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Optical absorption and emission in simple systems: Beyond the rotating-wave approximation

A. D'Andrea
Istituto Metodologie Avanzate Inorganiche, Area della Ricerca di Roma, Consiglio Nazionale delle Ricerche,

00016 Monterotondo Scalo (Roma), Italy
(Received 6 July 1988; revised manuscript received 18 November 1988)

Some model Hamiltonians of simple material systems in interaction with a radiation field are ex-
actly solved by a new generalized recursion method. The linear and nonlinear optical responses are
computed.

I. INTRODUCTION

In the past ten years highly idealized material models,
namely, two-level atoms in a single electromagnetic mode
and three-level atoms in two electromagnetic modes, have
been the object of detailed theoretical investigations. '

Fundamental effects observed in real systems, for in-
stance, Rabi nutation, superradiant effects, and so on, are
explained by these idealized models.

In optical experiments, if the material system is excited
very close to an electronic or vibrational transition, the
model Hamiltonian that describes its behavior is usually
solved under the so-called rotating-wave approximation
(RWA) and the dipole approximation completes the
framework usually adopted.

Swein in his pioneering paper of 1973 exactly solved
the two-level atom model in a one-mode electromagnetic
field (without using the RWA) by a continued fraction al-
gorithm. In the same article the author underlined that
the RWA is fully justified in the following two cases: (a)
when electron-photon coupling is much lower than the
photon energy, and (b) for short-time response of the sys-
tem when the aperiodic nature of the continued fraction
solution was not evident.

The recent development of Rydberg atom studies' has
allowed the preparation of two-level atom systems
strongly coupled to the radiation field. In these systems
the coupling between the atom and the single electromag-
netic mode becomes the dominant process in the time
evolution. Moreover, when the photon energy is not very
close to an energy transition of the material systems the
effect of the counter-rotating part of the matter-radiation
interaction would not be negligible.

Finally, I would emphasize that the RWA is a com-
pletely insufficient framework to explain the behavior of
real systems in multiphoton spectroscopy and in non-
linear quantum optics. ' '' Moreover, very recently, '

the dependence of the photon absorption cross-section
values of molecules from the gauge adopted for the
radiation-rnatter interaction has been pointed out. All
these considerations lead to the conclusion that exact
solutions of model Hamiltonians are particularly interest-
ing in quantum optics.

In this paper I will show that the excitation amplitude
method can solve exactly a large number of model Hamil-
tonians well suited to quantum optic problems. The solu-

tion consists of two steps: (a) the excitation amplitudes of
the model Hamiltonian are obtained as a system of re-
currence equation, and (b) the solution is given in closed
analytical form by a generalized operator. Since this
operator is model dependent, I will show how to obtain
this operator for a large class of model Hamiltonians re-
cently studied in the literature under. the RWA.

In Sec. II the general outline of the excitation ampli-
tude method will be given and in Sec. III the probability
of optical absorption and emission will be computed in
the present framework. In Sec. IV I will use the excita-
tion amplitude method to obtain exact solutions for a set
of model Hamiltonians well suited to quantum optic
problems. In the same section I will underline which
model Hamiltonians have an exact solution available in
the literature and which models are solved for the first
time. In Sec. V selected numerical examples will be dis-
cussed recovering well-known and new results; moreover,
the convergence of the method will be addressed. The
conclusions will be given in Sec. VI.

II. METHOD OF EXCITATION AMPLITUDES

Recently the method of excitation amplitude has been
used to solve a large class of physical phenomena. '

The method is able to solve exactly electron-boson in-
teraction in closed electronic shells. Now, very briefly I
will review the general procedure to obtain the recursion
equations and the generalized operator. For a more ex-
haustive discussion of the method see Ref. 18.

Let me consider a total Hamiltonian of a material sys-
tem in interaction with a radiation field,

H =Ho+HI

where the unperturbed Hamiltonian Ho is composed of
material system Hamiltonian HM and radiation Hamil-
tonian,

Hit = g fico, a,"a, ,

where fico, is the energy of the ith photon of the elec-
tromagnetic field and a, its creation operator. The non-
linear interaction Hamiltonian in the dipole approxima-
tion is

Ht = g g (M„a, +M„'a, )"L, ,
i n
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where M„are the matrix elements of nonlinear suscepti-
bility expansion and the dependence on electronic degrees
of freedom is contained in the operators,

L, ,
= g A(i, a,P)P ti,

aP
(4)

a,"H0 =(H0+nA0i, ) a," .

The last step of the method concerns the solution of re-
cursive equations in closed form by a continued fraction
or a more general mathematical algorithm. A more ex-
haustive presentation of the method, embodying the con-
vergence criteria and the comparison with other recur-
sive methods available in the literature is discussed in
Ref. 18. In the present paper I prefer to discuss the con-
vergence of the method through physical arguments,
rather than resorting to rigorous mathematical theorems.
Moreover, some review articles, which have recently ap-
peared in the literature, ' address the general problem
of convergence in recursive methods.

