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A cloud of three-level ions (Ba™ ) confined in a Paul trap was illuminated with two lasers and the
resulting fluorescence was observed as a function of the laser detunings from the ionic resonance.
The observed spectra show features due to the oscillatory motion of the trapped ions. In order to
describe the observed line shapes, calculations are presented in which the ion ensemble is separated
in classes of velocity amplitudes of the oscillatory motion rather than velocity classes.

I. INTRODUCTION

Ion traps provide a tool which allows one to store ions
for long times! without perturbations by collisions with
confining walls. Long interaction times between the ions
and externally applied fields are possible, and spectra can
be obtained without transit-time broadening or collisional
influences. Hence, the ion-storage technique is ideally
suited for high-precision measurements, and consequent-
ly its application for time and frequency standards has
been both proposed and investigated.? Currently, the
largest remaining systematic error in the determination
of center frequencies of spectral lines is given by the
Doppler effect. In the microwave domain first-order
Doppler effects can be overcome by confining the ions to
dimensions smaller than the transition wavelength (Dicke
criterion). This allowed, for example, ultrahigh-precision
measurements of hyperfine separations,’ where the accu-
racy is generally limited by the second-order Doppler
effect. More recently, increasing interest has been devot-
ed to the spectroscopy of trapped ions in the optical
domain, too as, e.g., the measurements of lifetimes of
metastable states and isotopic shifts.*> In the optical re-
gion, however, the ion motion results in a broadening of
the observed line shapes due to the first-order Doppler
effect.

In principle, this limitation could be overcome by the
application of laser cooling. Unfortunately, it turned out
that laser cooling of trapped ions is efficient only for very
small ion clouds (a few tens of ions) due to an effect com-
monly known as rf heating.® Of course, spectroscopic ex-
periments on single cooled ions have been demonstrated’
and seem to be the ultimate tool for ultrahigh-precision
experiments. However, many spectroscopic investiga-
tions (as, e.g., lifetime and branching ratio measurements,
isotopic shifts, etc.>® are much easier performed on
clouds of trapped ions when utmost precision is not re-
quired. Nevertheless, for these experiments, a thorough
and detailed understanding of the line shapes of trapped
ions is certainly desirable.

The line shape, i.e., the dependence of the occupation
probability of the fluorescing state on the detuning of the
frequencies of the applied laser fields from the ionic reso-
nances, is usually calculated by assuming velocities as
constants during the measurement process. That is to
say, atom (or ion) ensembles are considered to be separat-
ed into velocity classes. For each velocity class the occu-
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pation probability of the fluorescing state is computed us-
ing time-independent steady-state theory, which is then
convoluted with the ensemble’s velocity distribution to
obtain the line shape. Such an approach is certainly valid
for atoms in a gas; their velocity is constant between suc-
cessive collisions, the rate of which can be made smaller
than the spontaneous decay rate of a dipole-allowed tran-
sition.

In ion traps, however, things are different. Traps, by
definition, make use of a potential which exerts a restor-
ing force upon particles that have left the equilibrium
point. Thus in any trap the motion of trapped particles is
oscillatory. In Paul traps there is a second source of os-
cillatory motion, since the confining potential is generat-
ed by an rf modulation of the ions’ velocities.® Therefore,
in an ion’s rest frame of reference, a laser field appears
frequency modulated. Its spectrum consists of an un-
shifted carrier and sidebands. This form of the light field
has a profound influence on the line shape, as will be out-
lined in this paper. In order to do so, only simple oscilla-
tory motion will be considered. All ions are assumed to
oscillate with the same frequency, but with different ve-
locity amplitudes 0. Therefore each ion is labelled by its
velocity amplitude rather than its velocity v(?), i.e., the
ion ensemble is separated into velocity amplitude classes
v instead of velocity classes v.

In Sec. II A we review the theory of the ionic motion in
Paul traps.>%!° The line shape is calculated in Sec. II B
for a single harmonically oscillating ion of a given veloci-
ty amplitude. Its density matrix is written as a Fourier
series whose coefficients are given in terms of matrix con-
tinued fractions. The line shape for an ensemble of ions
is then calculated by convoluting the results for one ion
of given velocity amplitude with the distribution of veloc-
ity amplitudes. In Sec. III the calculated line shapes are
compared with measurements made on clouds of Ba™
ions in Paul traps.

