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Based on a conjecture for the four-step recursion relation occurring in the series solution of the
Coulomb-diamagnetic problem in two space dimensions, the energy eigenvalue spectrum that repro-
duces the known limits in full is obtained exactly. The resulting nonperturbative spectrum is a de-
ceptively simple combination of the purely Landau and Coulombic spectra but gives the quasi-
Landau levels with (3/2)%iw, spacing near the ionization threshold. The conjecture is made plausi-
ble in terms of an adiabatic continuation of solutions in the parameter ratio #iw. /R.

The three-dimensional Coulomb diamagnetic problem
remains an important unsolved problem.' The full prob-
lem is nonseparable, and no theoretical technique is yet
available for handling such potentials exactly. In the vi-
cinity of zero energy, i.e., for highly excited or Rydberg
atoms, we expect a mixing of highly degenerate and
closely packed hydrogen levels due to the full potential.
Irrespective of the strength of the magnetic field B, this
is, therefore, a nonperturbative regime. There is thus no
a priori ground to expect a simple spectrum around
E =0. And yet recent experiments have belied this ex-
pectation.? The reported spectrum reveals nearly equally
spaced resonances with spacings approximately in multi-
ples of fiw_ /2, w. being the cyclotron frequency. The
most dominant of these is the 2w, spacing. This has
inevitably led to the speculation that nonseparability may
have interesting and unsuspected consequences.® It has
even been suggested that the hydrogen atom in a magnet-
ic field may be a case of quantum chaos realizable in the
laboratory.*> Studies based on classical trajectory calcu-
lations support the dominant spacing of %ﬁwc.6 A com-
plete analytical quantum calculation is however still lack-
ing.

In this paper we examine the two-dimensional analo-
gue of this problem, where the potential is Coulombic
(—e?/p) and the electron moves in the plane z =0. This
problem is physically interesting in its own right in that it
describes the energy levels of an ionized impurity center
in the two-dimensional systems realizable in the laborato-
ry, such as inversion layers and heterostructures in the
presence of a transverse magnetic field. It also approxi-
mates well the Rydberg states of the three-dimensional
Coulomb-diamagnetic problem.®

Our model is a two-dimensional hydrogen atom in the
z =0 plane subjected to a constant uniform magnetic field
B of arbitrary strength and pointing in the z direction.
Using cylindrical coordinates (p,¢), the principal task is
to solve the radial equation
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The primes denote derivatives with respect to the dimen-
sionless radial variable &, where

p=vE, v=1"2h/po,, o.= lel B , (2)
uc
and the other dimensionless variables are
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Factoring out the limiting behavior corresponding to the
separate Coulomb and Landau problems we take

R(E)=g/mle 8720 —Bey(g) 4)
we find
&V +(p —2BE—28* W'
+[(a—Bp)+(6+B%)p+2BE*v=0, (5

where
p=2lm|+1, d=y—p—1. (6)
Setting
v= i a,&", ay70 (7)
n=0

we get a four-step recursion relation

n(n+p—1a,+[a—PB(p +2n—2)]a

n—1

+(8+p*—2n +4)a, _,+2Ba,_=0. (8)

No standard technique exists for analyzing such a rela-
tion. We propose the following conjecture to be dis-
cussed later.

Physical solutions are obtained as follows. The integer
k(=0,1,2...,) will be seen to have the nature of a prin-
cipal quantum number. Choose a particular value of k.
Then set n =k +1 in the recurrence relation (8) and re-
quire that the coefficient of a;, be zero, so that a, does
not contribute to a, , ; via (8). In addition, set n =2k +2
in (8) and then require that the coefficient of a,, be zero,
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so that a,, does not contribute to a,; ,, via (8). This
procedure gives a mathematically legitimate class of solu-
tions.

Setting n =k +1 and n =2k +2 successively in Eq. (8)
and equating to zero the coefficients of a; and a,;, we im-
mediately obtain

B=a/(2k +p) 9)
and

5+p*=4k . (10)

These can be solved to give the energy eigenvalues
fiw,
E=E,=—(2k+m+ Im|+1)=R /(k +|m|+ 1),

(11)
with
B=Bin, =a/(2k +2|m|+1) . (12)

Equations (11) and (12) are our principal results. Notice
that the conjecture does not alter the infinite series nature
of the solution v(£) but fixes it up to an overall normali-
zation factor.

