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Calculation of helium photoionization with excitation
including angular distribution and resonance structure
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A nine-channel coupled-equation calculation for photoionization of the 1s ground state of He is
performed within the framework of many-body perturbation theory. Partial cross sections for leav-

ing the ion in 1s, 2s, 2p, 3s, 3p, and 3d levels are obtained together with the angular asymmetry pa-
rameter for leaving the ion in n=2 states. The resonance structure in the 1s, 2s, and 2p cross sec-
tions and in the n =2 angular asymmetry parameter due to doubly excited autoionizing states below
the n =3 threshold is calculated. Also, parameters describing the resonances in the 1s cross section
below the n = 2 threshold are obtained.

I. INTRODUCTION

Photoionization with excitation and double-electron
photoionization are important components of the absorp-
tion of light by atoms, which was pointed out by Wuilleu-
mier and Krause' many years ago. For He these process-
es account for about 10% of the total photoabsorption
over a wide range of energies.

The first measurement of photoionization with excita-
tion for helium was made by Samson using photoelec-
tron spectroscopy. Krause and Wuilleumier also mea-
sured the angular distribution in order to resolve the de-
generate 2s and 2p ionic levels. This was measured over a
broader energy range by Bizau et al. , Schmidt et al. ,
and Lindle and co-workers ' using synchrotron radia-
tion. To resolve the 2p and 2s levels from the measured
angular distribution, one has to rely on theoretical calcu-
lations of the angular asymmetry parameter for leaving
the ion in the 2p level. An experiment that directly
separates the 2s and 2p levels was performed by Woodruff
and Samson '' monitoring the 304-A fluorescence light
with and without an applied electric field that causes mix-
ing between the 2s and 2p levels.

Relatively few calculations have been performed of
cross sections for photoionization with excitation of
He. " ' None of them include resonance structure,
caused by doubly excited autoionizing states. On the oth-
er hand, there exist a number of calculations giving the
energy positions and widths' of the autoionizing
states relevant for photoionization with excitation. Re-
cently Burkov et al. have calculated cross sections and
angular asymmetry for photoionization with excitation to
n =2 states.

Evidence for the existence of doubly excited autoioniz-
ing states in helium was found already around 1930. A
brief review and references to the earlier experimental
and theoretical work are given by Madden and Codling,
who were the first to observe doubly excited states in to-
tal photoabsorption measurements in 1963 (Refs. 26 and
27) using synchrotron radiation.

An interesting feature is the relatively large resonance
structure in the cross sections for photoionization with
excitation to n =2 levels, compared to the corresponding
structure in the main channel. This was discovered ex-
perimentally by Woodruff and Samson ' and confirmed
by Lindle and co-workers, ' who also measured the reso-
nance structure in the angular distribution. Their
findings are very challenging for theorists.

In an earlier paper we presented a calculation of the
ratio of the cross sections leaving the ion in the 2p and 2s
levels (cr2~/t72, ). We confirmed the now well-established
fact that o.

z dominates over o.2, near threshold, ' '
which has been the subject of a controversy. ' ' We
also presented the first calculation of the resonance struc-
ture in the n =2 cross section (o 2, +tr2„) below the n =3
threshold. In the present work we give a more
comprehensive presentation of our calculation of He pho-
toionization with excitation to n =2 levels. We also
present cross sections for excitation to n =3 levels. The
emphasis is on the n =2 cross sections and the angular
asymmetry, particularly in the resonance region below
the n =3 threshold. We compare our results in this re-
gion with the experimental data of cross sections and the
angular asymmetry parameter. '

Our work is based on many-body perturbation theory
which is briefly outlined in Sec. II. There we mention the
use of the pair equation to calculate ground-state corre-
lation to all orders and describe the coupled-integral-
equation technique to sum certain classes of final-state
correlation effects to all orders. A close-coupling approx-
imation is made, including the nine channels based on ex-
act He+ states with n = 1, 2, and 3.

Some numerical aspects and problems related to the
coupled-integral-equation technique are discussed in Sec.
III. These include a problem with sharp peaking of the
Coulomb matrix elements and a blocking technique used
to solve the coupled equations. We also present a numer-
ical test of the coupled-equation code within the main
channel.

In Sec. IV we present numerical results for the various
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channels, with emphasis on cross sections and angular
asymmetry in the resonance region below the n =3 ion-
ization threshold. We also present results for cross sec-
tions with the ion excited to n = 3 levels and results about
the resonances below the n =2 threshold. A short sum-
mary and conclusions are given in Sec. V.

II. THEORY

Atomic units (e =m =A=4vrEO=1) are used throughout
this paper. The expression for Ima(co) may be written in
terms of dipole matrix elements ('Ijf i ~a, ~%', ) between
the initial state and the final state of a particular channel
j, leading to

X.6(E~+co Ff, ),— (2)

where the many-particle dipole operator D, may be of ei-
ther the length form g, z, or the velocity form
(
—1/co) g; d/dz, . The 6 function restricts the summa-

tion here to channels j with continuum states degenerate
with E +co, or in other words the summation is over all
open channels. These include the different possible states
for the ion, different angular momenta of the outgoing
electron, and different couplings between the ion and the
photoelectron. In deriving Eq. (2) we have made use of
the fact that our continuum functions describing the out-
going electron have the normalization

P„(r)=rRk(r)

A. Basic formulas and perturbation theory

We use the well-known relation ' between the photo-
ionization cross section o.(co) and the imaginary part of
the frequency-dependent dipole polarizability a(co),

o. (co) =(47r/c)co lma(cu) .

ments, one has to include a small correction from nor-
malization diagrams.

The lowest-order diagram for the dipole-matrix ele-
ment is shown in Fig. 1(a), and diagrams with one corre-
lation interaction of Eq. (4) are shown in Figs. 1(b)—1(g).
We are using the diagrammatic notation described by
Lindgren and Morrison,

'
and the 1s electrons of helium

are treated as belonging to an open shell in the perturba-
tion expansion. Lines with double arrows denote the
open-shell electrons ( ls for He) while bare lines represent
either virtual or open-shell electrons. After each interac-
tion the diagrams must represent true excitations. Dia-
gram l(a) represents the first-order contribution to the
main channel lskp. In next order, as in Figs. 1(b) and
1(c), one of the outgoing lines can represent an excited
bound state of He+. These diagrams contribute to the
dipole-matrix elements for photoionization with excita-
tion, i.e, channels like 2skp.