II. THEORY OF THE LINE SHAPE

A. Ion motion in Paul traps

Trapping of charged particles in Paul traps (rf quadru-
pole traps) is achieved by means of the time-dependent
potential
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as has been described by many authors. x,y,z denote
the axes of a Cartesian coordinate system, e is the ele-
mentary charge (assuming ions with single positive
charge), m is the mass of the ion, r, is the radius of the
trap’s ring electrode, zo=r,/V'2 is half the distance of
the trap’s end caps, U and V are the applied dc and ac
voltages, respectively, and € /2 is the driving frequency
of the trap. Ponderomotive forces due to the time-
dependent potential determine the secular frequencies of
the ion motion w;=B;Q/2 (i=r,z) with B;=p;(a;,q;).
Supposed on this secular motion (macromotion) is the os-
cillating motion at the trap’s driving frequency  (micro-
motion).

In order to determine the line shapes for spectroscopic
experiments, usually velocity distributions are exploited.
The dynamics of ion clouds in Paul traps has been de-
scribed recently in the frame of a Brownian motion mod-
el yielding the velocity distribution of the ion cloud:
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This Gaussian distribution contains a time-dependent
variance o(t), i.e., its width varies periodically with the
driving frequency Q. Details of the calculation of the
mean-squared velocity o(z) have been given in Ref. 11.

The usual procedure of calculating line shapes would
be to compute the steady-state solution for the occupa-
tion probability of the fluorescing state and to convolute
it with its velocity distribution [Eq. (2)]. Figure 1 shows a
A-type three-level system as is approximately realized
with Ba™ ions, which have been used in experiments with
trapped ion clouds.!? The transitions |1)=2(2), [3)=(2)
are dipole allowed; state |3) is assumed to be metastable.
In the case of Ba™ the measured lifetime of the 2D, lev-
el is 17 s.* Fluorescence is observed on the transition
|1)=2]2). In order to keep a steady flux of fluorescence,
a second laser is required on the transition |3)==(2), thus
preventing optical pumping to state |3). The interaction
of the two light fields at 493 and 650 nm with the ion is
described in dipole approximation by their Rabi frequen-
cies Q,,Q, (r, 650 nm; g, 493 nm) and the detunings
A,,A,, respectively. The detunings are defined as
Opser —Oion- The k vectors of the light fields can be
chosen to be collinear or anticollinear. According to the
usual method the observed line shape L(A,) would be
given by

o —_—

P(v,t)py(A, —kgv,A, —k,v)dv , (3)

La)=["
P(v,t) being the time average of the distribution of veloc-
ities [Eq. (2)]. Here p,,( ) is the density matrix element
describing the occupation probability of state [2) as a
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FIG. 1. Relevant energy levels of the Ba* ion.

function of the laser detunings A,,A, and the velocity-
induced Doppler shifts kgu,k,v.

This calculation yields a line shape as shown in Fig. 2
(parameters: A,=0, collinear laser beams, mean width
o =1000 m/s). Two features are worth noting.

First, it has a doubly peaked structure with the
minimum resulting from a coherent superposition of
states |1) and |{3). Such a coherent superposition does
not interact with the exciting light fields if its internal
phase differs from the phase difference of both light fields
by 7. Moreover, the decay. of the superposition is only
determined by the decay time of the metastable state |3)
because the ground state is stable. Hence occupation in
the coherent superposition state accumulates, and p,, is
subsequently reduced [(Ref. 13), ‘‘dark resonance,”
“nonabsorption resonance”]. This dip has reduced
Doppler width, since the first-order Doppler shifts of the
two lasers subtract, (kg —k, ).

