
PHYSICAL REVIEW A VOLUME 39, NUMBER 10 MAY 15, 1989

Diabatic states via a diabatic Hamiltonian

Arnold Russek and Richard J. Furlan
Department of Physics, The Uniuersity of Connecticut, Storrs, Connecticut 06269

(Received 19 September 1988)

A new class of diabatic states for atom-atom and atom-molecule collisions is obtained by formu-
lating a diabatic Hamiltonian. The true Hamiltonian describing the collision system is decomposed
by means of topologically defined projection operators into a diabatic Hamiltonian plus an interac-
tion term. A pseudosymmetry operator, which commutes with the diabatic Hamiltonian, is con-
structed from these same projection operators. The diabatic states are simultaneous eigenstates of
the diabatic Hamiltonian and the pseudosymmetry operator. They cross and maintain their charac-
ter through the crossing region. Such level crossings do not constitute a violation of the noncross-
ing rule, because the diabatic states involved have different pseudosymmetry. The diabatic states
are coupled by the interaction term of the Hamiltonian. A set of coupled equations of motion for
the amplitudes of the diabatic states is derived from the time-dependent Schrodinger equation. The
(HeH2)+ triatomic molecular ion is considered as an example. A pseudoreflection operator is con-
structed from the projection operators, which reduces to the usual reflection operator in those
geometries for which the potential energy has true reflection symmetry. Pseudoinversion symmetry
is also considered for this molecular system, treating the H2 at small separations as a near He. In
addition, a new configuration constant of the motion is constructed for multielectron systems which
is not an extension of a conventional symmetry. The diabatic states obtained in this work predict a
recently observed excitation of He to an n =2 state in H2 on He collisions.

I. INTRODUCTION

For the quasimolecular states used in the theoretical
analyses of atomic and molecular collision processes, it is
generally accepted that "states of the same symmetry do
not cross. " This is the so-called "noncrossing rule" of
von Neumann and Wigner, ' a good presentation of which
can be found in Landau and Lifshitz. Figure 1 shows
the molecular geometry of the (HeH2)+ molecular sys-
tem, which is used as an illustrative example in this work.
Figures 2(a) and 2(c) show molecular energy diagrams for
this system (actually, a cut through the energy surface)
for r=2 and y =90'. Figure 2(a) shows the ab initio adia-
batic energies only, while 2(c) shows the diabats as well.
For y =90', the molecular geometry has isosceles triangle
symmetry, designated by C2, . In this case, the electronic
Hamiltonian has two reflection symmetries, so that the
respective reflection operators are constants of the
motion. As a result, the electronic states are simultane-
ous eigenstates of the Hamiltonian and of both reflection
operators. The adiabatic energy curves of Fig. 2(a) show
eigenstates of the Hamiltonian belonging to different
eigenstates of one of the symmetry reflection operators
and which do cross. These states are identified in Fig.
2(c). One is even, the other odd under reflection in the
y-z plane. The third state of Fig. 2(a) cannot be discussed
in terms of reflection symmetry only, and will be taken up
later.

For molecular geometries off Cz, symmetry, there is
but a single symmetry constant of the motion, reflection
in the x-y plane containing the nuclei. This is termed C,
symmetry. Since all of the orbitals encountered in this
work have positive reflection symmetry in this plane (X

states), this constant of the motion will be suppressed in
the notation. For the C, case, the adiabatic energy
curves, seen as the dashed curves of Fig. 2(b), do not
cross, in accordance with the noncrossing rule. In the vi-
cinity of such an avoided crossing, adiabatic states of the
same symmetry rapidly change character to make the
adiabatic energy levels avoid each other. Because they
are rapidly changing in a narrow range of internuclear
separations (passed through in a short time interval even
in modest energy collisions), the electronic motion is un-
able to respond quickly enough to follow adiabatic behav-
ior. Rather, the time-dependent electronic state main-

He

FIG. 1. The molecular geometry.
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tains its character, and jumps over the avoided crossing.
This behavior is termed diabatic, following either the
solid or the dot-dot-dashed curves of Fig. 2(d).

Smith has defined diabatic states as those for which
V~/=0 in the crossing region; states which do not
change at all will certainly maintain their character
through this region. Such a definition works well in those
instances in which the crossing region is narrow and the
diabatic states themselves are slowly changing with R.
There are, however, cases for which these implied condi-
tions are not met, and the Smith definition of diabatic
states presents problems. It was pointed out by Delos
and Thorson that the diabatic states thus generated do
not even follow the nuclear motion. Such behavior can
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FICx. 2. Molecular energy levels for the case r=2, appropri-
ate for collisions of H& on He. (a) and (b) show the adiabatic
energies for the three lowest states as functions of R, for y =90'
and 60, respectively. (c) and (d) show these same energies, but
include the diabatics as well. The pseudosymmetry designations
are given in (d). In all cases, the adiabatics are shown as dashed
curves. The solid curves show states of +1 symmetry (y =90 )
or pseudosymmetry (y =60'). The dot-dot-dashed curves show
states of —1 symmetry or pseudosymmetry. The dotted curves
indicate interpolations, where only fragmentary ab initio values
(in the crossing region and at R = ~) are available.

be tolerated if the crossing region is narrow, but not if it
is broad. Delos and Thorson and Delos suggest using
electron translation factors to remove this particular fail-
ing of the Smith definition.