Correlation effects in the initial state were accounted
for by the use of pair functions as described in Lindgren
and Morrison. Detailed equations for the pair func-
tions and the numerical technique to solve them iterative-
ly are described by MArtensson. With the pair func-
tions we essentially get an exact description of a bound
two-electron system, the accuracy depending on the num-
ber of partial waves used. In this work partial waves up
to l =6 were included. The use of pair functions is not
limited to two-electron systems, however, and has e.g. ,
been used for calculations of hyperfine structure in Li and
Na (Ref. 38) and in K and Rb, correlation energies in
Be and Ne (Ref. 40) and specific-mass shifts in Li and
K 4I

B. Coupled integral equations

The final-state correlation was taken into account by
solving a system of coupled integral equations. A nu-

=sin[kr+(q/k) ln(2kr) —(n/2)1 +oi+5&], (3)

V= —,
' +1/r, , —gu(r, ) . (4)

where q is the effective charge affecting the outgoing elec-
tron, o

&
the Coulomb phase shift given by o I =arg[I (1

—iq/k)], and 5& is the residual phase shift with respect
to the Coulomb wave.

The Hamiltonian H can be split into a zeroth-order ap-
proximation Ho consisting of one-electron operators only
and a correlation part V treated as a perturbation,
H =Ho+ V, where ~———«i

/4

~———«i

(e)

~- ——«i

(b)

~———«

~- ——«I

(c)

(g)

Here u (r; ) represents a spherically symmetric one-
electron potential that approximately takes the interac-
tion with the other electrons into account.

Using a complete set of single-particle states calculated
with u (r, ), a diagrammatic many-body perturbation ex-
pansion may be developed for a(co) in Eq. (1) or for
the many-particle dipole-matrix elements. When calcu-
lating cr(co) in terms of many-particle dipole-matrix ele-

FIG. 1. First- and second-order diagrams that contribute to
the dipole-matrix elements between the ground-state and the
final-state wave functions. Vertical lines with double arrows
denote valence electrons (1s in our case) while bare vertical lines
represent either virtual or (when allowed) valence electrons.
The horizontal dashed lines ending with an isolated solid dot
represent dipole-matrix elements and similar lines ending with a
cross represent potential corrections. The other dashed lines
represent the Coulomb interaction.
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merically represented basis of bound and continuum or-
bitals was generated. The ls, 2s, 3s, 2p, 3p, and 3d orbit-
als were chosen to be exact states of He+. The remaining
bound and continuum orbitals were generated in the
frozen-core Hartree-Fock potential from one of the ionic
orbitals, with the ionic orbital and the basis orbital cou-
pled to a 'P state. The s and d orbitals were generated in
the potential of the 2p orbital, the p orbitals in the poten-
tial of the 2s orbital, and the f orbitals in the potential of
the 3d orbital. Projection operators were used to define
a Hermitian potential valid for all orbitals of a specific
angular momentum. As an example, the potential for the
p orbitals is

u =(1—P)(J2, + —,'K~, )(1 P), —

U u ml

r::t s
Il

FIG. 2. Graphical representation of the coupled equations.
Here the bottom of the diagrams with the wavy line in addition
to the pair function includes the 1s' zeroth-order wave function.
The diagram on the left-hand side represents the unknown
effective-dipole-matrix element from the correlated ground state
to the correlated final state. The wavy dipole interaction line in-

dicates the inclusion of the final-state correlation within the in-
cluded channels.

where

P = l2p ) (2pl+ l3p ) (3pl .

This gives a well-defined potential suitable for perturba-
tion theory, and assures that the orbitals generated form
a complete orthogonal basis. To represent the final state,
nine channels were included: 1skp, 2skp, 2pks, 2pkd,
3skp, 3pks, 3pkd, 3dkp, and 3dkf, where k here denotes
either a bound orbital or a continuum orbital. This
close-coupling approximation thus neglects higher-
excited channels based on n ~4 He+ states, including
double-ionization channels.

For each channel eight bound orbitals were used,
selected so that double counting between different chan-
nels was avoided. The lowest bound state was, e.g. ,
chosen to be 3p in the 3skp channel and 4s in the 3pks

I

channel. The continuum orbitals were represented by a
mesh of 42 k values ranging from 0.05 to 14.0 a.u.
Dipole-matrix elements from the correlated ground state
to the basis functions representing the channels included
in the final state were calculated together with Coulomb
matrix elements between the final-state basis functions.
Coupling between the final-state channels can be included
to all orders by solving a coupled system of integral equa-
tions. We are essentially performing a K-matrix calcu-
lation among the discretized channels and this is shown
schematically in Fig. 2. Here we let the bottom of the di-
agrams with the wavy line, in addition to the pair func-
tion, include the 1s zeroth-order wave function. The
coupled integral equations can also be written out explic-
itly as

( rsl 1/r I z
—u I u 2 I

tu ) ( tu ID,It I +z )
E +co—c, —c.„+ig (7)

Before the dipole interaction we effectively sum over all
intermediate states by the use of a nearly exact ground-
state wave function using the pair equation. After the di-
pole interaction rs and tu are restricted to belong to the
nine final-state channels which are included. The un-
known effective-dipole-matrix elements from the ground
state to a basis function in the included final-state chan-
nels, represented by the diagram on the left-hand side of
the equation in Fig. 2, depend on all the unknown
effective-dipole-matrix elements through the last three
terms on the right-hand side (rhs). This equation could
be solved iteratively by first neglecting the last three
terms to get lowest-order dipole-matrix elements, which
then can be used to calculate approximate corrections to
the right-hand side from the last three terms of the equa-
tion which is solved again, and so on to self-consistency.
Convergence problems occur close to resonances and we
prefer to invert the matrix for the unknown effective-
dipole-matrix elements by Gaussian elimination.

In each of the nine channels we have eight bound and
42 continuum states, giving us 450 unknown complex
effective-dipole-matrix elements ( rslD, ttl 4 ). Due to
the co dependence in the denominator of the last term in

Eq. (7) the 450X450 matrix has to be constructed for
each co value considered, while the dipole-matrix ele-
ments (rslD, lq/g ) and the Coulomb matrix elements
(rsl 1 lrI2 —uI —uzltu ) can be calculated once and for all
and read in. The coupled equations denoted by Fig. 2
can be written so that the unperturbed dipole-matrix ele-
ments occur as a driving term in the equations, and solu-
tion for the length and velocity forms of the dipole opera-
tor can thus be done simultaneously.

