in which we show that
Eqs. (4.6) can be derived from a conservative Hamiltoni-
an.

A final point to be addressed in this section is the re-
striction to select m, and m2, such that their Bloch func-
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l
~m,

m&

k= rt/g
FIG. 2. Definition of the various angular frequencies for the

analysis of THG. The detuning at 3m is 36+y, since
p—= 3~m ~m-

1 2

tions have the same parity. We see from Eq. (3.7) that,
otherwise, the relevant nonlinear coefficients a]»2 and

az», for third-harmonic generation would vanish.

V. HAMII. TONIAN DESCRIPTION

fl
~m

2 5S= B p~= ——p~,2~
(5.3)

lem, this "potential energy" assures that the field
strengths do not diverge. This should be contrasted with
the case in which y' ' has the sign such that 3 is nega-
tive [Eq. (2.13a)]. The anharmonic potential-energy term
in Eq. (5.2) then changes sign so that the motion of the
particle is no longer bounded. This corresponds to the
instance in which, through the nonlinearity, the stack
tunes itself deeper into the gap, rather than out of it.
Since the potential-energy term in Eq. (5.2) is rotationally
symmetric, we find in the equivalent mechanical problem
that the angular momentum L=p& is conserved. To18

see to what quantity this corresponds in the original
problem, we recall from I [Eq. (3.12)] that the Poynting
vector through the system S can be written in terms of
the envelope function as S =(co" /2~)lm(g*g'). Rewrit-
ing this expression in polar coordinates and making use
of the canonical variables introduced in Eq. (5.2), we sim-

ply find

lg '+ —lgl' ——
2B2 2 2

(5.1)

where A and B were defined in Eqs. (2.13). It is impor-
tant to stress that the prime in this Lagrangian refers to a
spatial, rather than to a temporal derivative, which ap-
pears in the study of mechanical systems. ' It is now
convenient to rewrite Eq. (5.1) in Hamiltonian form,
Inaking use of polar coordinates. The result is then

2

q&
(5.2)

The equations for the envelope functions for the situa-
tions we have studied so far [Eqs. (2.7), (4.4), and (4.6)]
can, in the limit of harmonic time dependence, each for-
mally be derived from a Lagrangian and Hamiltonian for-
malism. This assures us of the help of the powerful
methods of theoretical mechanics' in analyzing the
differential equations for the envelope functions. For ex-
ample, we see that the energy flow through the system is
a conserved quantity for the corresponding Hamiltonian,
thus reducing the number of degrees of freedom by 1.
Moreover, the study of the equivalent Hamiltonian pro-
vides insight into the origin of the various terms in the
equations for the envelope function.

Equation (2.10), for example, which is obtained from
Eq. (2.7) in the limit of harmonic time dependence, can be
derived from the effective Lagrangian,

—A /8

(a)

t

A/jz A

where q& and p& are the conjugate variables associated
with ~P~, and qz and pz those associated with the polar
angle 0. We thus see that the spatial dependence of the
envelope function through the stack, is formally
equivalent to the temporal dependence of a particle with
a mass of 1/8 in a rotationally symmetric potential of
form —

—,'q&+(1/2A )q&. This expression assures that
the particle has two turning points, which prevent escape
to infinity. A sketch of a cross section of this potential is
given in Fig. 3(a). In terms of our electrodynamical prob-

FIG. 3. (a) Radial dependence of the effective potential-
energy surface of the nonlinear stack. (b) Top view of two possi-
ble orbits in this potential. The orbit labeled S =0 is that of the
gap soliton which transports no energy. This implies the ab-
sence of angular momentum in the equivalent mechanical sys-
tem. The orbit labeled S&0 is that for the more general case of
finite energy flow and thus finite angular momentum.
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E(x, t)= g [Eo(x,co; )e ' +c.c.], (5.5)

and the complex amplitudes of the other fields are defined
similarly. It should be mentioned that this definition can
be generalized to include complex amplitudes which are
slowly varying in time.