In this work, an alternate strategy is adopted following
O' Malley, ' who defined a diabatic Hamiltonian by
means of projection operators. The formulation of the di-
abatic Hamiltonian, together with the projection opera-
tor constants of the motion, is presented in Sec. II. Sec-
tion II also includes the derivation of the equations of
motion for the amplitudes of the diabatic electronic
states. In several respects, the present formulation is
similar to that of Kubach et al. , who followed the
O' Malley approach. However, there are important
differences between the present formulation and that of
Kubach et al. which will be discussed in Sec. III. Section
III is devoted to a discussion of the projection operators
themselves. The projection operators used in the present
work are topologically' defined projection operators,
which will be motivated in this section and more fully de-
scribed in Sec. III.

In a collision problem, a different basis set is used for
each internuclear separation; thus a different projection
operator is defined for each internuclear separation. To
speak of a projection operator in a collision problem, it is
necessary to define in some compact way the basis set for
each internuclear separation. When the collision
geometry is such that point symmetries (such as even-odd
or gerade-ungerade) hold, these topological invariants of
the motion determine the "character" of the state. The
names simply describe the eigenvalues of commuting
operator constants of the motion reAection and parity.
When the collision system is not characterized by one of
the point symmetry groups, it is still possible to find topo-
logical invariants of the motion during the collision pro-
cess for the diabatic Hamiltonian, in terms of the nodal
structures of the electronic states. ' ' The topological
projection operators which select out the desired nodal
structures are constructed from prescribed linear com-
binations of Gaussian primitive elements with the same
(or nearly the same) exponents, but on different centers.
The construction is best described in terms of an exam-
ple. The basis set used in this work consisted of four s-

type and two p-type atomic functions, similar to the set
used by Brown and Hayes' for (HeH2)+. That set was
adapted from Edmiston et al. ,

' which in turn was adapt-
ed from Huzinaga. ' It consists of five s-type Gaussians
on each H contracted to four s-type "atomic orbitals, "
and six s-type Gaussian functions on the He contracted
to four s-type "atomic orbitals. " The exponents of the p-
type Gaussians are here taken to match those of the
second and third most diffuse s-type Gaussians. In the
optimized set of primitive elements used by Brown and
Hayes, ' the third Gaussians centered on H~ and Hz
each have exponent 0.33, while the corresponding third
Gaussian on the He center at C has exponent 0.43. With
these, the third element in the basis sets defining the
pseudosymmetries at r =2.0, R =3.0 and y =60' are

2 — r2 2
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The first gives the i =3 element of the basis set P, + span-
ning the space of g + pseudosymmetry. The others give
the i = 3 basis elements of the u + pseudosymmetry and
—pseudosymmetry. The pseudosymmetry nomenclature
(described in Secs. III C and III D) is not important at
this point. What is important is how corresponding
primitive elements on the respective centers are grouped
together to construct a basis set used to define the topo-
logical projection operators. The situation is somewhat
more complicated than simply using the P, +, P,„+, and

to construct the topological projection operators.
The three-spaces must be made orthogonal to one anoth-
er, a procedure given in Sec. III. The final basis elements
of the complementary subspaces will be denoted by u, +,
u;„+, and u,

The u's, when thus obtained, define the pseudosym-
metries at vanishingly small collision velocities. At finite
collision velocities, each of the Gaussians that make up
the P, can be multiplied by the electron translation factor
appropriate to the center it is on. This will yield moving
diabatic states that satisfy the proper boundary condi-
tions. However, this step is not required for self-
consistency of the present formulation. By contrast, elec-
tron translation factors were shown by Delos and Thor-
son to be essential in their approach. The incorporation
of electron translation factors into the present formula-
tion will necessitate revamping the integrals package of
existing quantum-chemistry programs, a task which is ex-
tremely difficult, but not impossible. The subject of mov-
ing diabatic states in the present formulation will be dealt
with in a future publication.

It must be clear that the ab initio calculations of the
present work obtain only adiabatic states. The contrac-
tions of Gaussians on different centers, inherent in the
basis sets defining the topological projection operators,
are not incorporated in present-day quantum-chemistry
codes. Moreover, adiabatic states are even desirable in an
exploratory study such as the present work. They
demonstrate that away from the interaction region, the
adiabatic states do have the pseudosymmetries of the
crossing diabats, and that in the interaction region, the
adiabatic states are linear combinations of these crossing
diabats.