In the coupled integral equations [Eq. (7)] t, say, is a
bound He+ orbital and u is summed over excited bound
states and integrated over continuum states. The summa-
tion over the bound states beyond the eight explicitly in-
cluded and the continuum integration from the origin to
the lowest continuum mesh point, has been included by
using the fact that the scaled matrix elements are con-
tinuous over the ionization limit, e.g. ,

lim (t, nllD, ttlqIO)(n*)
tg —+ Qo

= lim ( t, kl
l D,ft l Vo ) &2 /m k

and using linear interpolation between the last bound and
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the first continuum state to estimate the matrix elements
in that region. Here n *=n —6 is the effective quantum
number, where 5 is the quantum defect which is extrapo-
lated from the two highest bound states, and k is the
wave vector related to the energy by E =

—,'k . The sum-
mation (integration) from the last bound state to the first
continuum state thus affects the coefficients in front of
the unknown effective-dipole-matrix elements involving
the highest bound and first continuum orbital, in the sys-
tem of integral equations. In deriving Eq. (8) we have
made use of Eq. (3) describing the normalization of our
continuum functions.

Some care has to be taken when integrating over a pole
in Eq. (7). The numerator consists of a Coulomb and an
effective-dipole-matrix element. Both are assumed to
vary smoothly over the pole as a function of the wave
vector k of the continuum orbital t or u. For the
effective-dipole-matrix element this is assumed for a fixed

value of co while, of course, this matrix element varies
rapidly as a function of co over a resonance. By assuming
a four-point Lagrange expansion of the numerator, we
can integrate analytically each power of k over the pole
giving contributions to the coefficients in the coupled in-
tegral equations.

One way to take into account the effects of the higher-
excited channels in an approximate way is to include
channels based on "pseudo-states, " modified orbitals
chosen to have a large overlap with the final-state ionic
orbitals which was done, e.g., by Berrington et al. '

Another way would be to calculate perturbatively to
lowest order the corrections to the Coulomb matrix ele-
ments coupling the included channels, due to the interac-
tion with the neglected channels. One example of a
correction to the interaction between the 2skp and 2pkd
channels coming from the inhuence of higher-excited
k'pk "d channels is

(2pk2d~r & Ir & ~k'pk "d ) (k'pk "d~r & /r & ~2sk&p )

k k" EO+~ ~k' k" +~ 9

where 3 denotes a factor coming from the angular in-
tegration. For practical reasons one has to restrict the
summation over k' and k" due to the high number of
Coulomb matrix elements involved. For the intermediate
higher-excited channels including double continuum
channels, one continuum orbital could be calculated us-
ing a V ' potential and the other orbital by a V po-
tential, thus approximately cancelling higher-order
effects within the higher-excited channels. This choice of
potential gave good agreement with experiment for the
double photoionization of helium.

C. Resonances

When the energy denominator in Eq. (7) vanishes for a
discrete intermediate configuration tu, degenerate with
the final continuum rs, a resonance occurs in the corre-
sponding continuum channel. For example, below the
threshold for photoionization with excitation to 2s and 2p
levels of He+ (the n =2 threshold) three series of reso-
nances due to doubly excited states occur in the 1s cross
section. The designations 2sn 'p, 2pn 's, and 2pn 'd for
these series are not appropriate, as first pointed out by
Cooper, Fano, and Prats. They introduced the + and
—series 2sn'p +2pn's and 2sn'p —2pn's to explain why
only a single series (+) was observed in the early observa-
tions by Madden and Codling.

It is probably fair to say that most of the accurate cal-
culations of energies and widths for doubly excited states
still come from configuration-interaction-type methods.
Other approaches may, however, give a much better
physical understanding of the nature of these states. The
use of hyperspherical coordinates was introduced by Ma-
cek and has been developed further by, e.g. , Lin. The

o =(o +scr )
(e+q)

0 j. (10)

where c. is the normalized energy distance to the reso-
nance energy E„,

systematics of doubly excited states has also been inter-
preted in terms of a molecularlike rotation and vibration
model. ' A comparison between such collective
motion and the independent-particle motion has been
made by Ezra and Berry.

Herrick and Sinanoglu, ' by group-theoretical
methods, derived expressions for linear combinations of
the nln 'I' series that approximately diagonalize the
Coulomb interaction. These were denoted by new quan-
tum numbers K and T. Here n is the principal quantum
number for the inner electron and n' the same for the
outer electron. For the 'P resonances, relevant for he
photoionization from the ground state of He, only K
needs to be specified and can take on the values
K =+n, +(n —I), . . . , 0. For the resonances below the
n =2 threshold with n =2 the + series corresponds ap-
proximately to K =0, the —series to K =+1 and the
2pn'd to K = —1. Herrick and Sinanoglu were also able
to predict selection rules that certain K series are approx-
imately forbidden to autoionize. ' Thus the K = —1

series below the n =2 threshold is forbidden, giving rise
to very sharp resonances not possible to resolve with the
present experimental energy resolution. We shall denote
the resonances by K„ for a particular n.

For an isolated autoionizing state interacting with a
single continuum the cross-section resonance profile is
given by the Fano formula, '
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F. —E„
I /2

This formula has been used to examine the three sharp
series of resonances below the n =3 threshold.

cr=(o +Eo ) (1—
p )+p2 2 (e+q)

0 1 1+a
(12)

Here I is the width of the resonance and q the line-shape
parameter. ' The background cross section at the reso-
nance is o.

0 and we have also allowed for a slope in the
background cross section by introducing co, Neglecting
the background factor, the resonance has a maximum of
1+q at c „=1/q and is zero at E;„=—q. The sign of
q thus determines whether the maximum occurs before or
after the minimum, and the magnitude of q indicates the
excess over the background cross section. If q =0 there
is no maximum and we get a window resonance.