With the field E(x) given by Eq. (2.10), B(x)=K(x)
following from Maxwell's equations, and D(x) following
through the relation D =eE+4vrg' 'E, we can rewrite
Eq. (5.4) in terms of the envelope function and its first
derivative, as follows:

(5.6)

First consider the final term in this expression. Since it
consists of the product of two companion contributions,
it is effectively of order p (see I). However, since our
derivation in I included terms up to third order in p only,
we conclude that to be consistent, the last term in Eq.
(5.6) should be dropped. Further, since 6=co—~ and
5 «co,~, we see that, to a good approximation,

which is identical to the Lagrangian in Eq. (5.1). The re-
quirement that the variation of the free energy per unit
area over the total length of the stack vanish, ' now cor-
responds to the requirement that the variation of the ac-

where use was made of the definition of B [Eq. (2.13)] to
obtain the final expression. We thus see that the conser-
vation of energy flow in the original problem corresponds
to conservation of angular momentum in the equivalent
mechanical system.

Apart from the angular momentum, the total energy is,
of course, also conserved in the equivalent mechanical
system. To try to find the interpretation of this con-
served quantity, we first calculate the free energy of our
periodic stack. Here we run into a complication as ther-
modynamic potentials lose their significance in externally
driven systems. ' For weakly nonlinear driven systems,
however, one can uniquely define a time avera-ged free en
ergy with comparable properties. ' ' A further compli-
cation is that electrodynamics allows the definition of
four such time-averaged thermodynamic potentials,
which are all related through Legendre transforma-
tions. ' As is discussed in Appendix 8, the time-
averaged free energy relevant to the present problem is

&0(~, )

4'( 7—Vo) =2 g Re f Ko (co; )dBO(co, )
0

Eo(m, . j

D0 cO; dE0 Co;, 5.4
0

where Eo(co;) is the complex amplitude of the electric
field at co;, defined through

tion integral of the equivalent mechanical system van-
ish. ' This requirement then gives rise to the Lagrangian
equations of motion in the usual way. We thus see that
the free energy in our electrodynamical system corre-
sponds to the Lagrangian of the associated mechanical
system, with temporal rather than spatial derivatives.
Although this provides a definite interpretation of the La-
grangian, we have found no such simple interpretation of
the total energy of the equivalent mechanical system. It
should be stressed that the potential-energy terms in Eq.
(5.7) contain contributions of both the electric and the
magnetic parts of the free energy in Eq. (5.4). It would
thus be incorrect to conclude that the total energy of the
equivalent mechanical system would correspond to one of
the thermodynamic potentials in which the contributions
of the electric and magnetic fields have identical signs.

Now that we know that the electric field distribution in
the nonlinear periodic stack is equivalent to the motion
of a particle in a rotationally symmetric potential well,
we can interpret the field profiles obtained in I in terms of
the motion of the particle. As mentioned before, the
form of the potential energy assures that the particle de-
scribes an orbit between two turning points [Fig. 3(a)]. In
determining the outer turning point, the harmonic and
the anharmonic terms in the potential energy are of equal
importance. We thus come to the conclusion that the
anharmonic term in the potential energy is crucial in
determining the orbit of the particle. Alternatively, we
can state that the nonlinearity is crucial in determining
the field profile in the periodic stack.

The exact position of the two turning points can be
found when the angular momentum L and the energy E
of the particle are given. The electric field distribution,
on the other hand, was characterized in I by two quanti-
ties, the minimum value of the square modulus of the en-
velope function I and a quantity proportional to the en-

ergy flow O'. Thus I directly defines the inner turning
point, whereas 8' and L must be linearly related. So I
and 8', and E and L, provide equivalent sets of informa-
tion. We saw in I that the 8'and I cannot be chosen in-
dependently, and, in fact, must be linearly proportional in
order to satisfy the boundary conditions at the back of
the stack. Similarly, we conclude that the energy and the
angular momentum of the particle cannot be chosen in-
dependently either, severely limiting the possible orbits of
the particle.

