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Squeezing and quantum-noise quenching in phase-sensitive optical systems
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We present a systematic account of the different relations between squeezing, correlated-
emission-laser (CEL) quantum-noise quenching, and general phase-diffusion noise expressed in
terms of quadrature amplitudes. For a wide class of optical devices as described by a general
Fokker-Planck equation, we establish conditions that lead to squeezing and CEL quantum-noise
quenching.

I. INTRODUCTION

In classical physics the complex amplitude E of the
electric field can always be decomposed into its real arn-
plitude

~ E~ and its phase P. As a result of this decomposi-
tion it is possible to study separately different physical
properties of the electric field fluctuations associated with
the intensity and/or the phase noise. The situation is
much more complex in quantum mechanics where a
well-behaved (Hermitian) phase operator does not exist.
Because of this difficulty, simple phase and amplitude
descriptions of quantum fluctuations often lead to funda-
mental physical difficulties or mathematical inconsisten-
cies. The mathematical situation can be improved con-
siderably if instead of using the phase operator, one uses
a trigonometric function of the phase. This approach has
been carefully investigated in the past and these is an ex-
cellent review article devoted to just this problem. '

The recent interest in various physical problems associ-
ated with phase-sensitive quantum devices has revived
the question of quantum phase and amplitude fluctua-
tions. In the context of squeezed states and reduced
quantum fluctuations, the Hermitian components &

&
and

&z of the quantized electric field annihilation operator &

have been used in order to describe a phase-sensitive
decomposition of the light signal. As a result of this
decomposition, squeezed quantum fluctuations in the in-
or out-of-phase quadratures have been formulated and
predicted. In a series of recent experiments these predic-
tions have been confirmed and light with nonclassical
statistics has been generated and observed.

In laser physics and quantum optics, we frequently en-
counter a situation in which a mixture of semiclassical
and quantum pictures can be used in order to describe
the physical properties of the system. For example, for a
laser operating above threshold the number of emitted
photons is so large that it is often justifiable to replace the
electric field amplitude by +n, where n is the mean
steady-state number of radiated photons. On the other
hand, the intrinsic laser linewidth associated with the
electric phase diffusion caused by spontaneous-emission
noise (the Schawlow-Townes linewidth) is a quantum-

mechanical effect and the semiclassical approach cannot
really treat the problem.

In related work" we have recently investigated the
possibility of obtaining two-mode laser action in which
the individual spontaneous-emission events are correlated
via an appropriate preparation of the lasing media. Such
a correlated-emission laser (CEL) has been predicted to
have a phase-diffusion noise below the Schawlow-Townes
limit. These predictions have been confirrned by recent
experiments. ' '

This combination of semiclassical and quantum
features of the laser radiation motivates us to formulate
in this paper a straightforward connection between the
phase and amplitude fluctuations and the quantum fluc-
tuations of the &, and &2 components. In this way we
avoid the mathematical complications related to the use
of the quantum-mechanical phase operator and obtain a
rather simple picture and description of amplitude and
phase fluctuations in terms of quantum-mechanical 8,
and &2 components.

Although some elements of our discussion can be
found in the literature, ' we believe we give here the first
systematic account of the different relations between
squeezing, phase-sensitive spontaneous emission in CEL
operation, and phase-diffusion noise expressed in terms of
quadrature amplitudes.

In Sec. II of this paper we give a heuristic description
of amplitude and phase fluctuations, based on simple
geometric arguments, in terms of the &, and Q2 com-
ponents. In Sec. III we establish the connection between
amplitude-phase fluctuations and quadrature fluctuations
using the general properties of a Fokker-Planck equation
satisfied by the Glauber's P quasidistribution. We find
conditions under which we can obtain phase-sensitive
diffusion coefficients such as those that occur in CEL
operation and/or squeezing. Our conclusions are to a
large extent model independent and cover a broad range
of possible applications including correlated-emission
lasers, linear amplifiers, and two-photon lasers, ' etc.
In Sec. IV we derive general conditions for squeezing and
phase-sensitive noise reduction in terms of the general
diffusion coefficients of the Fokker-Planck equation. Fi-
nally some concluding remarks are presented.
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II. QUANTUM PHASE
AND AMPLITUDE FLUCTUATIQNS