III. OPTICAL ABSORPTION AND EMISSION

where ~a & and ~p& are the electronic configurations and
P ti= ~a &(p~. The quantities A(i, ap) characterize the
model of the material system.

According to the physical problem, we are interested
in computing the following excitation amplitudes:

4 t3(E) = (P (E H) —
'Pt3ti &,

where the angular brackets denote the average on a
coherent photon state or an eigenstate of photon number.

The method allows the computation of the excitation
amplitudes 4

& by a system of recursive equations ob-
tained by the combined use of two operator identities,
namely,

(E H) ' = (E——H0 ) '+ (E —H0 ) 'Ht(E H)—
(6)

where the transition amplitudes are

@f;(E)=(f,n~(E H—) '~i &,

and the initial state !i & can be a coherent state.
The present method can give exact solutions of model

Hamiltonians recently published in the literature ' in a
unified mathematical scheme, as I will show in Sec. IV.

IV. THEORY

Schweber' in his pioneering paper of 1967 exactly
solved the two-level system under one-mode laser irradia-
tion. Some years later, Swain exactly solved the same
problem, by using the equation-of-motion approach to
generate a continued fraction solution. Later on, the
solution for three levels and one boson and three levels
and two bosons under the RWA was published in the
literature. ' In a recent paper' the general problem of
N levels and M bosons was addressed by the present au-
thor.

Now I will recover by the excitation amplitude method
the exact solution for two levels and one mode, showing
the equivalence with Swein's results and then I will give
the exact solution for the following systems: three levels
and one mode, two levels and two modes, three levels and
two modes, and two levels under nonlinear photon in-
teraction. These methods will be studied in order of in-
creasing complexity of the mathematical algorithm in-
volved in the exact solution.

A. T~o levels and one mode

The simplest model for the interaction between radia-
tion and matter is that in which a single two-level atom
interacts with a single mode of the electromagnetic field
and the atomic transition is electric dipole permitted.
This system is modeled by the total Hamiltonian,

Let me consider a material system in its initial state ~i &

at time t =0. The transition probability of reaching the
final state ~f & at the time t )0 under laser irradiation
will be

II =IIo+Irr

HO=E[c&c]+czczcz+moa a,
Hl (MOa +MOi2 )(c ic2+c2ci )

(13)

(14)

P, f(t)=((fbi(t)&)',
where,

(f~i (t) &
= (f~exp( iHt) ~i &—

f dE Gf, (E)e (9)

The integral of Eq. (9) can be computed by the theorem
of residues (the path integral is above the real axis and
encloses all the poles of the integral function2). The final
state can be given as a general expansion in photon num-
ber ~f &= g„A„~f,n &, where f characterizes the elec-
tronic state and n is the photon number, the function
Gf;(E) is

where Mo is the matrix element of dipole moment, c, and
cz are the energies of the unperturbed electron levels, and
c00 is the one-mode laser energy (where fi= 1).

Let me consider a general non-normalized initial state
tl

~i & =(a ') '~v&, where the optical electron is at the v= 1

or 2 unperturbed state in presence of n photons of ener-
gy c00. From the two operatorial identities of Eqs. (6) and
(7) and using the relation g ~ 2g, ~ j,n &(j, n~ =1 we
obtain the recurrence equations, '

42(co) =62(0i nco0)[ n!5—2 5„+M0 @i '(r0)

+nM0&", '(c0)],

Ni(co)=Gi(co —nco0)[ n!6,„5„+M +02+'(~)
Gf;(E)=(f~(E H) 'j!i &= g A„&f—, (E), (10) + nM0%2 '(co )],
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where the zeroth-order Green functions are

G, (co —ncop)=(j, nI(co —s, H—p) 'Ij, n )

= (j I
(co —e H——n co )

Ij ),
and the excitation amplitudes are defined by

(16)

@ (co)=(jla "(co—H) 'It &

Note that I have chosen non-normalized boson states to
avoid tedious factorial terms. Finally we can obtain
decoupled equations by inserting the second equation (15)
into the first one,

4z(co) =D2(co —ncop)[ n!5z 5„+M„*G,(co —(n +1)cop)(n + 1)!5, 5„+,
+nMpG, (co (n ——1)cop)(n —1)!5, 5„

+(Mp ) G, (co —(n+1)cop)@&+ (co)+n(n —1)MpG, (co —(n —1)cop)@2 (co)],

where the dressed zeroth-order Green function Dz(co) is

D2(co ncop—) = Gz(co ncop—)/I 1 —IMpI Gz(co ncop)[—(n + 1)G, (co —(n +1)cop)+nG, (co (n ——1)cop)] I (19)

1
d co 4~(co)exp( i cot)—

27Tl
(20)

where the excitation amplitude 42(co) is given by recur-
sive equations

@2(co)=G2(co)[ 1+Mp 4I(co)],

4I(co) =G, (co —cop)[Mp 4~(co)+Mp@~(co)],

@2(co)= G2(co —2cop)[Mp &P, (co)+2Mp@I(co)] .