Two possible orbits of the equivalent mechanical sys-
tem are shown in Fig. 3(b). The gap soliton corresponds
to the orbit without angular momentum, and we thus see
that it originates from a delicate balancing of dispersion,
which gives rise to the harmonic part of the potential en-
ergy, and the nonlinearity, which is responsible for the
anharmonic part. Starting at the outer turning point, the
particle will not reach the origin within a finite time.
This is consistent with the asymptotic behavior of the hy-
perbolic secant function, which mathematically describes
the gap soliton. The other orbit in Fig. 3(b) clearly has a
finite period and nonzero angular momentum, and is de-
scribed by Jacobi elliptic functions.

It is passible to write the coupled differential equations
[Eqs. (4.4) and (4.6)] in terms of a classical mechanical
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system as well. For Eq. (4.6) this is quite useful, as the
corresponding Hamiltonian represents two nonlinearly
coupled oscillators of the kind discussed above. Equation
(4.4), however, has very strong linear coupling terms so
that such a picture is not very revealing. As a conse-
quence, considering the mechanical counterpart is not
very useful in this case. We thus limit our attention in
this section to a discussion of Eq. (4.6), and turn to the
coupled equations describing third-harmonic generation
(THG) in the stack. The arguments to show that these
equations can be derived using a Lagrangian or Hamil-
tonian formalism are essentially identical as before, ex-
cept that the expressions involved are more complicated.
For this reason, only the most important results are
given. The Lagrangian appropriate to Eq. (4.6) can be
found to be

COm

X=X,+ 3+
5 COm

2

, lg( I'l&2lcos(3&, —&,),
3A4

(5.8)

where X, is given by Eq. (5.1) and X2 by a similar expres-
sion, but with A and B replaced by A z and B2, respec-
tively, where

3 ~
= [—2( 36+y )/a2~~2]'

B2 = [ —2(36+ y ) Ice" ]'
(5.9a)

(5.9b)

with &, given in Eq. (5.2) and &z following in analogy
with X.2 [following Eq. (5.8)]. It can be seen from this
equation that &, and &~ both represent oscillators such
as described earlier in this section. Although they are de-
scribed by mutually different coe%cients A and B, their
properties are qualitatively the same. Let us denote the
energy and the angular momentum of these oscillators as
E, and E2 and L, and L2, respectively. Of course, the

It should be noted that, in the present notation, 36+y is
the detuning at state m 2 (see Fig. 2). Finally, A ~ and 3 4

are defined similarly as A, but with a replaced by cx„22
and a»&2 [Eq. (3.7)], respectively. It can be shown in the
same way as before that the right-hand side of Eq. (5.8) is
proportional to the time-averaged free energy [Eq. (5.4)]
per unit volume, if the fields at co and at 3~ are both in-
cluded. This is a straightforward but tedious exercise,
which is not given here. It should be noted that the mul-
tiplying factor of X2 in Eq. (5.8) equals unity when y =0
(since under this condition co =3' ). When this con-

2

dition is not strictly satisfied, the deviation from unity is
of order 5/m «1.For this reason, we assume henceforth
for convenience that the multiplying factor equals unity
exactly. It should be stressed that this restriction is by no
means fundamental, and can be lifted easily if necessary.

Under this restriction we can finally write the Hamil-
tonian function applicable to THG, from Eq. (5.8), as

&=&,+&2+ q& q& + q& q& cos(3qz —qz ),2 2 2 2 3

A2 1 2 3A2 1 2
3 4

1 2

(5.10)

total energy of the system E =E, +E2 is conserved.
However, because the Hamiltonian depends on the
difference 3q& —

q& only, we see that in addition,
2

L, +3L2 is a conserved quantity too. Not surprisingly, it
can be shown that this corresponds to the total energy
fiow (that at co and that at 3') through the system. The
conservation of energy flow through the system thus
reduces the number of degrees of freedom of the system
from 4 to 3.

We now consider the influence of the two nonlinear
coupling terms in Eq. (5.10). Clearly, in the absence of
these terms, the particles move independently and both
E& and E2 and both L

&
and L2 are conserved separately.