Second, the calculated width of the line of =300 MHz
[full width at half maximum (FWHM)] is much smaller
than the Doppler width 2k,0 ~4 GHz. The reason is
that the width of the line is determined by the necessity
that both laser frequencies coincide with the ionic transi-
tion frequencies within a width given by the degree of sat-
uration and the natural linewidth in order to provide
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FIG. 2. Line shape of the ion cloud as calculated from the
velocity class model [Eq. (3)]. Though the mean-squared veloci-
ty is 1000 m/s, the linewidth is only approximately 300 MHz
(FWHM), due to cross saturation.
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sufficient occupation in the state |2) (similar to cross sat-
uration'¥). This can be achieved only for a few velocity
classes. As a consequence, the linewidth does not depend
on the width o of the velocity distribution as long as ko
is much larger than the saturation broadened, natural
line width of the ionic transition. Thus linewidths larger
than =300 MHz cannot be explained in this frame.
However, the experimentally observed linewidth is about
several GHz (Ref. 12, see Fig. 7). Obviously, the calcula-
tion is inconsistent with the experimental data. This led
to a detailed calculation of the line shape of a A-type
three-level system with particular consideration of the os-
cillatory motion of trapped ions.

B. Line-shape calculation

In order to calculate the line shape of trapped ions,
their motion must be known since it enters the problem
through the Doppler effect. The motion of a single
trapped ion is determined by the trap’s potential [Eq. (1)]
and the initial conditions. In the presence of other ions
their mutual repulsive Coulomb interaction has to be tak-
en into account. This results in a fairly complicated
structure of the ions’ motion. However, it has one
characteristic feature: It is oscillatory. Hence, as a first
approximation, we consider only harmonic oscillation.
There are two natural choices for the oscillation frequen-
cy of the ions, the trap’s driving frequency (2, and the
secular frequencies w,,w, (which one, depends on the
orientation of the k vectors of the light fields relative to
the trap’s axis). Since there is negligible dependence of
the results on the choice of the oscillation frequency (see
below), we have used the trap’s driving frequency Q
throughout this paper. Hence we write for the ion’s ve-
locity

v(t)=0cos(Qt) , 4)

where U denotes the velocity amplitude of the ion’s
motion. Thus in the ion’s rest frame of reference the
laser fields can be written as

k,0
E=E,C0S |Oyaser, green — Tsm( Qt)
kv
+E,cos wlase,,redt—ﬁsm(ﬂt) .

The spectrum of these fields contains the carrier fre-
qUeNcies  @iger, reds@laser,green aNd  equidistant  sidebands
spaced by €. The number of sidebands is approximately
given by the modulation indices u, =k,0/Q, u, =k, v/Q,
so the sidebands extend over a range of 2u,Q=2k,v
(analogous to the red laser). For parameters as in the ex-
periments described below, i.e., Q/27=500 kHz and
v=1000 m/s, we compute p, ~4000. The relative inten-
sity of the nth sideband is given by |J,(u)|?, J, (1) being
the nth-order Bessel function. Note that the ionic fre-
quencies (), w,, and w, are smaller than the radiative
linewidths of the driven transitions of the ion. This ex-
plains why the results of the calculations show negligible
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dependence on the choice of ) or w,,w, as oscillation fre-
quency in Eq. (4).

The internal degrees of freedom of a three-level atom
are described by its 3X3 density matrix p which obeys
the equation

iﬁg;p=[H,p]+relaxation terms .

Using the rotating wave approximation, the set of
differential equations reads explicitly'3

p11=QImp, +T (1 —py—p33) +2y 3p33

P33 =Q,Imp3 +T3(1—=py;—p33) =27 13033 »

Imp,,= —[A, —k,U cos(Qt)]Rep, — v ,Imp,
—Q,(2p;+p33—1)/2—Q,Rep3/2 ,

Rep,=[A, =k, cos(Qs)]Imp,, ~y ,Rep;, +Q,Imp,3/2 ,

Imp;, = —[A, —k,¥ cos(Qt)]Rep;, — v 3,Imps,
—Q,(2p33+p —1)/2—Q,Rep3/2,

Repsy,=[A, —k,U cos(Qt)]Imp;, —y3,Repy, —Q, Imp3/2

Imp;=—[A;, —A, —(k, —k,)0 cos(Qt)]Rep;3— v 3Imp 3
+Q,Rep;,/2—Q,Rep, /2,

Rep;3=[A, —A, —(k, —k,)v cos(Qt)]Imp,3—3Rep ;3
+Q,Imp;,/2+Q,Imp,/2 ,

P22~ ~P1 P33 -

Here, I' |, and I';, are the decay rates of the population of

the state |[2) to the levels |1) and |3), respectively. Fur-

ther, 2y ,=T',, 2¥3,=I3,+27,;. In order to arrive at

these equations, p,, was eliminated using trp=1, and rap-

idly oscillating terms in the coherences p,,,p3,,p;; have
been transformed out. The detunings are defined as