Finally, imposing the boundary conditions
n ~N ) IMp I /cop, for an N even integer number,

4z (co) =NGz(co —Ncop)4, '(co),

we obtain the exact solution in closed form,

@2(co)= G2(co)

IMp I G2(co)G, (co —cop)

2IMp I'G, (co —cop)G, (co —2cop)

3 IMp I'G P2(~ —2~p) G Pl(~ —3~p)

1 0 ~ ~

(21)

This formula coincides with Eq. (41) of Ref. 2. If we limit
ourselves to the RWA we must consider only the first
denominator of Eq. (21), in this case,

&,(q) = 1

q-
q Eco

(22)

and analogously for 1~2,2~1, due to the symmetry of
Eqs. (15).

Equation (18) exactly solves the model; the three-
diagonal form obtained gives the solution in closed form
by an infinite continued fraction. '

Let me consider the system prepared at the time t =0
into the excited state I 2 ) with zero photons present in the
cavity (in this case I take E2) s, =0 and Iv) = I2) ); the
probability that at t )0 the system still remains in the
same state

If (t) ) =
I
i(t) ) will be

B. Three levels and one mode

The generalization of the two levels to N levels and one
boson can be given in closed form as shown in Ref. 18,
but the recursive vectorial equations obtained for N &4
[see Ref. 18 Eq. (5.14), p. 223] cannot decouple with
respect to electronic levels and the numerical solutions
become rapidly cumbersome.

The total Hamiltonian of three-level atoms, with
different electronic symmetries, in interaction with one-
mode electromagnetic field is

H =Ho+H

Hp: g Er'cr' ci' +copa a
j =1,3

Hr = (Mpa +Mpa )(c,c2+c2c, )

+(M*, a +M, a )(czc3+c3c2)

(23)

(24)

(25)

where Mo and M& are the matrix dipole moments for
1~2 and 2~3 electronic transitions, respectively. Fol-
lowing the same procedure as in the two-level case, we
obtain a system of recurrence equations for the excitation
amPlitudes Nr(co), where j =1,2, 3,

where q =co—c.2 for c& =0 and Aco=coo —c,2 is the detun-
ing between electron transition E z

—c. , and photon energy
cop. The poles of Eq. (22) are obtained by

q
— =0,

Ado

as function of Rabi energy A=(bco +4IMpI )'; in fact,
the poles are q+ = (Aco+0)/2. Now we can compute the
integral of Eq. (20) by the theorem of residues and finally,
the probability is

P (t ) = I [0cos(Qt)+i b co sin(Qt)]exp( i scot)/I—I
I

Under resonant condition Ace=0 we obtain the well-
known result,

P(t)=cos (Qt),

where 0=2IMpI. In Sec. V I will discuss the correctives
to the RWA.
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N&(co) =G &(co
—n coo)[n!6&„5„,, +M o4z '(co)+nMo+z '(co)],

g&z(co) =G, (co —n coo)[n!5z, , 5„+Mo&P", '(co)+M*, &0", '(co)+n(Mo+", '(co)+M, &3' '(co))],

C&3(co) = 63(co—neo)[n!6, 5„,, +M*, &0z" '(co)+nM, &bz '(co)] .

Finally the decoupled equation is

C&z(co) =Dz(co —neo) I n!5z,5„,+Mo (n + 1)!G,(co —(n + 1 }coo)5, 5„+,
+M*, (n + I )!G3(co—(n +1)coo)5„5„+,

+ nMo(n —1)!G
&

(co —(n —1)coo)6& 6„&,+nM, (n —1)!G3(co—(n —1)coo)

+4&z + (co)[MoG, (co —(n + 1)coo)+M, G, (co —(n + 1)coo)]

+n (n —1)4z (co)[Mo G, (co —(n —1)coo}+Mf G3(co —(n —1}coo}]),

(26)

(27)

and the dressed zeroth-order Green function Dz(co —n coo) is

Dz(co —neo)=Gz(co —n oco)/[1 —Gz(co —n coo)[ (n +1)}Mo~ Gz(co —(n +1)coo}+(n +1)~M,
~ G3(co —(n +1)coo)

+n ~Mo~ G&(co —(n —1) coo) +n M& ~
G3(co —(n —1)coo)]I . (28)

The solution is again in the three-diagonal shape and we can compute 4z(co) by the continued fraction algorithm. Fi-
nally, the quantities @",(co) and +3(co) are computed by Eqs. (26).