If there are several continua interacting with the au-
toionizing state, the Fano formula above has to be
modified. Then the cross section does not go to zero and
one has to introduce a correlation index p that tells how
much the background cross section is depleted at
minimum

[1+@(cp)[3cos (8)—1]/2I, (13)

where 0 is the angle between the electric vector of the in-
cident radiation and the momentum of the ejected photo-
electron. Since the differential cross section is a positive
quantity the range for P is from —1 to 2. General formu-
las for P(co) have been derived by Lipsky, Jacobs, and
by Dill and Fano. In many cases these general formulas
reduce to the central-field formula derived by Cooper and
Zare and generalized to allow for complex-dipole-
matrix elements by Amusia et al. (Note that there is a
sign error in the latter reference which has been correct-
ed in a later review article. ) This formula, which is
applicable in this work since the angular momentum L0
of the initial state is zero, reads

D. Angular distribution

The angular asymmetry parameter P(co ) is defined
through the equation

l(l —1)IRt &I +(1+1)(1+2)IRI+&I —61(1+1)Re(y)

(21+1)[lIRI,I
+(1+1)IRI+, I ]

(14)

where in our case I =Lb is the angular momentum of the ion left behind. RI, and R&+& are defined through the re-
duced matrix element of the dipole operator as

—v'1 Rt( t if 1, =1 —1

(LbSbl, s, L )Spl IDI ILoSo ) =
V'(1 +1)R if 1 1+ 1

(15)

and g is

X=Rt* 1Rt+ i exp—[~ (trt+ ~+~I+ ~

—
farl ~

—
&t ~)] . (16)

Here I& refers to the angular momentum of the photo-
electron and L, to the total angular momentum of the
final state. Including final-state correlation gives imagi-
nary contributions to the reduced-dipole-matrix ele-
ments. Through Eq. (16) this can be interpreted as an ex-
tra phase shift 5„,„not included in the basis functions

If we do not distinguish between some ionic states, the
total angular asymmetry parameter P„, is the weighted
average of pb for the different ionic states

Ilt.t= X &b~b & ~b
b b

(LbSb l, s,L,So I ID I I
LoSp )

=exp(i5„„,)I (LbSb1, s, L,SpI IDI ILpSp ) I
.

If also Lb =l =0, only the second term contributes in Eq.
(14) and P is exactly 2.

where o b is the partial cross section for leaving the ion in
the state b.

III. NUMERICAL CONSIDERATIONS

A. Sharp peaking of Coulomb matrix elements

When calculating the Coulomb matrix elements, care
has to be taken to integrate far enough out if a coordinate
involves two continuum or highly excited bound orbitals.
For the monopole matrix element of the type
( 2skpI 1/r & I3sk'p ), there is no problem, since the con-
tribution, when the second integration variable is greater
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than the range of the 2s and 3s orbitals, is zero due to the
orthogonality of the 2s and 3s orbitals involved in the
first integration variable. The worst case occurs for
dipole-matrix elements of the type (2skp~r & /r & ~2pk's ).
Here we have tail corrections from the integration over
the second coordinate that go as one over the cutoff ra-
dius for this integration. These become significant when
k' is close to k. Care was taken to integrate very far out
in this case. The resulting matrix elements were found to
peak sharply around k'=k as a function of k' and seem
to have a cusp at k' =k.

The sharp peaking discussed above is particularly trou-
blesome for the system considered here due to the degen-
eracy of the 2s and 2p ionic states. This implies that the
numerator in the last term of Eq. (7) peaks sharply and
has a cusp exactly where we have a pole in the integra-
tion. An oscillatory behavior as a function of co was ob-
served for the cross sections between points correspond-
ing to the k mesh used. This behavior was to a large ex-
tent eliminated by interpolating the calculated matrix ele-
ments to a new k mesh with one point corresponding ex-
actly to the wanted co value. This new k mesh was then
used in the coupled-equation code. An asymmetric
Lagrange interpolation formula was used on each side of
the cusp.

B. Blocking technique

As mentioned in Sec. II, when using the coupled-
integral-equation technique, we have to set up and solve a
system of linear equations for our 450 unknown
complex-effective-dipole-matrix elements. This has to be
done for each co value considered. Due to the limited
core memory we could not store the whole matrix simul-
taneously and a blocking technique was used. The 450
unknowns originate from nine channels with 50 basis
states (eight bound and 42 continuum) in each channel.
This gives rise to a natural block structure of our matrix
where the coefficients originating from a particular chan-
nel in front of the unknowns corresponding to another
channel occur as a 50X50 block and the full matrix thus
has 9X9 blocks. This 9X9-block matrix equation was
solved by Gaussian elimination, formally treating each
block as a number and only having a few relevant blocks
in the core memory at a time.

The technique discussed above works very well numer-
ically. The CPU time for solving our 450X450 complex
matrix equation is about 90 sec on the CDC-Cyber 855
used and the real time about twice that if there is no com-
petition with other users. As mentioned, this is done
simultaneously for the length and velocity forms of the
dipole operator without any significant extra CPU time.
In addition to the time spent for each desired co, however,
we have spent time to calculate the basis states used and
all the Coulomb and first-order dipole-matrix elements.

C. A test of the coupled-equation code

In Sec. II we defined the orbitals used to represent the
channels included in the final state. The p orbitals were

generated in the 'P potential of a 2s He+ orbital with
projection operators to assure orthogonality to the 2p and
3p He+ orbitals used. This choice is a good one to
represent the 2skp channel and was chosen since the em-
phasis in this work is on photoionization with excitation
to the n =2 states. For the main channel 1skp, however,
the p orbitals used are rather unphysical. The natural
choice for this channel would, of course, be a 'P potential
with a 1s He+ orbital. With this choice of potential there
is no further final-state correlation within the 1skp chan-
nel."

Since the p orbitals in the 2s potential that we use form
a complete set, we should be able to reproduce the results
obtained with the 1s potential, if we include final-state
correlation to all orders within the 1skp channel. This
can be done with our coupled-equation code and can be
used as a test of the numerical accuracy of the code. In
Table I the first two columns show the length and veloci-
ty results for the 1skp cross section using our almost ex-
act ground-state wave function and p orbitals in the 2s
potential for the final state with no final-state correlation
included. The results are rather poor as can be see by
comparison with similar results using p orbitals in the 1s
potential in the last two columns. The middle two
columns show the results when the coupled-equation
code has been used to correct the first two columns by in-
cluding all final-state correlations within the 1skp chan-
nel. The agreement between the middle and the last two
columns is rather good, which gives us confidence in our
coupled-equation code and shows that the orbitals we use
do not introduce any significant error via a possibly poor-
ly represented 1skp channel.

IV. RESULTS

A. Resonances below the n =2 threshold

As mentioned in the Introduction, the first observation
of doubly excited states in total photoabsorption was
made by Madden and Codling ' using synchrotron ra-
diation. Their resolution was also good enough to study
the line profiles for the broadest resonances. In their
later work both the + and —series discussed in the
theory section were observed.