Squeezing quantum fluctuations of the radiation field is
associated with the decomposition of the electric field
amplitude into its "coscot" and "sinmt" phases. This sug-
gests that the electric field annihilation operator be writ-
ten as 8=8&+i&2, where 8', and &2 are the Hermitian
amplitudes of the two quadrature phases. The quantum-
mechanical properties of these amplitudes imply the un-
certainty relation

'+o ~ '+oae '+a 'e
a, (p )= (2.3a)

I f'o e I q'o
Qe Q e

a2(V o)=
21

(2.3b)

where 5a = ~5a ~e'q'. In these formulas yo is the instan-
taneous phase of the setniclassical electric field amplitude
and y is the phase of the fluctuating displacement 5a.
From Eqs. (2.2) it is clear that 5al and 5at are related to
the following yp-dependent amplitudes:

A&, 6&2 ~
—,
' .

Squeezed states of light are those for which

( b &, ) ( -,
' or ( b &z ) & -,

' .

(2.1a)

(2.1b)

We recognize in these amplitudes the standard a& and a2
quadratures but rotated by an angle yp towards the direc-
tion fixed by the electric amplitude a. For fluctuations
leading to a small change of the phase 6y and amplitude
5r (see Fig. 1), we have

5ae +5a *e
5al = ~5a ~cos(y —yo) = (2.2a)

5ae ' —5a 'e
5at = ~5a ~sin(y —yo) =

2l
(2.2b)

) ITlQ

These are the standard definitions of squeezing.
In laser physics the fundamental quantities of interests

are related to amplitude and phase fluctuations. It is well
known that far above threshold the amplitude fluctua-
tions are quite small, and occur around a constant value
which, in a semiclassical approximation, is given by +n,
where n is the steady-state number of emitted photons.
In the following we will relate the laser phase and ampli-
tude fluctuations to the Hermitian operators 8, and &2.
We present our arguments using first a simple semiclassi-
cal picture of the laser radiation.

From Fig. 1 it is clear that the fluctuation 6a
~~

is associ-
ated with pure amplitude fluctuations of a. Simple tri-
gonometry leads to the following relations (see Fig. 1):

5a
()

=5a, ((po) =5r,

5at =5a2((po) =a tan5y-+n 5y .

(2.4a)

(2.4b)

Here in the last st~e we have replaced a by the semiclassi-
cal expression +n since in the rotated frame its phase is
zero. Also we have approximated the tangent by the arc.
These relations allow us to approximately identify ampli-
tude and phase fluctuations with the fluctuations of the
phase-dependent quantities a, ((po) and a2(yo).

Up to this point our arguments have been semiclassi-
cal. We now extend our conclusions to the quantum
case. In this case we simply replace in Eqs. (2.3) the clas-
sical amplitudes by boson annihilation and creation
operators 8 and & and associate the phase yp with a ro-
tation of Hermitian observables. Such a unitary transfor-
mation leaves the commutation relation intact, i.e.,
[&,(po), &2(pro)]=i /2 and the uncertainty relation (2.1a)
is seen to be invariant under arbitrary rotations by the
angle happ. This means that by generalizing the semiclassi-
cal amplitude and phase fluctuations we obtain the fol-
lowing quantum-mechanical expressions:

(2.5a)

( (5(p)' ) = —b a2 (p&)',1

n
(2.5b)

where now the right-hand side of Eqs. (2.5) are the
quantum-mechanical variances of the &, (yo) and the
&2(yo) operators. From these definitions and the relation
(2.1) we obtain the following phase-amplitude uncertainty
relation:

((5lp) ) ((5a
~~

) )
1

16n
(2.6)

Rea

FIG. l. Amplitude 5a~~ and phase fluctuation 5y of the com-
plex amplitude a. From this figure we see that
5a, =15a (sin(y —g, ) =5a, (y, ) and 5al = ~5a leos(g —(p, )

=5a
& (p~) with 5a = ~5a

~

e'~. For small phase fluctuations

5a, —+n 5gr.

Note that this definition is free from problems associated
with attempts to construct a quantum phase operator. It
has a clear physical interpretation and relates in a simple
way the phase and the amplitude fluctuations to the well
behaved quantum mechanical observables 8& and &2.