Let us now discuss the implications of our results. The
present problem has three standard limits that are readily
recovered in full from Egs. (11) and (12). First, the
Coulomb bound states (E <0) followed by w,—0. Our
results give B=a/(n+1) and E,,=—R/(n+1)?
where n =k + |m| is the conventional principal quantum
number of the two-dimensional Coulomb problem. The
recursion relation (8) then reproduces the Coulomb func-
tions. Next, letting f—0, a=£0, k +|m|— o, and
w.—0, we get the scattering states of the Coulomb prob-
lem with E having any positive value. These limits are
best seen by returning to the p variable. Finally, by let-
ting a—0, the Landau spectrum is obtained in full. Thus
the set of two conditions imposed by the conjecture ex-
actly reproduces the infinite set of data on the limiting-
energy eigenvalues and eigenfunctions. Yet another
striking feature of the spectrum is that it generates the
quasi-Landau levels with spacing 3#iw. in the Rydberg
limit, i.e., near the zero-field ionization threshold. To see

this, introduce the “principal” quantum number
n=k+|m| and define other quantum number
m'=k +m. Thus we rewrite Eq. (11) as
E=ltw.(n +m’-|—l)—L2 . (11")
(n+1)

We now evaluate (JE /dn)/#iw, in the limit n>>m’,
E ~0 for a fixed value of m’, which is readily seen to
equal 3. We have not, however, calculated the oscillator
strength for the corresponding o-polarization transition.
Now let us turn to the other general features of the
spectrum. Introducing again the principal quantum
number n =k + |m|, we have the following level scheme.
The level E,,, is (n +1)-fold degenerate for m >0, while
for m <O there are no degeneracies barring accidental
ones which may appear for tuned values of the parameter

a. One notices that such a qualitative feature is very
desirable for the full Coulomb-diagmagnetic problem. It
is readily seen that, in general, there is level crossing
which, however, may not allow dipole-induced transition.

The completely nonperturbative result in Eq. (11) can
be understood in the following terms. The effective po-
tential appearing in the radial equation (1) is a combina-
tion of the Coulombic and the harmonic potentials that
control the asymptotic behavior of the radial function in
the respective single-potential limit. It is, therefore, apt
to factor out the asymptotic behavior, as in Eq. (4). This
facilitates passage to the Coulombic and the Landau lim-
its. Thus, for any nonzero diamagnetic term, however
small, the asymptotic behaviozr is always dominated by
the oscillator cutoff factor e “¢ /2. The presence of such a
dominant cutoff factor renders inadmissible the neglect of
the divergent Coulomb solution as in a conventional
treatment of the Coulomb problem. In fact, an expansion
of v(£) in the small parameter 1/a reveals the presence of
the conventionally discarded solution of the Coulomb
problem in addition to the solution with the usual asymp-
totic behavior of e “#. Thus the perturbation theory
based entirely on the standard Coulomb basis will be in-
capable of giving a meaningful result in any finite order,
irrespective of the smallness of the diamagnetic term.
Indeed, such a perturbation expansion will have to
effectively incorporate this factor e /2 to all orders.
Perturbation theory may work, however, were the poten-
tial to have a finite support (short range) which is not the
case in our model.

We now come to a discussion of the conjecture itself
which can be rationalized in terms of the following con-
tinuity consideration. First let us recall that for any
value of the parameter a we have a set of solutions that
continuously flow into the complete set of exact limiting
solutions as a is varied from zero to infinity. Thus, in the
spirit of the adiabatic hypothesis, the solutions should
map into solutions as « is varied. To gain confidence,
however, we compare our results with those obtained by
the exact treatment of the Wentzel-Kramers-Brillouin

(WKB) approximation.” From Egq. (11') we derive
straightforwardly for the quasi-Landau level spacing
| |dE |, | R |2
fiw, | dn 2 fiwo, | nd’
with n given by
w2 |-E |n—2 | L |=0, ns1m=0. (3
fiw, fiw,

We readily see that the level spacing is a decreasing func-
tion of the energy (E /#iw>0) and is smaller for larger
fields. The opposite is true for the negative energies and
thus there is a crossover at the threshold £ =0. This is in
complete agreement with the results of Ref. 7. Quantita-
tively, our results agree exactly with the latter at the
threshold, giving (1/%w )NdE /dn)=3. Away from the
threshold, however, our level spacings are somewhat
smaller (larger) than theirs for positive (negative) ener-
gies. We are now in the process of applying our conjec-
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ture to other important classes of anharmonic potentials.
Finally, we would like to point out that the spectrum
in Eq. (11) has a remarkable regularity and simplicity, in
that cross terms do not appear. This, we believe, is due
to the underlying symmetry of the problem that deserves
further investigation. We suspect, specifically, that this
may be related to a duality between the Coulomb and the
harmonic potentials suggested by Schwinger’s well-
known transformation of the Coulomb problem into an
oscillator problem. Inasmuch as the quadratic Zeeman

correction must be a cross term [~ (%w,)*/R], its ab-
sence in our two-dimensional Coulomb-diamagnetic
problem may be understandable in terms of such a duali-

ty.
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