The use of combinations of Gaussian primitive ele-
ments permits the specification of nodal structure, while
at the same time allowing the flexibility needed to optim-
ize electron orbitals. It is this Aexibility to optimize or-
bitals that gives the present formulation an advantage
over the previous ones: concisely stated, it is the su-
periority of multiconfiguration calculations over simple
configuration-interaction calculations. The projection
operators are thus intimately tied in with quantum-
chemistry programs. Because the Gaussian primitive ele-
ments form a nonorthogonal basis set, the topological
projection operators must be defined in terms of a
nonorthogonal basis set. The necessary mathematical de-
velopment is presented in Sec. III B. The Gaussian prim-

itive elements here used were taken from the existing
literature, which did not take pseudosymmetry into ac-
count. To the extent that the pseudosymmetry concepts
here presented are accepted, future Gaussian primitive
sets should be constructed with corresponding primitive
sets having equal exponents.

Historically, the use of nodal structure to characterize
the states of a quasimolecule was first introduced by
Morse and Stueckelberg" for diatomic quasimolecules.
They characterized the (diabatic) states of a diatomic
quasimolecule in terms of the number of nodes in the an-
gular part of the single-particle wave function separated
in prolate spheroidal coordinates. The characterization
of diabatic states via nodal structure in the diatomic
quasirnolecule was made more explicit by Barat and
Lichten, ' who defined diabatic states in terms of the
number of nodes on a line joining the two centers. The
use of nodal structures to characterize diabatic states was
generalized by Russek and Furlan' to the multicenter
case by focusing on the topological properties of the no-
dal structure of the single-particle orbitals. In Sec. IV of
the present work, it will be established that the number of
nodal surfaces does not necessarily remain invariant as
the nuclear geometry varies; but only the odd or even
quality of the number of intersections with a line (or
curve) joining the centers. This topological concept of
the nodal structure is more general than the point sym-
metries, and includes them as special cases. Hence the
projection operator constants of the motion are termed
"pseudosymrnetry" operators.

The true point symmetry operators commute with the
full Hamiltonian, and states of different true symmetry
are therefore not coupled by the equations of motion.
For example, in a collision of He on He, parity is a con-
stant of the motion. If the initial electronic state is
gerade, it will stay gerade throughout the entire collision
process. From the standpoint of electronic excitation,
this case is uninteresting. The levels are well character-
ized and cross, but no electronic excitation occurs. On
the other hand, the pseudosymmetry constants of the
motion commute only with the diabatic Hamiltonian, not
the full Hamiltonian. Therefore the equations of motion
for the coefficients of the diabatic states will couple states
of different pseudosymmetry. These equations, derived in
Sec. II, are rigorous and exact.

In collisions of He+ on H2, or H2+ on He, the two pro-
tons constitute a system that is similar to a He nucleus,
an idea advanced by Dowek et al. ' As a result, the col-
lision system has pseudoparity symmetry, which is built
into the diabatic Hamiltonian in Sec. III. The diabatic
states obtained in this work predict that a Rydberg state
of He is excited in low-energy collisions of H2 on He [see
Fig. 2(d)], contrary to current models. The diabatic
crossing involved is between orbitals of a„'+ and a' pseu-
dosymmetry. The projection operators used by Kubach
et al. were defined in terms of the la' and 2a' adiabatic
orbitals, which are linear combinations of the topologi-
cally determined diabatic orbitals. Kubach et al. could
not, therefore, obtain this diabatic crossing, and appear
not to have suspected it. Nor was this diabatic crossing
suggested in the earlier work of Hopper. ' Both found
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the two-electron diabatic crossing between the He+ +
H2 and the He + H~+* repulsive state. The Rydberg ex-
citation of He predicted in the present work has in fact
been observed by Quintana et al. '

II. THE DIABATIC HAMILTONIAN

P =P, Q =Q, PQ=O.

If P and Q together span all of Hilbert space, then
P+Q = l. However, the goal of this work is a formula-
tion which can be incorporated into quantum-chemistry
ab initio computer programs, which employ a finite
(Gaussian) basis set. Since this last condition is not
fulfilled in the intended application, it will not be used in
the formulation. Thus H denotes not the true Hamiltoni-
an of the collision system, but the projection of that
Hamiltonian onto the basis set P+Q:

H=(P+Q)H„„,(P+Q) .

Realistically, H, as defined by (3a) is what is actually used
in a collision calculation. It can be written as the sum of
the diabatic Hamiltonian plus an interaction term,

H =HD+H',

where

(3b)

O' Malley ' has suggested that diabatic states can be
defined in terms of a diabatic Hamiltonian, here denoted
by HD,

HD =QHQ+PHP,

where

operator, either of which it includes as a special case.
This latter can be accomplished by making P and Q the
operators which project onto even and odd functions. It
is a generalization in the sense that vr can be defined via
Eq. (6) even when exact refiection or inversion symmetry
does not hold.

Because HD and m. commute, they have simultaneous
eigenstates. The diabatic states are defined to be these
simultaneous eigenstates. Eigenstates of HD which be-
long to different eigenvalues of m are not inhibited from
crossing. ' It should be noted that all this can be done
without explicitly defining P and Q. The formulation
only provides a framework for discussing diabatic states;
the quality of the diabatic states obtained depends on
how well P and Q correspond to the physics of the col-
lision process. The situation is analogous to the varia-
tional method, which provides a framework, but does not
in and of itself provide a good approximation to the
ground state. The quality of the variational result de-
pends on the quality of the trial function used: how well
it embraces the physics of the electronic motion.