Ar = Wjager,red — D23» Ag = Ojaser,green @21 -

This set of equations is a linear inhomogeneous system of
eight differential equations with periodic coefficients for
the vector p,

P={p11,p33,Imp 5, Repy,,Imp;;, Reps;, Imp 3, Repy3)

which can be written more explicitly as

:i(i_tpz[A+2B cos(Qt)]p+pu . (5)

A and B denote constant, real-valued 8 X 8 matrices and
are given explicitly in the Appendix. We obtain for the
vector u

p=(T T, Q,/2,0,9,/2,0,0,0) .

The damping constants in these equations lead to the ex-
istence of a quasistationary solution in the long-time lim-
it. In this case, which is the only one investigated in this
paper, p(t) is periodic with period 27 /Q,
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2 pme‘lm t'

m=— o

p(t)=

Inserting this into the Liouville equation (5) leads to a re-
currence relation for the Fourier coefficients p,,,

(A +inQ)p, +B(p, 41 +p,_1)+pd,0=0

The solution of this tridiagonal recurrence relation has
been shown to be!®

po=—(A+2BReS; )~

with the matrix S determined by the matrix continued
fraction

S, =—(4+inQ+BS,")"'B

which has to be evaluated numerically. This method has
also been used by Javanainen'® to calculate the light force
on a harmonically oscillating three-level ion.

In the following, the values ,,Q, are kept fixed at
Q,=5Ty,, Q,=T),. These values correspond to the in-
tensities used in the experiment described below.
I,,/27=15.1 MHz, 'y, /27=5.3 MHz, 2y ,;=1/17s7,
these values correspond to the Ba™ ion. The observed
fluorescence in the experiment is given by the time aver-
age of I'y,p,,; therefore p,, is of particular interest for
the line-shape calculations. The frequency  is 27 X 500
kHz.

Figure 3(a) shows the time average of p,,(t) of one har-

monically oscillating ion as a function of A, (collinear
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FIG. 3. Time-averaged occupation probability p,,(7) of state
[2) for a single harmonically oscillating ion of velocity ampli-
tude =300 m/s, as a function of the detuning of the laser at
493 nm. The detuning at 650 nm is A, = —300 MHz; the laser
beams are collinear (a), anticollinear (b).
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laser beams, v=300 m/s, A,=—300 MHz). The state
|2) is occupied for all detunings A, with —k, b

=A, <k,0. At A,~—400 MHz there is a dip in the oc-
cupation probability which is due to a coherent superpo-
sition of states |1) and |3), as already encountered in
Sec. ITA. Except for this dark resonance between the
two peaks [of Fig. 3(a)], p,,(¢) (the bar denotes the time
average over one period of the trap’s driving field) re-
minds one of the form of the velocity distribution of a
harmonic oscillator

1

6)
[(kv)*—

Afg 112

Figure 3(b) shows p,,(7) for the same parameters as in
Fig. 3(a) (A,=—300 MHz, 7=300 m/s), but for anticol-
linear laser beams. The result is very similar except for
the appearance of the dark resonance. Here it does not
occur because the Doppler shifts of the two lasers add
[(k,+kg)v] and broaden the dark resonance. In the case
of collinear beams, the Doppler shifts subtract
[(k,—k,)v] and the dark resonance has reduced Doppler
width.!®

To obtain the line shape of an ensemble of ions, the re-
sult for a particular velocity amplitude class has to be
convoluted with the distribution of velocity amplitudes.
The velocity distribution itself takes the form of a Gauss-
ian with width o [Eq. (2)], which for simplicity we take to
be constant in time. The implications of this approxima-
tion have been discussed in Ref. 12. It could be circum-
vented by lengthy numerical work. Recalling the velocity
distribution of the ion cloud [Eq. (2)] and the velocity dis-
tribution of a velocity amplitude class [Eq. (6)], we realize
that the distribution of velocity amplitudes F(7) has to
fulfill the relation

foo F(v)dv

. 7
v (7 2—p2)12 )