C. Two levels and two modes

A simple material system with two bosons involved in its dynamic is the so-called vibrating molecule in the one-mode
laser cavity. This model under resonant Raman spectroscopy was studied by the present author, ' ' in the case of har-
monic and anharmonic vibration potential. The Frank-Condon effect was also discussed. The model Hamiltonian is

H =Ho+H

H = c ic &c i + c2c 2c2+ MO~ ~ ++oh b,
Hl:g zccz(6 +b) +( Moa+Moa )(czc) +c ]cz )

(29)

(30)

(31)

where Ao is the interatomic vibration energy, coo the photon energy, g the electron-vibration coupling, and Mo the ma-
trix dipole moment of the electron transition. The solution of the model is given by the following recurrence relations:

(co) =Gz(co —neo —m Ao) [n!m!5z„5„„6,, +g [@z' '(co)+md&z' '(co)]+M+&", +' (co)+nMo+~ ' (co) I,
(32)

(co)=G, (co —n co—o mA o)[n!m! 5, 5„5 +Mo 4&+' (co)+nMo@z ""(co)] .

Now inserting the second equation into the first one, we obtain the decoupled recurrence equation,

(co) =Dz(co nero mQo)—[ n!m—!5z 5„,6 „+Mo (n +1)!m!G,(co (n +1)c—oo mQo)6&, 6—„+&
5

+nMo(n —1)!m!G,(co —(n —1)coo—mQo)61, 6„& 6

+g[Nz™+1(co)+mezz™1(co)]+Mo G", (co —(n +1)coo—mflo)4z" ' (co)

+n (n —1)MoG
&

(co —(n —1)coo—m IIo)@z ' (co) I,
and the zeroth-order Green function Dz(co —neo —m Ao) is

Dz(co —n c—oom0o)=Gz(co —neo mIIo)/[ I —Gz(co ——ncoo mQo)—
X [ (n + 1)~Mo~ G, (co —(n + 1)coo—m Ao)

+ nlMo I'G
&
(~—(n —1}~o—m &o)]1 .

(33)

(34)

The solution of Eq. (33) is given in closed form by a matrix recursive algorithm. In fact, let me consider for the sake
of simplicity the initial state ~i }= ~2 } with zero vibrations and zero photons; in this case Eq. (33) can be written in the
form
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g [ 6, —Dz(co —
nemo

—mQO)[MO G, (co —(n + l)coo —mAO)6

+n (n —
1)MDG& (co —(n —1)coo—m Qo)6& „z]I+~z (co)

—g gDz(co —neo„—mAD)6 „C&z™+1(co)—g mgDz(co —ncoo—m00)5 „4z' '(co)
P

= n!m!6„05 DDz(co —neo 0
—m00) . (35}

Equation (35) is three diagonal with respect to the m index, but the quantities are matrices of dimension N XN with
respect to the indices p and n (if the recurrence equation has converged for n ~N) and the transition amplitudes are
column vectors of dimension N with respect to the p index. In this case Eq. (35) is

A(m)@(m) —B(m)N(m + 1)—C(m)W(m —1)=E(m),
where the matrices and the vector quantities are given by

A=( A„(m)) =5„—Dz(co —neo„—mI20)[ M~ G& (co —(n +1)coo—mIID)5& „+z

+n (n —1)MOG
&

(co —(n —1)coo—m IID)6& „z],
B= ( B „(m ) ) =gD z ( cu —n coo —m II0 )5q„,
C:—( C „(m ) ) = m gD z ( ru neo—o m0—0 )5p„,

(36)

(37)

and

E(m):—n!m!Dz(co —
tnt

—
0 mII&)5„05~0 .

Finally, the solution in closed form is given as continued fraction of matrices, namely,

@(0)= [F(0)] 'E(0),
F(0)=A(0)—B(0)[A(1)—B(1)[A(2)—B(2)F(3) 'C(3)] 'C(2)I 'C(1) .

Note that for reasonable values of parameter, g /Bo the size of matrices N XX is not too large and the numerical con-
vergence will be reached sufficiently fast by a medium size computer as shown in Ref. 26.