Atom-atom or atom-molecule collisions are most often
treated within the framework of the classical trajectory
approximation; the nuclear motion is treated classically,
while the electronic motion is treated quantum mechani-
cally. The electronic state evolves from a time-varying
Hamiltonian as the nuclear charges move along a classi-
cally determined trajectory. The study of electronic exci-
tation in such collisions requires the solution of the time-
dependent Schrodinger equation for the time-varying
coefficients of a set of quasimolecular electronic states,
which are here taken to be the diabatic states just dis-
cussed. We write

H'=PHQ+QHP . +=pa„(t)g„(r;R(t))exp —i f E„(r)dr, (7)

In a sense, the diabatic states provide the zeroth-order
description of the collision process. However, the formu-
lation here presented will be rigorous and complete; H'
need not be small. Using the properties of the projection
operators listed in Eq. (2), it is not hard to show that both
P and Q commute with HD:

P (QHQ+PHP) =PQHQ+PPHP =0+PHP =0+PHPP

=(QHQ+PHP)P .

This proves that

where

Hng„=E„P„. (8)

(9)

The resulting equations are

The equations of motion for the coefficients a„(t) are ob-
tained by substituting the expression (7) for 4 into the
time-dependent Schrodinger equation:

I'HD =HDI' .

Exactly the same type of proof yields the result

QHD=HDQ .

(5a)

(5b)

a = —g(iH' „+(,f ~f„))a„expi f (E E„)d~ . —

(l0)

Thus, P and Q are constants of the motion for HL„but
not for H itself. The pseudosymmetry operator n. is
defined to be

These equations are exact; no approximations have been
made and H' does not have to be small.

sr=P —Q, (6) III. THE TOPOLOGICAL PROJECTION OPERATORS

which by (Sa) and (5b) also commutes with HD. The ei-
genvalues of m are + 1 and —1, belonging to eigenfunc-
tions of HD in P space or Q space, respectively. This
makes ~ a generalization of this reflection or parity

A. Introductory remarks

The formulation of the diabatic Hamiltonian described
in the preceding section does not depend upon the
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specific projection operators used. The formulation
merely provides a framework; the quality of the descrip-
tion of any given collision process depends entirely on
how closely the projection operators employed embody
the physics of that particular collision system. Different
collision systems will call for different projection opera-
tors. This work will not attempt to cover all possibilities.
Rather, it will focus on those cases in which near symme-
try exists (e.g. , near-inversion symmetry or near-
reflection symmetry). The key characteristic of the wave
function which the projection operators select out is the
nodal structure of the wave function, in particular, the
odd or even quality of the number of nodal surface inter-
sections with any line or curve joining the centers. This
is a topological feature which remains invariant under ac-
tion of the diabatic Hamiltonian. The actual number of
nodal surfaces is not an invariant of the diabatic Hamil-
tonian.

B. Projection operators in a nonorthonormal basis set

These overlaps form a nonsingular matrix S with inverse
S ', the components of which are denoted by S, '. The
essential property that makes an operator a projection
operator is that of idempotency:

P =P. (12)

In terms of the given basis set, it is easy to show that to
satisfy the idempotency condition (12), P must be given
by

n

P= y lu; &S;, '&u, l,
i j =1

(13)

where S; is a numerical coefficient multiplying the
operator

l u, ) ( u l. It is convenient (but not necessary) to
place the coefficient between the two parts of the dyad to
facilitate matrix multiplication. With P so defined,

Before proceeding, a brief digression is in order con-
cerning the definition of projection operators using a
nonorthonormal basis set. To be useful, a formulation
must be capable of being incorporated into a modern
quantum-chemistry computer program, and these use a
nonorthonormal basis set of Gaussian primitive elements
about each nuclear center. Beyond mere utility, the
Gaussian primitive basis sets are essential to the con-
struction of the topological projection operators capable
of selecting out a specified nodal structure.

Consider a finite dimensional subspace of Hilbert space
spanned by a basis set on n linearly independent functions
denoted by lu, ) =li), i =1, . . . , n. The single index i
denotes both the primitive element and the center about
which that primitive element is defined. In most cases,
the primitive elements will be Gaussian functions, al-
though that is not essential to the formulation. The basis
set could consist of Slater functions or atomic states. The
overlap S, of the ith and jth basis elements is defined to
be

n nP'= g g lu, &s,, '(u, lu„&s„, '(u,
l

I, g =1k, l =1
n n

g lu, )s,, 's,,s„, '(u,
l

i j =1k, 1=1

n

k, l = 1

=P.

i,j,k =1
lu, &s,, 's,,a„

n

~k ak
k=1

Thus Pal= it for any state it that lies within the subspace.
Conversely, any state itj that is outside the subspace has
the property (u lit ) =0 for j=1, . . . , n It there. fore fol-
lows from the definition (13) of P that PQ=O for any
state f outside the subspace.