To what extent the transition from a semiclassical to a
quantum picture, as given by Eqs. (2.5), can be justified
by a rigorous quantum-mechanical theory will be the sub-
ject of Sec. III. It turns out that the relationship between
amplitude-phase fluctuations and quadrature fluctua-
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tions, as suggested by Eqs. (2.5), is indeed an intrinsic
property of a broad class of quantum optical devices. Its
validity is related to the existence of a yo which, at least
instantaneously, determines the direction of (8 ) on the
phase plane of Fig. 1. Also, the fluctuations should not
be too large in order that the approximation of the
tangent by the arc remains valid. If such a po cannot be
defined uniquely or the fluctuations are too large the
description based on phase-amplitude variables has to be
replaced by a description using quadrature components.

For the purpose of this paper we will rewrite the
quantum-mechanical var iances A8; ( yo ) (i = 1,2 ) in a
form that contains only the normally ordered operators
(normally ordered variances) and the commutator contri-
bution

P(a, a*,t)= — (d P)— (d, P)a * = a a
8t Oct (jo.*

a2 a2+2 (D g P)+ (D P)
BQ BcK B(x

82+ (D , gP),
Bcx

(3.1a)

with

d = A+Ra+G*a*, d, =(d )*, (3.1b)

quasidistribution function P(a,a, t). This time evolu-
tion is determined by the following general Fokker-
Planck equation:

~a,'(go) =:&&,'(go):+ —,
' . (2.7)

and

D e e=(D )'. (3.1c)
This formulation of quantum-mechanical fluctuations has
been seen in Ref. 11 to be extremely useful in the discus-
sion of CEL operation when squeezing is also present.

%'e note that squeezed states of light are those for
which:b, a, (yo): or:6& z(q&o): is less than zero.

Using (2.7) we may rewrite Eqs. (2.5) in the following
form:

(2.8a)

(~a„)') =-,'+ &:(&~„)':&, (2.8b)

where the symbolical expressions: (:(5y):) and
(:(5a~~):) denote the normally ordered variances of
8, (yo) and az(yo) as per (2.5). For squeezed states these
"normally ordered" phase and amplitude fluctuations be-
come negative.

The appearance of normally ordered operators in our
equations is useful in that whenever a normally ordered
quantum expectation value is involved we naturally use
Glauber's P representation. For example, the normally
ordered moments of &, (po) and a2(po) are

(:a &(yo):) = f r dr dpP(r, p)r cos (qr yo), (2.—9a)

(:a z(yo):) = f r dr dyP(r, g)r sin (g —q&0), (2.9b)

where the quantum-mechanical average of & reduces to a
statistical average of a classical complex amplitude re'~
with the quasidistribution function P(r, q&) The.
quantum-mechanical expressions (2.9) have a simple
semiclassical picture in which the two quantum observ-
ables Q, (yo) and a2(yo) can be viewed as r cos(y —yo)
and r sin(y —

pro) with a fixed value of yo and random
orientation tp. The randomness of y is described by the
statistical properties of the quantum state characterized
by P(r, (p).

III. FDKKER-PLANCK TREATMENT

Having introduced the relevant definitions of the phase
and amplitude fluctuations we proceed in this section
with the investigation of the dynamical properties of
these fluctuations. The dynamics of the quantum state is
given by the time evolution of the Glauber-Sudarshan

+=a ao, (3.2a)

with

if RR'WGG'
RR *—GG*

At if RR '=GG', (3.2b)

then in terms of cz we obtain a Fokker-Planck equation
which is identical to (3.1) with only A is missing from the
definition of d in (3.1b). In the following we always as-
sume that this is the case, i.e., in (3.1b) we set A =0.

As it is often the case we are generally interested in
fluctuations around a nonlinear steady state. In this case
we can linearize the problem in question around a non-
linear steady state. Alternatively, one can develop a
linear theory of the particular quantum optical process

Here A, R, and 6 are completely arbitrary complex pa-
rameters. Due to the fluctuation-dissipation theorem the
diffusion coefBcients D are not completely independent of
R and G. For the purpose of this work we shall simply
assume that all the parameters ( A, R, G, and D) are con-
stant and their mutual relations are given by the particu-
lar physical models behind the (general) Fokker-Planck
equation (3.1). We recognize in this equation the most
general Fokker-Planck equation used in the theory of
Brownian motion' or in the theory of linear quantum
optical devices. The first (second) term of this equation
describes the drift of a (a*), while the remaining terms
correspond to diffusion. At this point we simply note
that by a specific choice of the parameters a broad class
of quantum optical devices, for example, lasers, linear
amplifiers and attenuators, correlated-emission lasers,
two-photon lasers' and amplifiers, ' the two-photon
correlated emission laser, " etc. , are described by a
Fokker-Planck equation of the type given by Eq. (3.la).