Early calculations of the resonances below the n =2
photoionization threshold at 65.4 eV were made by
Burke, McVicar, and Smith, by Burke and McVicar
using the close-coupling approximation, by O' Malley and
Geltman ' applying the Feshbach projection-operator
formalism, and by Altick and Moore and Lipsky and
Russek using diagonalization methods. Subsequently
these resonances have been studied extensively by
different theoretical methods. Bhatia and Temkin ap-
plied the Feshbach projection-operator formalism. Burke
and Taylor included extra short-range correlation terms
in the close-coupling approximation. Balashov et al. ,
Herrick and Sinanoglu, ' Lipsky and Coneely, and Lip-
sky et al. have used diagonalization methods. Macek
introduced hyperspherical coordinates. Doyle et al.
used a bound-state expansion method. Drake and Dal-
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TABLE I. The 1skp 'P cross section in Mb calculated in the one-channel approximation with various methods, in order to test the
accuracy of the coupled-equation code.

k (a.u. )

kp in 2s potential'
Length Velocity

Coupled equations
Length Velocity

kp in 1s potential'
Length Velocity

0.05
0.1

0.2
0.4
0.6
0.8
1.0

0.3923
0.4030
0.4445
0.5874
0.7407
0.8049
0.7400

1.3890
1.4226
1.5508
1.9685
2.3657
2.4608
2.1892

7.2361
7.1948
7.0312
6.4156
5.5089
4.4781
3.4828

7.0794
7.0383
6.8741
6.2574
5.3537
4.3315
3.3503

7.2359
7.1947
7.0317
6.4137
5.5077
4.4780
3.4840

7.0798
7.0384
6.87/8
6.2561
5.3524
4.3316
3.3510

' kp states calculated in 2skp 'P potential.
Coupled-equation code used to correct for use of 2skp 'P potential in calculating basis states. Only 1skp 'P channel included.

' kp states calculated in 1skp 'P potential. Note close agreement with coupled-equation result using 2skp 'P basis states.

garno made a 1/Z expansion. Chung and Chen ' used
a projection-operator formalism. The complex coordi-
nate method was used by Hickman et al. , Ho, and by
Chung and Davis. McGreevy and Stewart applied
perturbation theory for the phase shift. Berring ton
et al. ' used the close-coupling approximation with pseu-
dostates. The multichannel quantum-defect theory was
used by Ohja and Oza used an algebraic variational
method. Particularly the 2s2p resonance has been stud-
ied carefully, stimulating a remeasurement of the posi-
tion, width, and line-shape parameter for this resonance
by Morgan and Ederer.

Since the n =2 channels are included in our work, all
three series of resonances in the 1s channel below the
n =2 threshold show up in our calculation of the cross
section. A fit of the cross section to the Fano formula
Eq. (10) was made for each resonance and the parameters
describing the resonance were determined. The results
are presented in Table II. The total nonrelativistic ener-

gy for the ground state is 2.903 724 a.u. (Refs. 79 and 29).
Transforming the calculated energies to electron volts we
have used the reduced Rydberg constant 13.603 975.
This gives the double-ionization limit 79.0044 eV. No
mass-polarization (specific-mass shift) effects and no rela-
tivistic or Lamb-shift effects are included.

We will not compare our results with all previous cal-
culations and have chosen to compare with the four-
channel close-coupling calculation of Burke and McVi-
car and with the recent accurate calculation of positions
and widths by Oza using an algebraic variational
method. The latter calculation is within the error bars of
the latest experimental results. We present two sets of re-
sults. The first set only includes four channels, the main
channel and the three n =2 channels. The second set in
addition includes the five n =3 channels. As can be seen
from the results presented in Table II our four-channel
calculation is almost identica1 to the close-coupling calcu-
1ation by Burke and McVicar. By comparing our nine-
channel calculation with the accurate results by Oza, we
can see a marked irnprovernent over the four-channel cal-
culation by including the n =3 channels. Our calculation
is not a state-of-the-art one for the 2s 2p resonance, but
the agreement with the accurate results by Oza improves
rapidly going to higher-excited resonances. Note that the

1„+, and —1„resonances are almost degenerate and
that their relative position changes between the four-
channel and nine-channel calculations. This affects the
widths and line-shape parameters drastically and we con-
clude that inclusion of higher-excited channels is essential
to get the width and line shape of these resonances accu-
rately.

B. The n =2 channels

In this section we present the n =2 cross sections and
angular asymmetry parameters from threshold at 65.4 eV
to 130 eV. Since no channels based on n ~ 4 He+ states
are included in the present calculation we are missing all
resonance structure above the n = 3 threshold at 73.0 eV
up to the double-ionization threshold at 79.0 eV. Com-
parison with experiment in this region is unreliable. Our
results should be less accurate in the higher-energy region
due to the neglect of the higher-excited channels. This
also shows up in worse agreement between our length and
velocity results at higher energies.

The only experiment so far that directly separates the
2s and 2p cross sections was performed by Woodruff and
Samson. ' They monitored the 304-A fluorescence light
with and without an applied electric field that caused
mixing between the 2s and 2p levels. In Figs. 3 and 4 we
compare our results for the 2s and Zp cross sections with
their data. We also present the results of the close-
coupling calculation by Jacobs and Burke. ' Our four-
channel calculation gives results very close to the results
by Jacobs and Burke, and a comparison with our nine-
channel calculation presented in the figures thus gives the
effect of the n =3 channels.

The total n =2 (2s+2p) cross section is presented in
Fig. 5 together with previous experimental deterrnina-
tions. ' ' We have also included the velocity calcula-
tion by Jacobs and Burke, ' which they favor over their
length calculation due to their well-correlated ground
state, and the length result of Berrington et al. ,

' which
they claim is more accurate than their velocity result. As
before, the comparison with Jacobs and Burke gives the
effects of including the n =3 channels.

In a previous paper we presented the ratio o.pp/0
which is approximately three at threshold, in agreement
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TABLE II. Parameters describing the resonances in the 1skp cross section below the n =2 ionization
limit. The integers in brackets denote powers of ten. The resonance energies and widths are given in
eV and the o. parameters in Mb. The nonrelativistic value 79.0044 eV has been used for the double-
ionization energy as discussed in the text.