D. Three levels and two modes

A three-level atom in interaction with two electromagnetic modes is a very useful model in quantum optics and it has
been given a lot of attention in literature. ' Two-photon absorption and emission and the coherent Raman scattering
are spectroscopies that need three levels and two modes as a minimal model. The total Hamiltonian is

H Ho+H (39)

Ho= g Ec c+ g coaa, ,

j=1,3 i =1,2

Hl =(M~a &+M|a&+Nzaz+Nzaz)(c, cz+czc~ )+(Mzaz+Mzaz+N~a, +N& a& )(czc3+c3cz),

(40)

(41)

where M, and N, for i =1,2 are the dipole matrix elements of electron transltlons. In the simple case of resonance
where the photon energy co, (coz) is very close to the 1~2 (2~3) electron transition, we can assume N; ~0 for i = 1,2
and the solution is obtained by the operatorial identities (6) and (7) as coupled recurrence equations,

d&P'"(co) = G, (cu —mes, —neo )z[n! m! „6, 6„6„+Mf Nz '"(.co}+mM, @z '"(co)],

&5z '"(az)=Gz(co —mt'& —ncuz)[ n!m!6z 6 „5„+M*,+P+'"(co)+mM&@P '"(co)+M& @P'"+'(co)

+nMz&P3 '" '(co)],

N3 '"(co)=G3(az —mes, —ncoz)[n!m!63,5 5„+Mz @z '"+'(co)+nMz@z '" '(co)] .

The general solution is obtained by the decoupled recurrence equation,

(42)
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@z "(co)=Dz(cu —mes, —ncoz)[ n!m!5z,,5,„,,5„,, +M
1
n!(m +1)!G,(al —(m +1)col —ncoz)51 5 +1 „5„

+mMln!(m —1)!G,(co —(m —1)all —ncoz) 5, 5 1,5„„
+Mzm!(n +1)!G",(al —mes, —(n +1)coz)53„5„+, 5

+nMzm!(n —1)!G,(co —m col
—(n —1)coz)53 5„1,,5

+M
1
2&z +'"(cu)G', (~—(m +1)all —nalz)

+m (m —1)M11Ilz "(cu)G1(co—(m —1)col —neo 2)

+Mz G3(co —meal —(n +1)coz)@2 '"+ (co)

+n (n —1)M2, GO3(cu —mcu, —(n —1)alz)+2"'" '(al)],
and the zeroth-order Green function is

Dz(cu —mcJ, —neo )2=G2(co —me@1 —ncoz)II 1 —Gz(co —mes, —ncoz)[ lM, l
(m +1)G1(co—(m +1)col —neo 2)

+ lM, l
mG2(co —(m —1)co,—ncoz)

+ lMzl (n +1)Gz(co —mao, —(n +1)coz)

+nlM2 Gz(co —mcus, —(n —l)cuz)]I

(43)

(44)

Finally, the solution in closed form for the vector
N(n) —= [cI1~2"(al)] is given by the recursive equation (36)
using the same procedure as in Sec. IV C to obtain the
matrices A, B, and C. The quantities c0", '"(co) and
0&3 "(cu) are computed by Eq. (42).

If the system is out of resonance we cannot associate
each photon to a particular electron transition and we
have to solve the full interaction Hamiltonian as given in
Eq. (41). The exact solution is more involved than that of
Eqs. (43) and (44) and the explicit form is given for the
first time in the Appendix.

where the coefFicients for i = 1,2 are

3,"=Min (n —1)G; (co —ncaa),

B,"=MonG, (co —na)0),

C,"=(2n +1)lM1 l G; (co —ncoo),

D,"=M„*G;(co —neo),
F.,"=M

1 6; (co ncoo), —

(49)

H Ho+H

Ho =E]C 1C 1 + E, 2C 2C2 +COoa a

(45)

HI=[(Moa +Moa)+(M, a +M*, a) ](c,cz+czc, ),
(47)

where Mo and M, are correlated to the diagonal part of
linear and nonlinear susceptibilities. In this case the two
operator identities of Eqs. (6) and (7) give symmetric re-
cursive equations,

&9,"(co)= Az" @", (co)+B &b", 2'(co)+Czcll", (cu)

+Dn@ n +1( ) +~ »
cl&

n + 2( ) +Fn

cP", (co) = 3 ", @," (co)+B",%2 '(co)+C", lIlz(cu)

+DnC n+1~ ~+~nc n+2~ ~+~n

E. Nonlinear optic in two-level system

The potential of the method is completely developed by
solving exactly nonlinear optic models. In these cases the
RWA fails to give sensible results.

Let me consider the simplest model, namely, a two-
level atom interacting with a one-mode electromagnetic
field. The interaction embodies linear and quadratic elec-
tric fields. The model Hamiltonian is

Inserting one recurrence equation into the other, we ob-
tain the decoupled recurrence equations for i = 1 or 2,