We now include the first coupling term in Eq. (5.10).
Since this term does not have any angular dependence, it
allows the exchange of energy between the two oscilla-
tors, but not that of angular momentum. In terms of the
fields in the periodic stack, this term describes the cross-
phase modulation of the fields at ~ and 3' through their
intensities. The second coupling term does depend on the
angular variables, and so does allow the exchange of an-
gular momentum between the particles. In terms of the
fields, again, this term allows the exchange between the
energy flow at co and 3', and thus describes frequency
mixing, including THG. It is important to realize that
the THG can be quite efficient in the periodic structure.
Remember that, for each of the oscillators, the orbit of
the particle was determined to a large degree by the
anharmonic terms in the potential energy. Similarly, this
implies that the nonlinear coupling terms influence the
motion to a large degree. Conversely, we can conclude
that the fields at co and 3~ can exchange substantial
amounts of power within a characteristic length of 1/B.
We will contrast this behavior later with that of THG in
homogeneous materials.

At this point it is good to remember the assumptions
on which our analysis is based. The most important one
at present is that the media were taken to be without in-
trinsic dispersion. When one is only interested in a
monochromatic light wave (perhaps with small side-
bands), this assumption is justified. When considering
THG, however, this will not be true in general. Most im-
portantly, we assumed that both co and 3' fall within a
stop gap, and so Eq. (5.8) is only valid if this requirement
is satisfied. This requirement is quite severe, but we will
see that it is far less stringent than the equivalent require-
ment for THG in homogeneous materials.

The relevant equations for THG in homogeneous ma-
terials are well known and are not given here. One can
show in the same way as above, that these equations can
be derived from a Hamiltonian formalism too. In order
to compare THG in homogeneous materials to that in the
periodic structures, it is most convenient to compare the
Hamiltonians for these two processes. For homogeneous
materials we find that

&=&,+&,
+4~I'"&o[3q~, qE, +q~, qE, cos(3q~, —

q~, )l

(5.1 1)
where
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~1 2(PE +Pa ~iE )+ 7kAE +3~X ko'VE (5.12)

In these equations, qz and pz and q& and q& are the
1 1 1 2

canonical variables associated with the modulus and the
phase angle of the electric field at co, respectively. The
variables with subscript 2 refer to the field at 3'. The pa-
rameter ko is the wave number of the radiation at co in
vacuum, whereas k„ is the wave number in the material.
In Eq. (5.11), &z is defined similarly as &„except that
k and ko should be replaced by k 3 and 3ko respective-
ly. Just as before, it can be shown that the Hamiltonian
in Eq. (5.11) is derivable from a free-energy argument
based on the definition in Eq. (5.4). Also, again, the
Hamiltonian in Eq. (5.11) implies the conservation of the
total energy flow through the system.

We see from Eqs. (5.11) and (5.12) that the Hamiltoni-
an for the homogeneous material is quite similar to that
for the periodic stacks [Eqs. (5.11) and (5.2)]. The cou-
pling terms in Eq. (5.11) are, in fact, identical in form to
those in Eq. (5.10). The crucial difference, however, is
that the harmonic potential-energy terms in Eq. (5.12) are
positive, in contrast to those in Eq. (5.2). As a conse-
quence, the particles oscillate around the origin where
the anharmonic terms, including the last in Eq. (5.11)
which gives rise to THG, are very small. We thus con-
clude that THG is quite inefficient, and can only be ac-
complished effectively when the oscillators have identical
period, or, when k 3

=3k„. Of course, this is the well-
known phase-matching condition. The severity of this
condition can be appreciated from the fact that the third
harmonic is usually generated using two g' ' processes.

As mentioned before, the Hamiltonian for third-
harmonic generation in the periodic structures has the
property that the anharmonic terms play a much more
prominent role. In addition, no phase matching is neces-
sary in this case, except for the requirement that both co

and 3' fall within a stop gap. This latter requirement is
not as severe as the phase-matching condition and might
offer the possibility of THG in solids mediated by a Kerr
nonlinearity. The dynamics of the Hamiltonian in Eq.
(5.10) is quite complicated, but we hope to report on a de-
tailed analysis in a future publication.