The physical meaning of the diff'erent terms in (3.1b) is
the following. A corresponds to an injected external sig-
nal, R to the usual (linear) gain, and G (as we will see
later) is responsible for the phase sensitivity of the sys-
tem. First we note that by a simple transformation, we
can eliminate A from (3.1b). Indeed, if we introduce
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under study. In both of these cases we find an equation
of the form of (3.1) where the parameters R and G (and,
consequently, D +, D, and D + + ) become (usually

complex) constants. For the investigation of fiuctuation
dynamics around a linear steady state (threshold) or non-
linear steady state (above threshold) we can, thus, confine
ourselves to the case of a Fokker-Planck equation with
constant R and G. The unitarity of the physical models
requires that the diffusion constants D + andaa
D =D*+ + are related to the drift coefficients via the

generalized Einstein relations. From these relations it
follows that if D &0 we have that Gd, the dissipation-
related part of 6, is nonzero. G still can vanish if its
gain-related part G satisfies G = —Gd since then
G =G +Gd =0. This is precisely the case with an inject-
ed squeezed vacuum (and, in general, in systems with
zero detuning where emission, i.e., gain, coincides with
absorption, i.e., loss, and infinite detuning where both of
them are zero}. As we shall see, G is directly responsible
for phase locking. Thus in the case of a laser with
squeezed input vacuum' we find no locking at all in the
quadrature components [cf. Eqs. (4.1) with G =0] and a
small locking term for the phase [cf. Eq. (3.5b) with G =0
in (3.4b), the locking is then proportional to n ]. In sys-
tems with G&0, however, the locking plays an essential
role in quantum-noise quieting. " Keeping the restric-
tion, imposed on D, in mind we have just arrived at the
most general Fokker-Planck equation with constant
coefficients one can have. This represents the starting
point of the following treatment of fluctuation dynamics.

In order to derive the relationship between phase-
amplitude variances and quadrature variances we trans-
form our Fokker-Planck equation (3.1) into phase-
amplitude variables (polar coordinates) and quadrature
component variables (orthogonal coordinates). First we
introduce polar coordinates as u = re'+ to obtain the drift
and diffusion coefficients associated with phase and am-
plitude variables y and r. The Fokker-Planck equation
(3.1) with A =0 and R and G constant reads in terms of
these variables as

l a a(r d„P }— (d P)+ — r D„„
l a aI

D„=— sin(2q& —8 ),
2T

(3.4e)

i8 iO
where we have G=~G(e ' and D =~D(e . The key
feature of the diffusion and drift coefficients is the fact
that they explicitly introduce a phase dependence into the
driven random-walk process described by (3.1). Depend-
ing on the relative value of y with respect to the phase 0
of D the diffusion rate may be accelerated or decelerat-
ed. Also, depending on the relative value of y with
respect to the phase 0 of 6 the drift rate may be larger
or smaller. The Brownian motion of such a system is not
rotationally invariant. From the Fokker-Planck equation
(3.3) we derive the following equation of motion for the
amplitude and phase:

„&r&=(d„),
dt

„&q)=(d,),
(3.5a)

(3.5b)

where d„and d are given by Eqs. (3.4a) and (3.4b).
Furthermore, as noted at the end of Sec. II the expecta-
tion value of any normally ordered operator expression
can be obtained with the help of the Fokker-Planck equa-
tion by simply replacing 8 with a and & + with a* in that
expression and taking the average of the resulting expres-
sion with P(a, a*) as the distribution function. We thus
obtain for the normally ordered variances

:v„:= ((r ) —(r) )=2(5rd„)+2(D„„),.-.= d
dt

((q') —
&q )')=2&5q d, &+2(D„&,

dt

(3.6a)

(3.6b)

where 5r=r —(r) and 5y=y (qr), v, =—((5r) ),
v =((5y) ), and D„„and D are given by (3.4c) and
(3.4d). At this point in our calculations it is tempting to
associate D and D,„with phase and amplitude diffusion
of the components given by Eq. (2.4). We will show in
Sec. IV that such an interpretation can be fully justified if
one discusses more carefully the corresponding statistical
properties of the two observables 8, (q&p) and &2(pp) and
their relations to phase and amplitude fluctuations given
by Eq. (2.5).