Resonance' Parameter
This work
4 channels

This work
9 channels

Burke and
McVicar Oza'

Oq Eo
r
q (I)
q(v)
o.( l )

o(v)

60.266
4.37[—2]

—2.56
—2.66

1.405
1.363

60.184
4.03[—2]

—2.63
—2.70

1.412
1.375

60.269
4.38[—2]—2.59

—2.65
1.415

60.155
3.61[—2]

Eo
r
q (I)
q(v)
o.( I)
o(v)

62.770
1.36[—4]

—3.75
—3.82

1.275
1.235

62.759
1.13[—4]

—4.00
—4.07

1.281
1,247

62.773
1.39[—4]

—3.02
—3.75

1.280
1.247

62.759
1.06[—4]

Og Eo
r
q (I)
q(v)
o.( I)
o(v)

63.688
8.81[—3]

—2.44
—2.52

1.246
1.207

63.670
8.96[—3]

—2.43
—2.50

1.249
1.215

63.691
8.72[—3]—2.44

—2.51
1.250
1.218

63.659
8.5[—3]

14 Eo
r
q (/)
q(v)
o.(l)
o(v)

64.132
4.92[—5]—3.75

—3.82
1.275
1.235

64.140
6.84[—5]—2.32

—2.48
1.208
1.175

64.134
5.03[—5]—3.02

—3.75
1.280
1.247

64. 136
5.66[—5]

—1 3 Eo
I
q (I)
q(v)
o.(/)
o.(v)

64.171
2.26[—6]
0.969
0.796
1.207
1.168

64.125
3.30[—6]

—4.00
—4.07

1.281
1.247

64.172
1.54[—6]

—0.10
+0.92

1.213
1.179

04
r
q (1)
q(v)
o.(1)
o(v)

64.479
3.68[—3]—2.42

—2.49
1.249
1.171

64.471
3.84[—3]

—2.41
—2.47

1.211
1.179

64.481
3.69[—3]

—2.42
—2.49

1.214
1.183

64.466
3.77[—3]

r
q (I)
q(v)
o.( I )

tY( v)

64.656
2.27[—5]—4.04

—4.11
1.177
1.139

64.660
3.34[—5]—2.28

—2.44
1.182
1.149

64.658
2.30[—5]—3.42

—4.04
1.182
1.150

64.658
2.77[—5]

r
q (I)
q(v)
o.( I )

o(v)

64.674
1.17[—6]
1.44
1.21
1.182
1.144

64.652
9.67[—7]—12.91

—12.49
1.191
1.158

64.676
7.76[—7]
0.66
1.50
1.188
1 ~ 155
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TABLE II. (Continued).

Resonance' Parameter
This work
4 channels

This work
9 channels

Burke and
McVicarb Oza

05

06

07

E0
I
q (l)
q(v)
~(l)
o.( v )

r
q(l)
q(v)
o.( l)
o.( v)

Ep
I
q(l)
q(v)
o.( l )
o.(v)

64.823
1.89[—3]—2.41

—2.49
1.194
1.156

65.004
1.09[—3]—2.40

—2.48
1.185
1.147

65.112
6.85[—4]

—2.40
—2.48

1.180
1.142

64.818
1.97[—3]

—2.40
—2.46

1.194
1.162

65.001
1.04[—3]

—2.39
—2.46

1.185
1.153

65.110
7.17[—4]

—2.39
—2.46

1.180
1.147

64.824
1.89[—3]

—2.41
—2.48

1.198
1.167

64.816
1.79[—3]

65.000
1.0[—3]

65.110

' Notation from Herrick and Sinanoglu (Ref. 21).
Burke and McVicar (Ref. 60).

'Oza (Ref. 77).

with recent experiments ' ' and calculations by Jacobs
and Burke' and Berrington et al. ' but in disagreement
with the calculation by Chang. '

The ratio g between the 2pkd cross section and the to-
tal 2p cross section is of importance in describing helium
photoionization with excitation to the 2p state. ' In Fig.
6 we present our results for this parameter and compare
with results from Scott and Burke. ' Close to threshold
our length and velocity curves are very close and agree
with the length result of Scott and Burke. At higher en-

0 F 04
2 skp

ergies the length result of Scott and Burke, which they
claim is the more accurate one, is much lower than their
velocity results. Our curves at higher energies are closer
to their velocity result. As mentioned, however, our
curves at higher energies could be affected appreciably by
the neglected higher-excited channels. These are includ-
ed in an approximate way in the work by Scott and Burke
by including channels based on pseudostates.

Recently Jimenez-Micr et al. ' have measured the an-
0

gular distribution of the 304-A fluorescence light from
the ion following the photoionization with excitation to
n =2 states. This was done at two energies close to the
n =2 photoionization threshold. From this angular dis-

C3

0 ' 02

0 10 ' '
~

' ' ' '
I

' ' ' ' ' ' ' ' '
I

' ' ' ' ' ' ' ' '
I

' ' ' ' ' ' ' ' '
I

' ' ' ' ' ' ' ' '
I

' ' ' '
~

' ' ' '
I

' '

2pks + kd

p pp i. . . , I. . . , I. . . , I. . . , ]. . . , I, . «t ~ I « i. . . I

70 80 90 100 110 120 130
PHOTON ENERGY I'. eV1

C3

0 05

FIG. 3. The 2s partial cross section. Present calculation in
the length (L, ) and velocity ( V, ———) forms of the di-
pole operator are compared with the results of Jacobs and
Burke (Ref. 12) in the length (JL, ——.-) and velocity (JV,

. . —) forms. The open circles with vertical lines represent
experimental data and error bars from Woodruff and Samson
(Ref. 10).

p pp
7p ap 90 100 110 120

PHOTON ENERGY (eV&
130

FIG. 4. The 2p (2pks +2pkd) partial cross section. The same
notation as in Fig. 3 ~
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FIG. S. The total n =2 cross section (the sum of the 2s and

2p cross sections) ~ Present calculations in the length (L, )

and velocity ( V, ———) forms are compared with the length
result (BL, — . —) of Berrington et ai. (Ref. 14) and with the
velocity result (JV, ——- —) of Jacobs and Burke (Ref. 12). The
different symbols with vertical lines represent experimental data
with error bars. X, Wuilleumier et ai. (Ref. 80); El, Woodruff'

and Samson (Ref. 10); o, derived from Lindle et aI. (Ref. 8) us-

ing our velocity results for the 1s cross section.

FIG. 7. The asymmetry parameter for the 2p cross section
(the two lower curves) and for the total n =2 cross section (the
two upper curves and the experimental data points). Present
calculation in the velocity form ( ) is compared with the
calculation of Jacobs and Burke (Ref. 12) in the velocity form
( — —). The different symbols with vertical lines represent
experimental results with error bars. Cl, Bizau et al. (Ref. 5);
X, Schmidt et aJ'. (Ref. 6); 0, Lindle et al. (Ref. 8).