@n &n+ pn@n —4+ ~n&y 3»+ 5»@n —2+ &n@n
—

1

+ gnawn +1+ n@n +2+ gnat&» + 3+ ncI » +4 (5p)

where the coefficients for i =2 are

n [ Fn+( g nFn —2+B»F» —1+Cnpn+DnFn+1
O'2 2

+p »F» +2)]yp n

pn g n g n —2 ypn

X2 2 1 2 1 2
n (g B »2+nBngn —1)ypn

5n ( g nCn —2+BnBn —1 +»CD n )gpn

( g»D» +B»C» +C»B»+D»An+ )/P" (51)

gn —
( BnE n 1 ~ C nD n +D nC n + 1 +~ nB n + 2

) yp n

I2 2 1 2 1

n
( C n~ n +D nD n + 1 +~ nC n + 2

) yp n
2 1 2

gn (Dn~ 1+»+~»D»+2 )ypn
2 2 1 2 1 2

~nEn +2 ypn
2 2 1 2
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@n Otn+ a n@n —4+ b n@n —3+C n@n —2+ d n@n —
1

I I I I I i i

where the coefficients a;, b;, c, , and d,- are

a;"=P,"/D;",

bn (~n +~ &nn +1) /Dn

n (gn+Fn +n2+gnbn+1}/Dn

dn (En+Gn&n+3+Fnbn+2+~ncn+1)/Dn
I I I

(52)

(53)

and the functions D,", E,", F,", and 6," are

D. —1 Ka- + G b. +3 F C
+ E- dn+

I I I I I I I I

E."=&'+ ". b.'+ +G" .n+ +F"d'+
I )I I I I )

Fn=„"+ ' "+4+G'dn+'
I I I I I I 7

G n —gn+ Knd n +4
I I I

(54)

Equations (52)—(54) completely solve the model Hamil-
tonian of Eqs. (45)—(47), taking into account the bound-
ary conditions for n ~N~ ao,

pn [l ( g n~n —2 +gnDn —
1 + CnCn +Dna n +1

+/ng n+2 )]

Note that the coefficients of Eq. (50) for i = 1 are ob-
tained from Eqs. (51) changing 1~2 and 2~1.

The recurrence equation (50) falls into a class of equa-
tions that can give the exact solution by using an algo-
rithm more general than the continued fraction; in fact,
we have to diagonalize a non-Hermitian nine-diagonal
matrix.

To proceed we cast Eq. (50) in the following simpler
form:

different time behavior would be evident in the long-time
response even for very small electron-photon coupling.

The absorption and emission probabilities P(t) of Eqs.
(8) and (9} are computed by the two following steps: (a)
to find the poles of excitation amplitude 4(co), and (b) to
compute the probability P(t) by the residues theorem.
Point (a) can be performed numerically and usually the
convergence of the method is very fast for "screening"
energy ~Mo~'/coo not much greater than coo. Note that
we can perform the pole calculations analytically for the
continued fraction solution. In fact, imposing the bound-
ary conditions (for n =N), the excitation amplitude
C&P'(co) is the Nth Pade approximant ' of the continued
fraction of Eq. (21) and the poles are roots of an Nth-
order equation, obtained as product of Pade approxi-
mants from zero to N,

F(co}=[4'2 '(co)41(co)@~(co)4,(co) N~(co)] ', (56)

where N is an even integer number. Moreover, the
analytical solution can be obtained by using a computer
with a good symbolic mathematical software that can
perform algebraic operations.

The convergence of the method is given by physical
considerations. In fact, increasing the number of bosons
n ~N, the energy shift —Neap of the zeroth-order Green
function moves the pole far from the characteristic ener-
gies of the system c; for i = 1,2, . . . ; thus the effect of the
(N+1) term on the response must be negligible. In this
case we can bound the Hilbert space to the Nth dimen-
sion, making a very small error.

Now let me consider more closely the two levels in a
one-mode electromagnetic field. The first correction to
the RWA is given by Eq. (21) with N =2. The poles are
roots of the following equation:

N ~N gN N N gN dN N
i Ii~ i i~ i i~ i i (55) q

—
q (2~O+ &~)+q (2'„hen —3~Mo ~')+2mo Mo ~'=0,

(57)
V. DISCUSSION

The first point to emphasize is that the present method
can solve a large class of electron-boson interaction Ham-
iltonians and I have shown only a few well-known mod-
els. For example, we can solve the Hamiltonians of Sec.
IV when two- or three-level atoms are in nonradiative in-
teraction with a nonmetallic solid surface (closed bands)
as shown in Refs. 19—21 or a vibrating molecule in a
two-mode laser field.

The second, more formal point concerns the
mathematical method. While obtaining the recurrence
system of equations from the model Hamiltonian is al-
ways possible using the operator identities of Eqs. (6) and
(7), finding the exact solution in closed form is not always
possible. In particular cases, the number of unknowns in
the recurrence equations can diverge increasing n and we
have to introduce a cutoff in order to numerically solve
the problem.