C. PseudoreAection symmetry

The (HeH2)+ triatomic molecule provides an example
of a near-reflection symmetry. The molecular energy sur-
face is a function of the three variables r, R, and y illus-
trated in Fig. 1. The electronic states and energies for
this system have been calculated ab initio using the
BRLJHU quantum-chemistry program. ' For all values of
y, the electronic Hamiltonian is symmetric with respect
to reflection in the plane containing the three nuclei.
This is a true symmetry, denoted by C, . All of the states
considered in this work have positive C, symmetry; hence
this will be understood and not included in the state
designations. In addition, when y is exactly equal to 90,
the molecular geometry is that of an isoceles triangle, and
the electronic Hamiltonian has an additional symmetry
in a plane perpendicular to that of the nuclei and contain-
ing the bisector of the H-H separation, r (the y-z plane of
Fig. 1). When this is the case, the electronic states have
even symmetry [the solid curves in the energy diagram
shown in Fig. 2(c)], or odd symmetry [the dot-dot-dashed
curve in Fig. 2(c)]. Curves of different symmetry are
clearly seen to cross. When y is not exactly equal to 90',

Thus it has been shown that P as defined by (13) is a pro-
jection operator. It projects onto the subspace spanned
by the lu;). Any state P which lies entirely within this
subspace is of the form

n

k=1

Acting on such a state with P yields

n n

Pq= g g lu, )s,, '(u, lu, )a„
i j =1k=1



39 DIABATIC STATES VIA A DIABATIC HAMILTONIAN 5039

the even-odd symmetry breaks down. However, near 90',
one would expect approximate symmetries to hold. The
dashed curves of Fig. 2(b) show the adiabatic molecular
energies for y=60', which clearly show avoided cross-
ings. These are the calculations actually made by the
BRLJHU program. As will be discussed below, quantum-
chemistry programs for technical reasons do not yet al-
low diabatic states to be calculated. All diabatic energies
have been obtained by interpolation, omitting those
points for which diabatic nodal structure breaks down,
and including only those adiabatic energy calculations for
which the nodal structure shows clear diabatic behavior.
The energies of the diabatic orbitals, as determined by the
orbital characters, are shown as the solid or dot-dot-
dashed curves in Fig. 2(d), and bear a close resemblance
to the 90' case. As was pointed out in Ref. 10, the char-
acters of the respective adiabatic molecular orbitals can
be easily seen in the nodal structures, shown in Fig. 3, of
the four lowest-energy orbitals obtained in the
multiconfiguration ab initio calculation of adiabatic elec-
tronic states of (HeHz)+. The orbitals are shown ar-
ranged in order of increasing energy, the first being the
ground state. The diabatic crossing at R =1.1 a.u. of Fig.
2(d) is clearly seen in the nodal structure of the second
and third adiabatic orbitals of Fig. 3, which interchange
character in a narrow interval around R=1.1 a.u. In
Figs. 3(a) and 3(b), the wave function for the second or-
bital has opposite sign on the two protons and small

value at the He nucleus. The nodal surface lies between
the two protons. In the case of 3(a), exact reflection an-
tisymmetry holds, with eigenvalue —1. For 3(b), only
pseudoantisymmetry holds, with eigenvalue —1 of the
pseudoreflection operator. In Fig. 3(c), the adiabatic no-
dal surface does not exhibit any diabatic nodal structure.
This is the avoided crossing region of the second and
third diabatic orbitals, but pseudoantisymmetry is again
seen in the third orbital of Fig. 3(d) —3(g). Proceeding in
the reverse direction, the nodal surface of the second or-
bital of g, f, and e lies between the He and the Hz. This
nodal structure breaks down in d, c, and 6, to reestablish
itself as the fourth orbital in 3(a). This orbital thus
crosses two orbitals. Orbitals of pseudosymmetry eigen-
value +1 are shown by solid curves in Figs. 2(d) and 3,
while those of pseudosymmetry —1 are shown by dot-
dot-dashed curves, consistent with the notation used at
@=90. For these orbitals, the coefficients multiplying
corresponding Gaussians centered on the respective hy-
drogen nuclei are found to be either nearly equal (+1
pseudosymmetry) or nearly opposite ( —1 pseudosym-
metry). The g or u designation of the orbital labels in
Fig. 2 will be discussed in Sec. III D below. In the pseu-
docrossing region, where the adiabatic orbitals do not ex-
hibit definite character, the nodal surfaces are shown as
dashed curves, consistent with Fig. 2.

The construction of the pseudosymmetry projection
operators requires a basis set. Consistent with the goal of
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FIG. 3. The nodal surfaces of the four lowest-energy orbitals from the ab initio calculations for the case y =60. Actually, these
are intersections of the nodal surfaces with the plane of the nuclei ~ The states are shown in order of increasing orbital energy. The
ground state has no nodal surface. States of + 1 pseudosymrnetry are shown as solid curves, while states of —1 pseudosymmetry are
shown as dot-dot-dashed curves. Where the nodal surfaces indicate that diabatic behavior has broken down, the nodal surfaces are
shown as dashed curves.
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g;+=g (a, )+gb(a;)

g, =g, (a, )
—gb(a, ) .