VI. DISCUSSION AND CONCLUSIONS

Optical absorption and damage are the two effects
most likely to hamper the experimental observation of
gap solitons and their related phenomena. Optical ab-
sorption simply limits the effective length of the stack,
and in order to make use of the full stack length it is thus
necessary that the attenuation distance exceed the length
of the stack. Optical damage, on the other hand, limits
the maximum energy flow through the system [Eq.
(2.18)]. Apart from these two criteria for the experimen-
tal observation of gap solitons, the wavelength of the in-
coming radiation should also be tuned to the appropriate
location within a stop gap of the structure. The required
detuning from the nearest edge of the stop gap can be
found from Eq. (2.22). Particularly in the case of small

stop gaps, an actual experiment requires the use of a con-
tinuously tunable source with narrow spectral width.
Another, perhaps easier way to tune the system might be
to vary the angle of incidence, rather than the frequency.
Our present theory does not apply to the situation of
non-normal incidence, which is much harder to analyze.
We expect, however, to report on such an extension in
the near future.

Although our theoretical description thus far was re-
stricted to bulk systems, it appears that waveguide and
fiber geometries are better candidates for experimental
observations. In fiber geometries it is possible to obtain a
periodic index modulation with a considerable number of
periods by the interference of two counter-propagating
laser beams. The thus obtained modulation depth is
quite small, however (typically 10 ). Further, the
damage threshold of silica limits the change in refractive
index through the nonlinearity, to about this same
amount. This implies, through the application of Eq.
(2.18), the need of a stack with about 10 periods, which,
for a period of 1 pm, corresponds to about 10 m of fiber.

In optical waveguides it is the effective guide index 1V

(Ref. 6) for the guided modes that plays the role of a re-
fractive index. One can obtain a modulation of the guide
index by a periodic perturbation of the ideal waveguide.
A well-known way to obtain this modulation (but certain-
ly not the only one ) is to periodically vary the thickness
of the waveguide. The modulation of the guide index in
these tvaveguide diQraction gratings is proportional to the
amplitude of the thickness variation. This amplitude can
have a value of several tens of nanometers, giving rise to
a modulation in the guide index of about 10 to 10
By appropriately choosing the waveguide material, it is
possible to obtain similar values for the maximum change
in the guide index due to the nonlinearity. According to
Eq. (2.18), again, this leads to about a stack with a few
thousand periods, or, alternatively, to a stack length of
several millimeters. This should be contrasted to the re-
quired length in a fiber geometry.

Finally, it might also be possible to observe gap soli-
tons in the microwave region of the electromagnetic spec-
trum. In this regime, it may be that large nonlinearities
can be obtained without appreciable absorption.

Another matter worth discussing at this point are the
results of the Lagrangian and Hamiltonian treatment of
the nonlinear periodic stack. The results for THG are
particularly interesting, as the conventional phase-
matching condition, which dominates the process in
homogeneous materials, does not enter the discussion at
all. It is easily seen that this condition is presently re-
placed by the condition that z =x —cu't be the same for
the fields at co and 3'. In turn, this implies that the
group velocity for the fields at co and 3' is the same. This
is a generalization of the condition in Secs. IV and V that
the fields at co and 3' both fall within a stop gap, so that
both group velocities vanish. Note that this requirement
is rather different from the usual phase-matching condi-
tion in bulk materials, which requires that the phase ve-
locity of the two fields be the same. The present em-
phasis on the group velocity, rather than the phase veloc-
ity, is consistent with the notion that we are dealing with
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the envelope function of the electromagnetic field, rather
than with the field itself. This is a most important
difference from a practical point of view, since the group
velocity in the periodic structures can, to some extent, be
tailored by the choice of materials and by the stack
period. This thus opens the possibility of optimizing non-
linear periodic structures for THG.