Finally, under resonance conditions we can easily re-
cover the solutions obtained by the RWA, as shown in
Sec. IV A. Moreover, as pointed out by Swein, while the
probability P(t) computed by the RWA [Eq. (22)] is a
periodic function of the time, the exact solution of Eq.
(21) describes an almost periodic function and this

where q =co —c and Aco=c. —cup is the energy detuning.
Under condition ~Mo~ /coo &coo and not far from reso-
nance (b,co «n„), the probability of radiative decay at
t )0 is l P(t) and—
P(t)= q '+ —Ace'

exp( —iq '+t)0'+ ~MO~ q+ /coo

q
' —Ace'

+ exp( —iq' t)—0'+ ~Mo~ q' /co„

2/M /'

exp( —2i coot )
( 2')o q '+ )( 2')p q )

(58)

where hen'=b, co —
~Mo~ /coo, q'+ =(b,co'+f1')' . The new

Rabi energy is A'=[bc@'+4~Mo~ ]'
Finally, I would underline that the first correction to

the RWA for two levels in one mode gives an energy shift
of ~Mo~ /coo (Bloch-Siegert shift) and a new term appears
in the optical response at the 2cop energy.

Now let me consider the three-level case in one elec-
tromagnetic mode with initial state ( t =0)

~
v)=

~

E.3, n =0). The system of Eqs. (26) under the RWA is
reduced to
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cl~o~(co) = Goi(cu) [1+M*, @z(a~)],
cl~zi(ai) = Gz(cg —coo)[Mo 4z, (cu)+M, 4,(co)],

cubi, (co) =2MoG, (co —2coo)cl~z(co) .

(&9)

If the unperturbed electron energies are c.z
=0,

c3 = —c. ,
= c and the detuning is Ace = coo —c, the proba-

bility at time t )0 that the system will be in the state
~
v)

is given by the excitation amplitude,

z —3b,coz +2b, co —2iMoi
(pO

z —3b,~z +(2b,co —2~Mo~ —M, )z +26,co~M,
~

(60)

where z =co —e. The poles of Eq. (60) are roots of the
third-order equation,

Z' 3bcoz'+—(2hco —2~Mo~' —M, ~')z+2bcolM, I'=0 .

Under resonance condition bee=0 and with dipole mo-
ment ~Mo ~

= ~Mi ~

= ~M~, the poles of 4~(co) are
co, =s —IMI&3, coz=c., and co, =a+ IMI&3. The proba-
bility of radiative decay for three levels and one mode is
1 P(t), wh—ere

P(t) =
~ [ exp( —iso, t)+4 exp( —i cozt)

+exp( —i co&t ) ]l6 ~

Finally, I would emphasize that the present method
easily recovers approximated results in quantum optic
systems recently published in the literature ' and can
give a quantitative estimation of terms neglected by using
the RWA.

VI. CONCLUSIONS

A set of model Hamiltonians, well suited by computing
optical stimulated absorption and emission in molecular

and atomic systems, are exactly solved by a new recursive
mathematical method. The general problem of ¹ tomic
levels in M-electromagnetic modes (for N and M integer
numbers) can be addressed by the present method and the
exact solution obtained is free of the RWA. Moreover,
nonlinear optic effects are computed by the present
method for two-level atoms under one-mode laser irradia-
tion and the exact result is given for the first time in
closed analytical form.

APPENDIX

I will compute the exact solution of the model Hamil-
tonian of Eqs. (39)—(41) out of the resonance case N, %0
with i =1,2. This solution is given by a generalized five-
diagonal matrix. The numerical solution of this algo-
rithm is not time consuming for a medium-sized comput-
er when the system is not very far from the resonance.

The two operatorial identities of Eqs. (6) and (7) give
the following recursive system of equations:

&Iii "(co)=G i(co —meri —ncoz)[ 5„6,„,6„n!m!+Mi cl~z '"(~)+mMi+'z

+nNz@z " '(co)+Nz 4z "+'(co)], (A 1)

cliz "(co)=Gz(co—men, —n~ )[z5z, ,6,,5„,,n!m!+Mi Ni +'"(co)+mM, cI&i '"(co)+M& cIi& '"+'(co)

+nMz4& '" '(co)+Nz 4i '"+'(co)+nNz+i "'(co)'
+N*, @i +'"(co)+mN, N, '"(co)], (A2)

Ni "(co)=G, (co mcoi ——ncoz)[ 5q„6 „6„,,n!m!+Mz cliz '"+'(co)+nMzcliz '" '(co)

+N*, cI&, '"(co)+mN, cadiz '"(co)], (A3)

where G, (co) with i =1,2, 3 are bare Green functions of electronic states. The transition amplitudes are defined by
N; "(co)= {i~a i az(co 0) '~v), where ~v—) is the initial state of the system and i =1,2, 3 are allowed final states.