(14)

For example,
2—0.33r ~

—0.33r~A + ' B

—0.33r ~
—0.33rB

2 2

where the enumeration lists the 14 states of positive pseu-
dosymmetry first. The basis elements g, + and g are
mutually orthogonal, but neither are orthogonal to the
helium functions. Because the projection operators are
required to be complementary, the construction of mutu-
ally orthogonal spaces is necessary for the two different
pseudosymmetries. An intermediate basis set P, is first
constructed:

this work to eventually incorporate the formulation into
a quantum-chemistry program, the basis functions will be
described in terms of Gaussian functions (or contractions
thereof) centered on the H nuclei at A and 8 and on the
helium nucleus at C. The He functions are denoted by
g,„g,~, and g,~, respectively, for s type, p„ type and p~
type. For all the states under consideration, there is no

p, component. The H functions are denoted by g,, and

g,b. The index i serves to enumerate the functions of the
primary set. The set used in this work consists of 24
functions: four s type, two p type, and two p type about
each center; hence i runs from one to 24. (The basis set
actually used in the ab initio calculations also included six

p, type Gaussians about each center. The amplitudes of
these p, functions came out identically zero for the states
here discussed, as is to be expected for X states. Hence,
these functions have been omitted from the enumeration. )

To simplify the notation, p Gaussian primitive elements
on proton B are given the opposite sign from those on 3,
in order that each transforms into the other (without sign
inversion) upon reflection.

The primary functions are not themselves suitable as
the basis set for the projection operators. The basis set
will be defined in terms of linear combinations of Gauss-
ians on 2 and B which have the same exponent. We
write

electron projection operators. We write

24

(17a)

(17b)

24

15

(17c)

p . (18)

Since p space is contained within g space, pg =gp =p,
making

Thus q is complementary to p; it is also idempotent. It
projects onto that portion of P space which is orthogo-
nal to p space. It is the modification of r which is com-
plementary to p. The basis elements of q space are qP,
which are linear combinations of P, and all the P, + s.
These latter accomplish the subtraction of those com-
ponents of each P, which lie in p space. We write

(16')

Because both p space and q space are finite dimensional,

p+q=g&1 .

With these projection operators, the pseudosymmetry
projection operators are given by

The projection operators g, p, and r are all of the form
(13); they differ only in which basis functions are included
in the defining set. As a consequence, the overlap ma-
trices are different. The projection operator g projects
onto the entire subspace of single-particle function space
used in the quantum-chemistry program; p projects onto
the p;+ subspace, and r projects onto the ((); subspace.
Because these latter are not orthogonal to the helium
functions, r and p are not complementary. The subspace
in g complementary to p is given by

0i+ [gl+»' ' ' gS+&g9s»' ' ' g12s&g13p &g14p I

(15)

0i — Ig15 —»' ' ' g22 —&g23p &g24p
X X

p+ p~
(2O)

The states P, + form a basis set for the subspace of pseu-
dosymmetry +1. We write

Ii+)=u, +=&, + . (16)

On the other hand, the P, are not yet the final func-
tions. Although they span a space of pseudosymmetry—1, that space is not orthogonal to P+ space. With the
basis set (15), a set of projection operators g, p and r are
defined. These projection operators are denoted by lower
case letters, because they are single-particle projection
operators, which project an orbital, not an entire multi-
electron state. Upper case notation is reserved for multi-

It has been earlier stated that current quantum-
chemistry programs do not yet allow the calculation of
diabatic states. The sticking point can be seen in Eq. (14),
which requires the contraction of Gaussians on different
centers. Currently, quantum-chemistry programs allow
contraction (a linear combination with fixed and
predetermined coefficients) only of Gaussians on a single
center. It is for this reason that diabatic states could not
be calculated in this work. The limitation is, however,
not intrinsic to the quantum-chemistry programs, and the
programs can be modified to accomplish this. The task
will not be easy, because these programs are so large that
no modification is easy.
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D. Pseudoparity symmetry

In addition to reflection symmetry, physical systems
can exhibit symmetry with respect to inversion in the ori-
gin, which is called parity symmetry. The eigenvalues of
the parity operator are labeled g for gerade and u for
ungerade. The electronic states of the H2 molecule or the
He2 quasimolecule have exact parity symmetry. It was
suggested by Dowek et al. ' that the H2 in the HeH2 sys-
tem behaves like a helium atom. This is rigorously true if
the H-H separation r =0. To the extent that the equilib-
rium H-H separation could be considered small, the
(HeHz)+ triatomic molecular ion would behave like a
He2 diatomic ion, exhibiting parity pseudosymmetry. If
the Gaussian set centered on the helium nucleus consists
only of s-type states, a mathematical description of such a
state of afFairs can be simply accomplished by further
subdividing p into p and p„. The basis set u;, for p is
given by

(21a)u; =u+(a, )+u, (y, ),
where a; and y, indicate properly matched basis ele-
ments from the Hz and He primitive elements. Similarly,
p„space has as basis set