a'(D„P ) 2 a'+ + — (rD/).
r Br Bqp

(3.3) IV. QUANTUM NOISE QUENCHING
AND SQUEEZING

Here

(3.4a)

d&=ImR —~G~sin(8~+2')+2 2 sin(2g —8 ), (3.4b)
T

Drr

D...+ IDlcos(2y —8 )
(3.4c)

d„=r [ReR +
~
G

~
cos( 8g +2p) ]— cos( 2y 8), —

In Sec. III we have shown that with D -dependent
terms in our Fokker-Planck equation (3.1) we obtain
phase sensitive diffusion coefficients D, and D,„. In or-
der to support further the heuristic arguments of Sec. II
that the fluctuation properties of the semiclassical phase
and amplitude are closely related to the fluctuation dy-
namics of the quadrature components, we shall investi-
gate the dynamical evolution of &, (yp) and 8p(g)p}.

From the Fokker-Planck equation (3.3) we derive the
following equations of motion for the quantum expecta-
tion values of a, (q&p) and &2(yp):D, —~D ~cos(2y —8 )

T
2

(3.4d) &&, (q p) & =R ( &, (yp) &+
~
G

~ &d, ( —8g
—Pp) &, (4.»)

dt
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&a&=R&a &+6*&a t&,
dt

&&t&=R&at&+6&a& .
dt

(4.2a)

(4.2b)

Following the semiclassical replacement &a &=+n e
we obtain from Eq. (4.2)

gp= IG l»n(2pp+8g ) . (4.3)

This equation is the customary phase-locking equation
obtained from the semiclassical decomposition of && &

into an amplitude (fixed by a steady state number of pho-
tons n) and the field phase yp. This equation exhibits the
fundamental role of the G term in the phase-locking
problem. From Eq. (4.3) we obtain that the phase yp is
locked, i.e., the direction in Fig. 1 is fixed by cpo= —

0g /2.
This condition is equivalent to the condition of phase
locking based on Eqs. (4.1). This example shows that the
phase-locking condition for the quantum expectation
values of the creation and annihilation operator can be
fully formulated in terms of the a, (yp) and az(pp) quad-
ratures.

So far we have discussed only the dynamics of the
mean values of 8, (yp) and &z(q&p). In order to derive am-
plitude and phase fluctuations we shall investigate the
dynamical properties of the quantum variances of 8, (pp)
and az(q p).

From the Fokker-Planck equation (3.3) we obtain the
following equations of motion for the normally ordered
variances of the two quadratures:

d.:h8 )(yp):=2R:ba i(yp):dt

+2IGi:6[8,(9p)&, ( —9p —8 )]:

+D, + ~D~cos(2qrp —8 ), (4.4a)

&&z(qp) &=R &az(qp)& —lGI&&z( —8, —gp)& . (4.1b)
dt

In these equations we have assumed that R is real, be-
cause the imaginary part of the gain corresponds to a
change in the actual operating frequency of the system.
We can always incorporate it in a frequency-pulling term
and we shall assume here after that ImR =0. Equations
(4.1) together with the definitions of the a, (yp) and
az(Ipp) components correspond to a phase-locking equa-
tion. For an ordinary laser the phase-sensitive term van-
ishes' ' (6=0) and Eqs. (4.1) lead to the standard
phase and amplitude drift with a rate given by R. This is
a typical behavior of a phase-insensitive system. If 6~0
we see from Eq. (4.1) that with a proper choice of &pp we
can have the situation that a, (pp) is independent of
&z(yp) and one quadrature, e.g. , &z(pp), locks to zero.
From Eq. (4.1) we see that this corresponds to
= —8s/2, where 8g is the phase of G=~G~e' g. In this
case we obtain that the condition for a nontrivial steady
state for the amplitude component is R+ ~6~ =0. It is
possible to obtain the locking condition of the phase yo in
a more standard way using the equation of motion for the
quantum expectation values of the annihilation and
creation operators:

:ba z(yp):=2R:b& z(yp):d.
dt

—216I 6[& (qp)a, ( —yp
—8 )]:

+D, —iDicos(2yp —8 ) . (4.4b)

D„„(pp)= (4.Sa)

and the corresponding diffusion term of the phase associ-
ated with the variance of dz(yp) is