In conclusion, we have considerably widened the scope
of our previous investigations into the properties of non-
linear periodic structures and their associated gap soli-
tons. These investigations focus on the envelope of the
electromagnetic field, rather than on the field itself. Al-
though our method is very general, we have restricted
ourselves to envelopes which have harmonic time depen-
dence which are at rest in space. We have shown that, in
this limit, our method is equivalent to the well-known
effective-mass approximation from solid-state physics. In
addition, the derivation leading to this result shows that
for our approach to be valid, the envelope function
should vary on a slower scale than three lattice constants,
a result which could not be obtained using our derivation
using the method of multiple scales. We have further
generalized this derivation to include more than a single
Bloch function explicitly. This allows us not only to de-
scribe the situation in which the frequency of the incom-
ing radiation corresponds to an arbitrary position in a
stop gap, but also the situation in which the third har-
monic of the incoming radiation is generated. The Ham-
iltonian and Lagrangian treatment, finally, provides a rel-
atively simple interpretation of the coupled nonlinear
differential equations which describe these situations.

refractive-index distribution, except the lowest, and for
the present purpose, therefore,

n (x)= n + (b.n)cos(2kox), (A2)

so that the period of the stack is m. /ko. The wave num-
bers +ko are thus located at the edges of the Brillouin
zone. The electric field is now written as

E(x)=@+(x)e ' +y (x)e (A3)

con
0 (A5a)

and

where the envelopes y+(x) are assumed to be slowly
varying on the scale of the period of the refractive-index
profile. This fact allows us to make two approximations
in substituting Eqs. (A2) and (A3) into Eq. (Al). The first
of these is the neglect of terms containing g+ in the cal-
culation of the second derivative of the electric field. In
addition, it allows us to neglect mixing between frequen-
cy components centered at +ko. Using these approxima-
tions it is then found that the envelopes satisfy a set of
coupled equations

d V'+
l V+~ —+l ag

dx
(A4)

+ l vip — l acpg
dx

where
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APPENDIX A

ko(b, n)

2n

These equations can readily be solved to give

(p~(x)= A, e'~ + A~e

(x) = ' A, e'""—' Azea a

(Asb)

(A6)

In this appendix we apply the Kogelnik approach to
the present problem. This approximation, which is exact
in the limit of vanishing modulation of the (linear)
refractive-index profile, allows us to estimate the size of
the stop gap and the group-velocity dispersion. In addi-
tion, it gives an approximate form for the optical Bloch
functions. It should be noted that the use of Bloch func-
tions in an electromagnetic context is not very common.
Rather, the fields are usually written in terms of forward-
and backward-scattered waves.

The analysis starts with the time-independent wave
equation for the electric field in the linear stack

where p can be found from

p —v 0 (A7)

i (p+ ko )x p —v —2ikox
(A8)

We see from this equation that the functions y+(x)
denote running wave solutions if ~v~

~ cr only. The viola-
tion of this inequality signifies the presence of a stop gap.

Substituting Eqs. (A6) into Eq. (A3) defines two Bloch
functions for the electric field. The first of these, which
consists of the terms with A, in Eqs. (A6), reads as

d2 Coz+ n (x) E(x)=0,
dx c

(Al) and it thus has a crystal momentum equal to

where n was written rather than e as in Eq. (2.1). In the
Kogelnik approximation one assumes that the variation
of the refractive index, An, is small, so that second- and
higher-order terms in this parameter can be ignored.
Since we are only interested in the lowest stop gap of the
structure, we can ignore all Fourier components of the

K —p+ ko (A9)

The other Bloch function has a crystal momentum of—p+ko and consists of the terms with Az in Eqs. (A6).
Since +ko indicate the edges of the BZ, p can be inter-
preted as the distance (in reciprocal space) to the BZ
edge. For p=0 the two Bloch functions simply reduce to
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APPENDIX B

c+cv
0

cv
ko

In this appendix we discuss the relevant free energy for
the present problem. The ultimate justification for the
choice in Eq. (5.4) is that it is consistent with Maxwell s
equations, so that it corresponds to the effective Lagrang-
ian of our nonlinear equations. One has, in principle,
however, four possibilities to define the free energy for
the electromagnetic field. These four possibilities can be
generated through the total differentials '

4mdP, =EdD, 4md9', = DdE- ,

47rdv =HdB, 4~d&
(81)

FIG. 4. Graphical interpretation of Eq. (A10), which gives
the dispersion curves around BZ edge in the Kogelnik approxi-
mation. Note that ~=eve n. The solid lines refer to the disper-
sion curves in an extended zone scheme.

sine and cosine functions. At the BZ edge where the
Bloch functions border a stop gap, the Bloch functions
can, therefore, be made real. They thus represent stand-
ing waves which do not transfer energy. These are well-
known properties for Bloch functions which border a
stop gap.