0 5

0. 4
C5.

CU

b
p

C1
CU

P ~ 2

SL

tribution they were able to determine the g parameter
discussed above and the closely related alignment of the
resulting He ion that depends linearly on the g param-
eter. Their results for g, 0.25+0.04 at photon energy
65.5 eV and 0.25+0.03 at 66.4 eV, are in agreement with
our calculation that gives 0.248 and 0.266, respectively,
at these energies. This gives confidence in our calculation
close to the n =2 threshold. Scott and Burke' do not
present any results for g below 69 eV, but their results at
69 eV are essentially in agreement with ours, with only
10% difference between their length and velocity results.

In Fig. 7 we present our velocity result for the asym-

metry parameter p, both for the 2p and for the total n =2
cross section. (Our length and velocity results are close. )

For p2 we have used the generalized Cooper and Zare
formula, Eq. (14). The phase shifts 5I+, were calculated
from our continuum functions using a WKB method.
Complex-dipole-matrix elements from our coupled-
equation code were used; these matrix elements include
the correlation contribution to the phase shifts. For p„2
we have used Eq. (18) to average over Pz, and P2 . As
discussed in Sec. IID, p2, =2 since here both the initial
state and the final ionic state have L =0. In the figure we
also give the velocity results of Jacobs and Burke' for
comparison. Their results are close to ours, indicating
that the inclusion of the n =3 channels is not so impor-
tant for this parameter. Several experimental results of
the asymmetry parameter for the total n =2 cross section
are also included in the figure. There is a tendency for
the experimental points to be higher than the theoretical
curves.

C. Resonance region below the n = 3 threshold

0 ~ 1

p p I, . . . l, . . . l. . . , l. . . , &. . . . l, . . . i. . . , l. . . , l, . . . l, . . . l. . . , l. . . , l, . . . l

70 80 90 100 110 120 1 30
PHOTON ENERGY (eV)

FICr. 6. The ratio g between the 2pkd cross section and the

2p (2pks +2pkd ) cross section. Present calculation in the
length (L, ) and velocity ( V, ———) forms are compared
with the results of Scott and Burke (Ref. 16) in the length (SL,

—) and velocity {SV,——.—) forms.

Below the n = 3 threshold at 73.0 eV there is resonance
structure in the 1s and the n =2 channels due to doubly
excited states with one electron in an n =3 state. In LS
coupling one would expect to see five different series of
autoionizing resonances due to the five channels 3skp,
3pks, 3pkd, 3dkp, and 3dkf As discussed in th. e theory
section, Herrick and Sinanoglu ' found that other linear
combinations of these channels, denoted by a new quan-
tum number K =+2, +1, or 0, approximately diagonalize
the Coulomb interaction among the five channels. The
resonances are thus denoted by K„, where n

' is the prin-
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0 ~ 10
2pks + 2pkd

~0 05

n
n 0. 9

0 F 00
69 70

PI-I0TON ENERGY (eV!
72 73

0 8
69 70 71
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FIG. 12. The 2p (2pks+2pkd) partial cross section. The
same notation as in Fig. 8.

FIG. 13. The total cross section (1s +2s +2p). The same no-
tation as in Fig. 8. Note that the cross-section scale does not
start from zero.

than experiment, particularly than the results of Woo-
druff and Samson.

The first resonance of the weaker of the two allowed
series occurs in our calculation at about 71.4 eV while the
remaining ones are overpowered in the stronger series.
Our calculation also reveals the three sharp series al-
though not all of them are resolved in the scale of the
figures.

Several theoretical calculations of the resonances below
the n =3 threshold exist. Ormonde et al. ' used the
close-coupling method for the first K =1 resonance and
the same method was used by Burke and Taylor' also in-
cluding short-range correlation. Oberoi' and Chung
calculated the energy positions of resonances in all K
series using the Feshbach projection-operator formalism.
Herrick and Sinanoglu ' also calculated positions of reso-
nances in all K series, using configuration interaction of
bound states, and corresponding widths using screened
Coulomb continuum functions. Senashenko and Wague
used the diagonalization method of Balashov et al. on
the four resonances lowest in energy. Ho ' has used
the complex rotation method to calculate the positions
and widths of some of the lowest resonances.

For the three sharp series we made fits of the reso-
nances in the total n =2 cross section to the Fano formu-
la [Eq. (12)] with several open channels. In Table III we
compare our results with previous theoretical calcula-
tions for the sharp resonances. We observe the near de-
generacy of the —2„and 2„.+z resonances. In analogy
with the degenerate resonances below the n =2 threshold
we might expect the widths and shapes of these reso-
nances to be sensitive to their relative positions and thus
to the inclusion of higher-excited channels.

For the energy positions the differences between the
calculations are small. The calculated widths, however,
differ considerably between the different calculations.
For the K =2 series ours are about a factor 1.7 larger
than the ones reported in Refs. 21 and 22. Both these
calculations use configuration interaction among bound
states in the five 3ln'I' channels, included in our work, to
describe the autoionizing states. The widths are then ob-
tained by first-order perturbation with the continuum

channels, thus neglecting continuum-channel coupling.
The results in parentheses from Senashenko and Wague
include the seven configurations based on unscreened
He+ orbitals with n'~4 while their other results have
n

' 5. In the work by Herrick and Sinanoglu ' all
configurations with n'~7 are included. We clearly see
that these results converge to values different from ours.
In our work we have included a complete set of states in
each channel, both bound and continuum states, where
the states with n' ~ 4 differ from the ones previously used
since they are screened by a n =2 electron. Our calcula-
tion also includes continuum-channel coupling to all or-
ders. The width for the 24 resonance calculated by Ho,
using the complex coordinate rotation method, is closer
to our calculated width, while the width for 04, only given
to one digit, differs considerably.

The n =2 angular asymmetry parameter has been mea-
sured in the resonance region by Lindle et al. In Fig. 14
we compare our calculated curve with their data points
which include a broadening contribution from the finite
bandwidth of the monochromator used. Deconvolution
of the instrumental broadening is not straightforward
since the monochromator bandpass was on the same or-
der of, or larger than, the widths of the resonances. In
their work a deconvoluted curve, giving sharper reso-
nances, can be found and this is reproduced in our figure.
For the first resonance this deconvoluted curve agrees
better with our calculation than do the direct experimen-
tal data, while their curve does not resolve separately the
rest of the resonances. In the figure we also give the re-
cent calculation of Burkov et al.