D + —~D ~cos(2yp —8 )

2n

For an ordinary laser the phase sensitive terms vanish
(6=D =0) and we have the usual Schawlow-Townes
diffusion. Note that in this case D is always positive,
and for small t from Eqs. (2.8a) and (4.4b) we obtain

D
& (5~)z& -=+ t = +2D

4n n 4n
(4.6)

For this case Eq. (4.6} reproduces the Schawlow-Townes
linewidth. '

If 6 =0 but D &0 from Eq. (4.4b) we obtain

:Aa z(gp):=2R:ha z(pp):+2nD (yp} .
d
dt

(4.7)

Depending on the relative phase of yo and 0, the
diffusion of the az(yp) variance can be reduced. There is
an interesting feature of Eq. (4.7) in this case. If, initially,
yo =0 /2 the phase fluctuations grow with a rate

D~~=(D +
—

~D~ )l2n. This growth rate is less than the
one predicted by the Schawlow- Townes expression. '

Note, however, that this is only a transient effect. '

The most interesting case is when G&0 and D &0.
Then from (4.3) the phase locks to

(4.8)

Depending on the difference 0 —0 the phase sensitive
contribution ( —~D ~) can now be positive or negative.
In particular, when D ~ =

~
D

~
we can obtain complete

quenching of the quantum noise for 0 = 0g. If
~D

~

&D + the phase noise is below the vacuum-noise

These two equations, together with Eqs. (4.1), give an ex-
act description of the quantum fluctuations of the quad-
ratures &, (gp) and &z(pp).

In the introduction we have associated the variances of
8, (gp) and &z(yp) with amplitude and phase fluctuations.
The Fokker-Planck equation Eq. (3.4), gives an exact
dynamical evolution of the normally ordered contribu-
tions of amplitude and phase fluctuations given by the ex-
pressions (2.8a) and (2.8b).

The remarkable feature of Eqs. (4.4) is the appearance
of the diffusion coefficients (3.4c) and (3.4d), nD, and

D„, as source terms~with qv being replaced by yo and r be-

ing replaced by +n. This means that the diffusion term
of the a, (yp) fluctuations is

D, + iDicos(2yp —8 )
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level for the same condition, i.e., the phase fluctuations
are squeezed. The quantum nature of the squeezed state
is exhibited in that the Fokker-Planck equation contains
a negative diffusion constant. If D ~ 0 we can quench
phase fluctuations down to the vacuum-noise level by
phase-sensitive terms related to D, as in the correlated
emission laser (CEL). If D (0 we can squeeze the
phase fluctuations below the vacuum limit, as in the two-
photon CEL." For a negative diffusion the quasiproba-
bility distribution P(r, g) has no classical analogy and the
corresponding state of the radiation field exhibits purely
quantum-mechanical effects.

For the phase-locking condition (4.8), Eqs. (4.4a) and
(4.4b) take the following form:

:b&,(yo): =2(R +
~ G~ ):5&,(yo):+2D„„(yo),d.

dt

:68 2(pro):=2(R —
~G~ ):5&z(y o): +2nD (yo) .d.

dt

(4.9a)

(4.9b)

It is a remarkable feature of the system of Eqs. (4.4a) and
(4.4b) that, under the stable locking condition (4.8),
(&,(yo)) is independent from (&2(go)) and one quadra-
ture, e.g. , &2, locks to zero [as given by Eqs. (4.9a) and
(4.9b)]. A nontrivial value of the steady state for the
"amplified" component a, can be obtained if R + ~G~ =0.
In this case the steady-state value of the phase fluctuation
is given by

D * ID Icos(8 —8 )
lim ((5y) ) = +

f ~ oo 4n 2n
I Gl

(4.10)

One interesting question is under what conditions on
the parameters is the uncertainty principle (2.1a) satisfied.
It is quite straightforward to show, by integrating Eqs.
(4.9), that the conditions nD (go) ) —

~ G~ /2 and
D„„+nD~~(yo)) 0 have to be satisfied in the long- and
short-time limits, respectively, in the phase-locked situa-
tion.