Let me define the column vectors @(n)=(@~z"(co))of dimension m ~M~ ~. The decoupled matrix equation is

A(n)@ (n)z—B(n)@z(n +2)—C(n)@z(n +1)—D(n)@z(n —1)—E(n)@z(n —2)=F(n), (A4)

where the components of the matrices A, B, C, D, and E are
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A(n)= A~ (n)= 6z I 1 —Gz(co —mco, —ncoz)

X [IM, I (m +1)G, (co —(m +1)co,—ncoz)+ IM, I mG, (co —(m —1)co, —ncoz)

+ IMz I
(n +1)G3(co m—co1 —(n +1)coz)+ IM2 I nG3(co —mco1 —(n —1)coz)

+ INzI (n +1)G, (co —mco, —(n +1)coz)+ INz I nG, (co —mco, —(n —1)coz)

+ IN, I (m+1)G3(co —(m+1)co, n—~z}+IN1I'mG3(~ —(m —1)~1—n~z)]]
—

5z +z[M1 G1(co (m —+1)co1—ncoz)+N1 G3(co —(m +1)co1—ncoz)]
—(m —1)5 2[M, mG, (co —(m —1)co, ncoz—)+N, mG3(co (m ——1)co,—ncoz)],

B(n)=B (n)= I6 „[Mz G3(co —mco, —(n +1)coz)+Nz G, (co —mco1 —(n +1)coz)]IGz(co—mco, —ncoz),

C(n) =Cz (n)= [ 5z +,[NzM1 G1(co—(m +1)co1—ncoz)+N1M2 G3(co —mco1 —(n + 1 )coz)

+M~1Nz GO1{co —m co, —(n + 1)coz }+MzN,*G3(co—(m + 1)co1—ncoz)]

+m5& ~ 1[ Nz M, G1(co (m ——1)co, ncoz)+N1—Mz G3(co —mco1 —(n + 1)coz)

+M1N'z G1(co—mco1 —(n + 1)coz)+Mz N1G, (co —(m —1)co1—mcoz)] I

X Gz(co —mco1 —ncoz),

D(n)=D& (n)= I n5~ ~+1[N2M1G1(co —(m +1)co1—ncoz)+N1MzG3(co —mco1 —(n —1)coz)

+N2M", G, (co —mco, (n ——1)coz)+MzN*, G3(co (m +1)—co, —ncoz)]

+nm 5 1[ NzM, G1(co—(m —1)co1 ncoz }+—N1MzG3 (co mco, —(—n —1)coz)

+M, NzG1(co —mco, —(n —1)coz}

+M2N, G3(co —(m —1)co, —ncoz }]I Gz(co —mco, —ncoz),

E( n ) =E ( n ) = I n ( n —1 )6 [ M2G 3 {co —m co, —( n —1 )coz }

+NzG, (co mco1 —(n ——1)coz)] I Gz(co —mco1 —ncoz),

(A5)

(A6)

(A7)

(A9)

and the known term of Eq. (A4) is

F(n)=Gz(co —mco1 —ncoz)[6z 5 „5„,n!m!+M1*n!(m +1)!51,5 +1 6„„G1(co—(m + l)co1 —ncoz)

+M1n!m!51 5 1,5„,G1(co—(m —1)co1—ncoz)

+M2 {n +1).m.53 5 5 +1,~G3{co mcol —(n +1)co2}

+Mzn!m!63 5 .5 —1 G3(co —mco1 —(n —1)coz)

+N2 {n +1).m 51 5 P~ +1, G1(co mco1 (n +1)coz)

+Nzn!m!5, „6,5„,„G,(co —mco, —(n —1)coz)

+Nfn!(m+1)!63,6 +1 5„G3(co—(m+1)co1 ncoz)—
+N, n!m!63,6 1,5„G3(co—(m —1 )co1 —ncoz)] . (A10)

Finally I can reduce the recursive equation (A4) in a simpler form

@(n)=a(n)N(n —1)+P(n)@(n —2), (A 1 1 }

where the a and p matrices are

a(n) = (A(n) —
j [B( )an(n +2)+C(n)]cc(n +1)+B(n)P(n +2) I )

X I[B(n) (cnc+2)+C(n)]P(n +1)+D(n)I, (A12)

P(n) =(A(n) —[[B(n) (n +cc2)+C(n)]cz(n +1)+B(n)P(n +1)) } 'E(n) . (A13)



5152 A. D'ANDREA 39

Now the model Hamiltonian of Eqs. (39)—(41) is com-
pletely solved if we impose the boundary conditions
n~N~~,

a(N) =A(N) 'D(N),

Equations (All) —(A15) with N; =0 and i =1,2 recover
the solution obtained in Sec. IV D of the text as a particu-
lar case. Finally, I expect new and interesting phenome-
na when photons co, and co2 are in resonance with the
same electronic transition.

P(N)=A(N) 'E(N) . (A15)
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