A sign difference will be noticed between linear combina-
tions involving s-type and p-type u,„which is due to the
fact that both u; and u themselves change sign on in-

version. The coefficients A, and 8, must all be positive,
and will approach unity for very diffuse Gaussians, which
describe the active regions of Rydberg orbitals. These
coefficients permit the g orbital to be made a predom-
inantly He orbital, and the u orbital predominantly a H2
orbital. On the other hand, the Rydberg orbitals, which
are much more nearly degenerate, with have much better
g or u symmetry. Thus the basis elements with diffuse
Gaussians wi11 have coefficients very nearly equal to uni-

ty. The coefficients A; and B; are determined by di-

agonalizing u,, + A, u, + for fixed i with respect to the
one-electron Hamiltonian containing the kinetic energy

R= 3.0

u;„=(1—p )[u+(a, )
—u, (y, )] . (21b) 1.0

In the more general situation, with both s-type and p-type
Gaussians on the helium center, the basis set (21) for pg
space must be generalized. This will be done below,
along with a generalization that takes into account the
differences between a He orbital and a H2 orbital. Figure
4 shows plots of the wave functions for the two lowest-
energy orbitals for the case r=2, y =60', and R =3.0, ca1-
culated in a multiconfiguration calculation of (HeH2)+.
Values of g are plotted as functions of x and y in the
plane z =0 containing the three nuclei. The lowest-
energy orbital exhibits some g-type characteristic, but it
is predominantly a He orbital. The second exhibits some
u type, but is predominantly a H2 orbital. These charac-
teristics can be seen in Fig. 4; the nodal structure can be
seen even more clearly in Fig. 3(g). The orbitals do not
exhibit strong g or u symmetry, because the He 1s orbital
is considerably lower in energy than the ground-state en-
ergy of the H-H system. The electronic energy of the
lowest orbital of H2 rapidly decreases as the H-H separa-
tion decreases, and the He nucleus is a H-H with zero
separation. Thus the two orbitals become more g or u as
r approaches zero. On the other hand, Rydberg orbitals
have large radii, compared to which the H-H separation
is relatively small, and much better approximated by
zero. Pseudoparity for the system can be encompassed
by properly generalizing the basis set to allow for these
orbital characteristics:

0. 5

O. O

—0. 5

u;g = u;, + A, u, + if u, , is s type,

u, = u,- —A, u, if u,, is p type,

and p„space has the basis set

u, „=(1—p )(B,u,, —u, +) if u,, is s type,

u, „=(1—
p~ )(B;u;z+ u; ) if u,, is p type .

(22a)

(22b)

FIG. 4. Three-dimensional plots, g(x,y, o), of the two
lowest-energy orbitals for r=2.0, R=3.0, and y=60. The
plane z=0 is the plane of the nuclei. The two protons are locat-
ed at (1,0,0) and ( —1,0,0), while the He is located at (1.5,2.6,0).
The ground-state orbital is predominantly on the He, but shows
some g-type character. The second orbital is predominantly on
the H2, but shows some u-type character.
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and nuclear Coulomb potentials only. Two solutions will,
of course, be obtained. The other solution is B;u,, —u, +,
which appears in Eq. (22b). The situation is the same for
the symmetry elements constructed from u; and u;

E. Multielectron projection operators

QI qrs'2P3+Prq2P3+P IP2q3

PE EI P 1P2P 3

Qrrr=qrq2q3 .

(23b)

(23c)

(23d)

Consistent with the notation established in this work, the
multielectron projection operators are represented by
capital letters. The subscripts on P and Q denote how
many single-electron projection operators of the given
type make up the product terms. Because the eight prod-
uct terms are idernpotent and mutually complementary,
it follows that the four operators defined in (23) are also
idernpotent and complementary:

(24a)

Up to this point, only single-electron projection opera-
tors have been considered. In effect, these select out or-
bital types, while still allowing flexibility for the
multiconfiguration quantum-chemistry program to adjust
each orbital within the topological constraints imposed.
However, orbitals do not occur in isolation but in mul-
tielectron Slater determinants called "configurations. "
The adjustment of the coefficients multiplying these
configurations is done in the configuration-interaction
(CI) part of the quantum-chemistry program. The dia-
batic formulation must also separate the configurations
into disjoint subspaces, as described by Kubach et al.
This is accomplished by defining multielectron projection
operators, a step that will lead to two new constants of
the motion.

To simplify the presentation, the three-electron
(HeH2) system will be considered with only a single
pseudosymmetry, leading to but a single pair of one-
electron projection operators, for each set of electron
coordinates: p, and q, . From these three pairs, eight
products can be formed with either a p or a q for each
electron (e.g. , prq2q3). Each of these eight products is
idempotent. For example,

(7rq2q3 )(7rq2q3 ) P Iq2q 3 P1'q2'q3
2 2 2=

Moreover, the eight products are mutually complementa-
ry. For example,

(pr q2q3)(qrq2q3 ) =(prqr)q2q3 =0 .