For the present purpose it is suScient only to consider
the Bloch function in Eq. (A8). Combining Eqs. (A9) and
(A7), it is found that

+[o2+(K k )2]l/2 (A10)

An

CO

(Al 1)

We finally find the group-velocity dispersion, which is
defined as the curvature of the dispersion curve. From
the present analysis it is clear that, apart from the sign,
this quantity is identical for the lower and upper branch
of the dispersion relation around the stop gap. Devia-
tions are, again, due to higher-order effects. We expand
the radical in Eq. (A10) and, using the definitions in Eq.
(A5), it is found that

2c

n(h )con0 (A12)

Equations (Al 1) and (A12) are both used in Sec. II to find
the criteria for the experimental observation of gap soli-
tons [Eqs. (2.18) and (2.22)] and for the validity of the
envelope-function approach as a whole [Eqs. (2.20) and
(2.23)].

Figure 4 gives a graphical interpretation of this equation.
The parameter coo in this figure is defined as kocln, in
analogy with Eq. (A5a). It denotes the angular frequency
of an electromagnetic wave with wave vector ko traveling
in a uniform medium with refractive index n. For this
reason, it corresponds approximately to the middle of the
stop gap (deviations from this position are due to higher-
order effects, which are explicitly excluded from the
present discussion). Combining Eqs. (A10) and (A4) we
can now immediately find the size of the stop gap Acu,

where the subscripts refer to the electric and magnetic
parts of the free energy and the arguments of the fields
were ignored. As mentioned in Sec. V, for externally
driven systems one must use the time-averaged free ener-

gy. This distinction is ignored in the present appendix.
Combining one each from the top and bottom line of Eqs.
(Bl) gives rise to four possible definitions. We can reduce
this number by rewriting Eqs. (Bl) using Maxwell's equa-
tions, the relations between the fields and the scalar and
vector potentials and the fact that the medium is a dielec-
tric. One then finds that

4m.cd 2, = —A (D)dD, 4~cd 7, =D ( A )d A,
(82)

4ncd 9 =D( A )d A, 4rrcd O' = —A (D)dD,

4vrd V, =E (D,H)dD B(D,H)dH, —

4vrd V2=H(E, B)dB D(E,B)dE, —
(83a)

(83b)

where the constitutive relations were again explicitly
written. Apart from the sign, the distinction between 9',
and V2 vanishes for linear media, so that a final choice
can only be made when nonlinearities are present. This
final choice is given by Eq. (83b), but we have not been
able to devise an a priori argument to support this
choice. It is, however, consistent with the notion that
physically the fields E and B, and thus A, are the applied
fields, whereas D and H describe the medium response. It
is thus reassuring that the fundamental fields are allowed
to vary freely, with the inhuence of materials following
through the constitutive relations.

where A is the vector potential and the dot denotes
differentiation with respect to time. Also, the depen-
dence D( A) and its inverse A (D) are explicitly given.
The relations between these fields can be found from the
constitutive relations of the dielectric. From Eqs. (82) we
immediately conclude that we should combine 9', with

I

7 and V, with 7, so that one of the fields is allowed
2 2 I

to vary freely (within the boundary conditions), whereas
the other is found using the relations D ( A) or A (D). If
we had taken other combinations, we would obtain ex-
pressions for the free energy in which the variation of
both 3 and D would be required. Note that this argu-
ment excludes the combination 7, and 7,which is the

1 1

energy density associated with the electromagnetic field.
The two remaining choices are thus
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