——exp
V2o

Thus we assume that the cloud’s velocity distribution is

built up from an ensemble of harmonic oscillators. As a
solution to Eq. (7) we find
2 v’
F(v)=00"“exp —7'2
The line shape L(A, ) is then given by
L(8g)= [ “F@)py(v,Ap)dv . (8)

According to this procedure L(A,) was calculated for
A,=0, 0 =500 m/s (collinear beams) and is displayed in
Fig. 4. It has a width equal to k,0 which reflects the
width of the underlying velocity distribution. Thus, the
mean kinetic energy of the ion cloud can be determined
from a measurement of the width of the line shape as has
been done previously.!? Note that in spite of the involved
line-shape calculations the kinetic energy can be extract-
ed from measured line shapes without difficulty.

We would like to emphasize that this result is not ex-
pected if one strictly argues on the basis of velocity
classes as it is usually done in spectroscopic line-shape
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FIG. 4. Line shape of the ion cloud as calculated from Eq.
(8). The mean-squared velocity is 500 m/s, and A, =0 (collinear
laser beams).

calculations. Taking that point of view for the moment,
one reasons that an ion of a particular velocity class has
to be in resonance with both lasers in order to fluoresce.
This infers two conditions which select one velocity class
(in fact, due to the natural line width of the ionic transi-
tion and the degree of saturation, a small group of veloci-
ty classes is selected). Thus the resulting line shape is ex-
pected to have sub-Doppler width, as is intentionally the
case in cross-saturation spectroscopy.'® This is in con-
tradiction with the result displayed in Fig. 4, which has

FLUORESCENCE INTENSITY (arb. units)
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FIG. 5. Line shape of the ion cloud [Eq. (8)] for detuned red
laser (A, = —400 MHz); 0 =500 m/s. The laser beams are col-
linear (a), anticollinear (b).
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full Doppler width. We conclude that the oscillatory
motion of trapped ions destroys the cross saturation and
results in a line shape displaying full Doppler width even
in a three-level system interacting simultaneously with
two lasers. Inspection of the line shape in the case of an-
ticollinear beams shows the same form as in the collinear
case except for the dark-resonance dip which does not
show up.

The line shape L(A,) has been investigated for the case
A,70, too. Figure 5(a) shows L(A,) for A,=—400
MHz, 0 =500 m/s, and collinear laser beams; Fig. 5(b)
displays the result for the same parameters but anticol-
linear beams. Both figures show a modification of the
line center as compared to Fig. 4. The reason for this can
be understood as follows: In the rest frame of an ion of
velocity amplitude class U the light field at the transition
[2)=2]3) has sidebands ranging from A,—k, 7 to
A,+k,b. If 5 <|A,|/k,, none of these sidebands will be
resonant with the ionic transition and the ion will not
fluoresce much. If, on the contrary, 7> |A,|/k,, some
sideband will be resonant, and the ion will be able to
fluoresence. Thus, an ion needs a minimum velocity am-
plitude =|A,|/k, to show some fluorescence light.
Consequently, the fluorescence of ions with small velocity
amplitudes is missing in the line shape calculated for
A,50. It lacks some fluorescence in the region

— Ak, 7k, <A, <|A, K, /K, .

This is immediately recognized in Fig. 5(b) showing the
anticollinear case. Figure 5(a) shows essentially the same
feature (flattened top of line shape) but its interpretation
is a little more involved, and the appearance is slightly
obscured by the presence of the (almost Doppler-free)
dark resonance (indicated by the little dip left of the flat-
tened top). To summarize, the physical basis of the line-
shape interpretation is optical pumping of those ions
whose velocity amplitudes are not large enough to reach
the velocity amplitude determined by the detuning A,0.

All calculations have been performed by assuming an
ion oscillating at the trap’s driving frequency 1. One
could also choose one of the secular frequencies w,,w, as
oscillation frequency. Because the arguments used ex-
ploit only the structure of the light fields in the ion’s rest
frame of reference (frequency-modulated laser fields) and
the kinetic energy in both macro- and micromotion is of
the same order of magnitude, no change of the results is
expected. Both the dark resonance in the collinear case
and the flattened top in the case A,s£0 show up in calcu-
lations carried out with w,,w, as oscillation frequency.
Judging from the form of the line shape alone, there is no
way to distinguish influences of micro- and macromotion.