At this point we can compare phase-amplitude fluctua-
tion dynamics with the dynamics of quadrature fluctua-
tions. First we note that if R =0, and yo is chosen ac-
cording to Eq. (4.8) then the driving term in leading order
of n ' for the amplitude, Eq. (3.5a) is the same as the
driving term for the a, quadrature, Eq. (4.1a). The small
difference is the second term on the right-hand side of Eq.
(3.4a) which corresponds to a diffusion induced drift.
Under most practical circumstances (e.g. , phase-
insensitive systems, when D =0, or when r =n ))1)
this term is negligible. The amplitude diffusion (3.4c) and
the I, quadrature diffusion (4.5a) are again very similar.
Indeed, in phase-insensitive systems, where D =0, or in
systems with locking, where y=yo= —8 /2 [see Eq.
(4.8)], they are the same. The only exception seems to be
the case where ~G~ =0, D &0, i.e., the case of no lock-
ing but phase-sensitive diffusion. In this case the
diffusion process may slow down for a particular choice
of go or accelerate for another but all these effects are
transients only since there is no preferred value of yo.
Thus the first two moments of r and 8, obey very similar

equations and for all practical purposes they can be con-
sidered the same. However, the use of a i is advantageous
since it is a Hermitian quadrature operator, whereas the
operator r corresponding to the semiclassical amplitude r
is not defined unambiguously.

Next we consider the relationship between the phase cp

and the &2 quadrature. First we note that even if
ImR =0 the driving terms of the phase, Eq. (3.4b), are
quite different from the driving terms of the &2 quadra-
ture component. If there are no locking terms
(G=D =0) (qr) is completely arbitrary, whereas (&2)
is determined by ReR ((8, ), ( &i ) ), i.e., by the same con-
dition as (I, ). When G =0, D &0 the situation is not
much different, y and &z still appear to be unrelated.
However, when there is a locking, i.e., G&0, strong simi-
larities arise. The phase locks to (p) =go, where q&0 is

given by (4.8). In a frame rotated by yo this means that g
locks to zero. In this rotated frame Qz also locks to zero.
The phase diffusion (3.4d) and the &z quadrature diffusion
(4.5b) are again very similar. But g in (3.4d) is a stochas-
tic variable and yo in (4.5b) is a fixed angle of rotation. In
phase-insensitive systems, when (3.4d) is averaged over &p,

we find the usual phase diffusion rate. In systems with
locking (g=tpo) the two expressions are the same. From
here we may conclude that in systems with locking the
phase and the &z quadrature component play the same
role (first moments describe the same physics, locking to
yo, second moments are identical). This suggests that in
locked systems y and &2 play the same role. Again note
that the use of &2 is advantageous since it is related to a
Hermitian operator, whereas y is not.

The only remaining question is what happens in sys-
tems without locking? In several problems (the best
known example being the laser) two different time scales
arise quite naturally. The dynamics of the first moments
(expectation values) are governed by a time scale set by
the loss rate y (cavity losses, absorption loss, diffraction
losses, etc.). The fluctuation dynamics are governed by
the, usually much longer, time scale set by the diffusion
rate. In this sense (3.5b) with d =0 yields d (p) /dt =0,
i.e., phase stability on a time scale y

' & t «D '. Thus
for measurement times satisfying the preceding inequality

y and &2 still play a very similar role provided y in (3.4d)
and yo in (4.5b) are replaced by the (approximately con-
stant) measured value (instantaneous or short-time aver-
age) of qr.

V. CONCLUSIONS

We have investigated here the relationship between the
phase and amplitude fluctuations and the &

&
and &z quad-

rature component fluctuations. Our treatment is based
on a Fokker-Planck analysis using the Glauber-
Sudarshan P representation for the density operator. The
main findings of the paper can be summarized in the fol-
lowing way. In systems where phase locking (of some
kind) is present the dynamics of the first two momenta of
the phase and the Q2 quadrature component are the same.
This gives an Hermitian operator related method for
treating the dynamics of phase fluctuations. The rela-
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tionship also implies that the notion of phase is sensible
as long as, on the time scale of an actual measurement,

the semiclassical replacement (a ) = ~a e '= & n e
holds.

For a wide class of linear optical devices, described by
our general Fokker-Planck equation, we have established
conditions leading to quantum-noise quenching and
squeezing of the phase fluctuations. We have shown that
a particular set of terms in the Fokker-Planck equation
can lead to a phase-sensitive diffusion. This diffusion can
be completely suppressed for certain values of the radiat-

ing phase, in which case the phase noise is quenched to
the vacuum level. We have shown that the diffusion can
also become negative, leading to noise reduction below
the vacuum level.
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