D. The n =3 cross sections

Above 73.0 eV the n =3 channels are open. Since
these channels are included in the present calculation,
based on exact n =3 He+ states, we also get results for
the corresponding cross sections, which are presented in
Table IV. These cross sections are not to be considered
very accurate since no effects from higher-excited chan-
nels are included. The problem with sharp peaking of the
Coulomb matrix elements, discussed in Sec. III, was also
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2 the dominating one while the strength in the 3dkp chan-
nel drops rapidly. The 3dkf channel is weak throughout
the calculated region.

V. SUMMARY AND CONCLUSIONS

69
| . . :, i, . . . I

70 7)
PH(jTQN ENERGY (eV)

72 73

FIG. 14. The asymmetry parameter for the total n =2 cross
section in the resonance region leading up to the n =3 threshold
at 73.0 eV. The open circles with vertical lines represent experi-
mental data by Lindle et al. (Ref. 8) with error bars. The
dotted-line curve (. ~ ) is their fit to the experimental data
with the monochromator broadening removed. The other
curves represent theoretical calculations. Present calculation,
length form ( ) and velocity form (

———
) of the dipole

operator; ——- —,Burkov et al. (Ref. 25).

more pronounced here than for the n =2 cross sections.
Comparison with recent experimental data by Lindle
et a/. indicates that our calculated total n =3 cross sec-
tion is about 25% too large close to the threshold at 73
eV. The experimental cross section seems to decrease
monotonically with energy while our calculated one
grows to a maximum at about 77 eV becoming about
80% larger than experiment in this region. In analogy
with the effect on the n =2 cross section by including the
n =3 channels (see Sec. IV B and Fig. 5) we can expect
inclusion of the omitted higher-excited channels to
reduce the n =3 cross section in addition to adding re-
gions of resonance structure below the double continuum
threshold at 79 eV.

Our results indicate that, among the n =3 channels,
the 3p channels dominate close to the n =3 threshold
with almost the same strength for 3pks and 3pkd. In this
region the 3dkp channel is almost as strong as the 3skp
channel. At higher energies the 3skp channel becomes

We have used many-body perturbation theory to calcu-
late photoionization with excitation of helium. Ground-
state correlation was included to all orders through the
use of the pair equation. Final-state correlation within
the nine channels based on He+ states with n ~ 3 was
also included to all orders by solving a set of coupled in-
tegral equations.

We have presented cross sections for the various chan-
nels with the ion excited to 2s and 2p levels. Good agree-
ment is obtained between our length and velocity results.
In regions where consistent experimental data exist, the
agreement with our calculation is good. Close to thresh-
old our calculation agrees almost exactly with the length
results from Berrington et al. ' and Scott and Burke. '

At higher energies our results are closer to their velocity
results while their length results for the ratios o.

z /o. z,
and o

~~kd
/o.

z~ (Ref. 16) are lower than ours.
If the channels based on the n =3 He+ states are ig-

nored, we get results very close to the four-channel
close-coupling calculation of Jacobs and Burke. ' Includ-
ing the n =3 channels we obtain the resonance structure
below the n =3 threshold in the various n =1 and n =2
cross sections. Above the n =3 threshold, out to a pho-
ton energy of about 100 eV, the inclusion of the n =3
channels has the effect of reducing the 25 and 2p cross
sections and also the ratio o.zp/oz, It is plausible that
the inclusion of the neglected higher-excited channels will
further reduce the ratios o.

zp /0 zz and 0 zp&d /0 zp at
higher energies. A method to include the effects of the
higher-excited channels perturbatively is suggested. The
angular asymmetry parameter was also calculated both in
the 2p and the total n =2 cross section and was found to
be less affected than the n =2 cross sections by the in-
clusion of the n =3 channels.

In the region below the n =3 threshold our calculation
explains very well the resonance structure found in the
experimental data for the total n =2 cross section by
Woodruff and Samson ' and by Lindle and co-
workers. The magnitudes of our cross sections, howev-

TABLE IV. Partial cross sections for photoionization with excitation to n =3 states in units of 10 Mb. The first column
represents the photon energy and the second column the wave vector of the photoelectron. The length (velocity) results are denoted
by l (U).

(eV)
k

(a.u. )

3skp 3pks 3pkd 3dkp 3dkf Total n =3
l U

Expt. '

74. 19
76.37
81.67
92.56

107.8
127.4

0.3
0.5
0.8
1.2
1.6
2.0

3.86
4.16
3.41
2.84
1.97
1.12

3.90
4.22
3.52
3 ~ 10
2.28
1.36

6.98
8.33
7.81
3.99
1.77
0.74

7.05
8.43
7.99
4.17
1.83
0.75

6.18
7.09
7.33
3.52
1.56
0.74

6.18
7.06
7.19
3.07
1.16
0.49

3.01
2.36
1.50
0.99
0.34
0.12

3.12
2.40
1.36
0.84
0.28
0.11

0.58
0.09
0.23
0.40
0.24
0.11

0.65
0.11
0.18
0.38
0.22
0.10

20.6
22.0
20.3
11.7
5.86
2.84

20,9
22.2
20.3
1 1.6
5.78
2.81

15
13
11

' Interpolated from experimental data points by Lindle et al. (Ref. 84).
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er, seem to be about 10% too high. We have also com-
pared our calculated n =2 angular asymmetry parameter
in this region with the experimental data of Lindle et al.
The overall structure in the experiment was obtained in
our calculation but also for this parameter there are some
small deviations in magnitude.

Only the two broader series of resonances below the
n =3 threshold are resolved with the present experimen-
tal energy resolution. In our calculation we also obtain
the three sharp series of resonances. Parameters describ-
ing these sharp resonances were obtained and compared
with other theoretical determinations of energy positions
and widths. The energy positions agree we11 between the
different calculations but the widths differ considerably.

Also parameters describing the resonances in the main
channel below the n =2 threshold were obtained. The
effect on these resonances from the inclusion of the n = 3
channels was demonstrated. For the energy position one
clearly sees a marked improvement including the n =3
channels, and except for the very lowest resonances we

compare well with state-of-the-art calculations of these
resonances. For the widths the situation is not that clear.
We find that the resonances in the almost degenerate
1„+, and —1„series change their relative positions
when we include the n =3 channels. This has a strong
effect on their relative widths.

Finally we have also obtained results for the n =3
cross sections. We find these to be of the order of 3% of
the main channel in a 20-eV broad region above thresh-
old. The 3p channels dominate near threshold while the
3s channel becomes the stronger one at higher energies.
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