III. EXPERIMENTAL DETERMINATION OF
THE LINE SHAPE

The experimental setup is schematically given in Fig. 6.
The light field at 493 nm is generated by a cw ring dye
laser which excites the ionic transition 625, ,<6 %P, ;.
The 62P, ,, state decays to the states 625, ,, and 5°D;,
with a branching ratio of 3:1. In order to prevent optical
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light at 630 nm
(anticollinear laser beams)
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FIG. 6. Experimental setup for the measurement of the line
shapes of clouds of trapped Ba™ ions.

pumping to the 52D, ,, state [this state has a lifetime of
17 s (Ref. 4)], a second laser at 650 nm is necessary. Both
lasers propagate through the ring plane of the rf trap
(ring diameter 40 mm), either collinearly or anticollinear-
ly. Fluorescence at 493 nm is observed at a right angle to
the laser beams through one of the end caps formed of a
mesh and is detected by a photomultiplier (PM). For
lock-in detection, the laser at 650 nm is periodically
chopped, which results in a clear signal at 493 nm since
there is immediate optical pumping to the 52D; , state
when no radiation at 650 nm is present. The line shape is
obtained by recording the photomultiplier current as a
function of the detuning of the laser at 493 nm.

The atomic beam, from which the ions are created by
electron impact ionization, is blocked by a mechanical
beam shutter during the measurements. The background
pressure inside the trap is about 10~ ¢ Pa.

Figure 7 shows a measurement for A, =0 and collinear
beams; Fig. 8 one for A, =0 and anticollinear beams. As
predicted, the line shapes have widths of several GHz
and are not Doppler free as would be expected for cross
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FIG. 7. Experimentally observed line shape of the ion cloud
(A, =0) for collinear beams.
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FIG. 8. Measured line shapes for several detunings A, of the
laser at 650 nm (anticollinear beams).

saturation. In particular, the line shapes do not display
the form calculated on the basis of velocity classes (Fig.
2). The cross saturation is destroyed by the frequency
modulation of the light fields. The dark resonance shows
up in the collinear case, but not in the anticollinear one.

Figure 8 shows the observed line shapes for anticol-
linear beams and several detunings of the laser at 650 nm.
The line shapes approximately coincide in the wings but
differ in the center, where their top is flattened. One
could imagine that they arise from the line shape for
A,=0 by cutting it horizontally in a certain height de-
pending on the detuning of the light field at 650 nm. The
widths of the flat areas depend linearly on the absolute
value of the detuning at 650 nm. This confirms the inter-
pretation given in Sec. IIB, stating that ions need a
minimum velocity amplitude v=|A,|/k, in order to
fluoresce. Conversely, fluorescence light of the ions with
velocity amplitude 7 <|A,|/k, is missing in the line
center, since they are optically pumped to the 5°D;,,
state. Note that the experimental results of Fig. 8 and
the calculated line shape of Fig. 5(b) most clearly demon-
strate the suitability of the concept of separation of the
ion ensemble into classes of velocity amplitude rather
than velocity. The flattened tops of the spectra can be
easily understood as arising from optical pumping of cer-
tain velocity amplitude classes. Of course, every velocity
amplitude class can be considered to consist of many ve-
locity classes, Eq. (6), and vice versa, so an interpretation
in terms of velocity classes is in principle possible but
very complicated. Moreover, it would obscure the under-
lying physical processes instead of clarifying them. We
conclude that the concept of velocity amplitude classes is
well suited for the understanding of line shapes measured
on clouds of trapped ions.

Figure 9 shows the observed line shape for collinear
beams and a detuning A, = —400 MHz. As in the previ-
ous case, fluorescence is reduced in the central region.
Due to the occurrence of the dark resonance left of the
flattened top, the line shape is modified in agreement with
the theoretical prediction [cf. Fig. 5(a)].
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FIG. 9. Measured line shape for A, = —400 MHz, collinear
beams.

IV. CONCLUSIONS

It has been demonstrated both theoretically and experi-
mentally that the oscillatory motion of trapped ions
strongly influences the observed line shapes in spectro-
scopic experiments. The calculations and measurements
agree qualitatively in general. Additionally, separating
the ion ensemble into velocity amplitude classes gives an
intuitive physical picture that accounts for the processes
of optical pumping encountered in the case of non-
resonant laser tuning. Moreover, two-photon processes
lead to the dark resonance. We conclude that it seems
necessary to describe the ion motion in terms of velocity
amplitudes instead of velocities themselves. It should be
mentioned that arguments based on velocity amplitudes
have been used previously in order to explain observed
line shapes in clouds of trapped ions.!’

Our calculations predict that the line shapes for A, =0
have full Doppler width. Thus the mean kinetic energy
of the ion cloud can be determined from such a measure-
ment.'> The knowledge of the mean kinetic energies of
the ion cloud is important for frequency standards appli-
cations of spectroscopic measurements, e.g., the correc-
tion of second-order Doppler shifts of hyperfine split-
tings. In these experiments, line centers are shifted be-
cause of the second-order Doppler effect which is propor-
tional to the ion cloud’s mean kinetic energy. Such shifts
can be corrected for if the ion’s energy is known.

The calculations can be applied to two-level atoms as
well. In this case the line shape of an ion ensemble is

identical to the line shape derived on the assumption of a
J

—Inp —Tpt2y,; Q 0 0

Iy =2y 0 0 Q,

—Q, —Q,/2 —Yin A4, 0

0] 0 A, —Y12 0
A=\_q,2 -—q 0 0 -7y

0 0 0 0 A,

0 0 0 —-Q,/72 0
0 0 Q,/2 0 Q,/2
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separation into velocity classes, at least in the case of
large Doppler width. This remark, however, does not in-
validate the notion of velocity amplitude classes, since in
the ion’s rest frame of reference the laser field is not fre-
quency shifted but frequency modulated. This should be
observable in experiments based on the selection of cer-
tain velocity classes with velocities not equal to zero.

Measurements of the time dependence of the ions’
fluorescence, e.g., on time scales of the trap frequency (,
are difficult to interpret. No doubt, the calculation gives
all Fourier coefficients p, of the density matrix, but ex-
cept p, they are sensitively dependent on the exact form
of v(¢). In reality v(¢z) is not of simple harmonic time
dependence, and, because of space charge, it does not
vary according to a solution of the Mathieu equation
governing the motion of a single ion in the trap potential
either. Thus there seems to be no obvious way to im-
prove the given calculations.

It should be possible to successfully apply these calcu-
lations to spatially resolved measurements of the ion
cloud’s fluorescence. Since the Brownian motion model!!
of ion motion in an rf trap predicts a correlation between
position and velocity, it should be possible to obtain the
spatial distribution of velocity amplitudes, too. As the
form of the line shape turned out to be different from the
form of the velocity distribution in general in this paper
(see Figs. 8 and 9), in the spatially resolved case the spa-
tial distribution of fluorescence should be different from
the spatial distribution of the ions themselves.

As has been pointed out, the choice between the trap’s
driving frequency € and the secular frequencies w,,w, as
ionic oscillation frequency cannot be made on the basis of
the line shapes alone. Since the micro- and macromotion
have different spatial dependence, spatially resolved mea-
surements should shed some light on this question. An
investigation of the spatial dependence of the ions’
fluorescence will be presented in a forthcoming paper.
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APPENDIX
Here we present matrices A and B that occur in Eq.

(5):

0 0 0

0 0 0

0 0 —Q,/2

0 Q,/2 0
—A, 0 —Q,72 ’
—V3 —8,/2 0
Q,/2 —Yi3 —(A,—A4,)

0 (A,—A4A,) ~Y13
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00 © 0 0 0 0 0
00 O 0 0 0 0 0
00 0 kg2 0 0 0 0
00 —k;g/2 0 0 0 0 0

B=1o o 0 0 kv/2 0 0
00 O 0 —kv/2 0 0 0
00 0 0 0 0 0 (k,—k, )5 /2
00 © 0 0 0 —(k,—k)0/2 0
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