From these eight products, exactly four linear combina-
tions can be constructed which commute with all permu-
tation operators:

PI =P1q2q3+ q1P2q3+ q1q2P3 (23a)

within a given type.
The diabatic Hamiltonian for a crossing between a

pq -type state and a p -type state is

HD =PIHPI +P IIIHP III . (25)

[Unfortunately, there are no examples of diabatic cross-
ings of this kind among the lower levels of the (HeH2)+
system. ] Because of idempotency and complementarity,
expressed in Eqs. (24), both P, and P«, commute with

HD by exactly the same argument used to establish Eqs.
(5). It therefore follows that

~C PIII PI (26)

is a constant of the motion. Each of the crossing
configuration types is an eigenfunction of ~c belonging to
different eigenvalues:

mcQ 3=+1rtj 3,

vrC f 2
= —1

hatt

(27)

The diabatic Hamiltonian (25) can be easily extended to
allow diabatic crossings of other configuration types:

HD Pr HPI +PIIIHPIII +QIHQI +Qr«HQrrr (28)

As a consequence, there are six configurational constants
of the motion, of which only two are new,

C =PIII PE

~C' Q III Q I

(29a)

(29b)

They describe two-electron diabatic crossings, denoted by
DII in the usual nomenclature. The remainder, of the
form PJ —Qx, are already covered by the single-particle
pseudosymmetry constants of the motion. The new
configurational constants of the motion have no analogies
among the true symmetries. In the example cited, the
(+1)(—1) configuration has a different configurational
eigenvalue than does (+1) (Pr as opposed to P«, ), but
has the same symmetry or pseudosymmetry. Thus this
new diabatic constant of the motion is not a generaliza-
tion of a point symmetry. For the actual Hamiltonian,
one cannot invert or reflect the coordinates of one elec-
tron without simultaneously doing so to all. The in-
terelectron repulsion energy gi,j 1/r, is not inva"riant

with respect to partial symmetry operations. As is the
case with all diabatic constants of the motion, the new
DII configurational constants of the motion are valid dia-
batic invariants only to the extent that the matrix ele-
ments of the interelectron potential term coupling
different configurations is sufficiently small. A
mathematical formulation cannot a priori establish any-
thing about the real world; it can only provide a frame-
work to mathematically describe what is observed in the
real world.

PJPx =PJ QK =QzPK = QJ Qx =0 for J&K . (24b)

It should be noted that these projection operators do not
select out individual configurations; rather, they select
out configuration types. There is still some CI flexibility

F. Summary

The preceding sections have separately discussed three
types of diabatic Hamiltonians each with a projection
operator constant of the motion. All of them are relevant
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to the (HeHz)+ system. Two are extensions of well-
known point symmetry invariants; the third depends on
weak coupling between di6'erent configurations. All of
these ideas can be simultaneously combined into a single
diabatic Hamiltonian without interfering with each oth-
er. The required projection operators separate Hilbert
space into disjoint subspaces.

G. Collisional excitation

The prototype diabatic energy levels of Fig. 2(d) sug-
gest several predictions for electronic excitation in col-

lisions of H2+ on He. Collisions of He on H2 require
molecular calculations at r=1.4, and will be reported
elsewhere. The ground state at R = ~ is H2 + He,
each in its respective ground state. This is the
(lg+ ) (lu+) state. The first diabatic crossing at R =1.1,
is between this state and the ( lg + ) (1—), which
separates as He + H2+(1 —). It will be recalled that
among the lower-energy states, g states are predominant-
ly He and u states are predominantly H2+ at modest
values of R, and become pure as R approaches infinity.
The 1 —orbital of Hz+ is the repulsive state, usually
denoted by 1cru. Thus collisional dissociation is predict-

10

2;

0

I I I I I I I I I
)

I I I ~ I I I I I

-10

X (a.u. }
—10

10

—10 —5 0 5 10
X (a.u. }

2:-

1 =

0

~ 0

I I I I I I I I ~ ( I ~ I I I ~ I I I

—10

X (a.u. )

—10

10

—10 —5 0 S 10
X (a.u. )

2:-
R=5.0

1

0

—1

LJ

I 'I I I I I I I I
l

I I I 'I 'I I I I

gj 0

—10 0 10

X (a.u. )

—1 0 T T T f T I T T ] T ~ T T T

o 1Q
X (a.u. )

FI&. 5. Wave functions, P(x, 0,0) and nodal surfaces, p(x, y, 0) =0, for a two-center system. This figure illustrates that the number
of odal surface intersections is not an invariant as the collisional separation R varies. What does remain invariant is the odd or even
quality of the number of intersections of the nodal surfaces with any curve joining the centers.
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ed. Because the (lg+) (1 —
) diabatic state crosses the

(lg+)(lu + ) level, charge exchange is also predicted.
These outcomes could have been guessed by someone fa-
miliar with what avoided crossings look like in a molecu-
lar energy diagram, and were indeed discussed by Ku-
bach et aI. and Hopper. ' What would not be apparent
is that the ground-state diabat also crosses the
(lg+)(2g+)(1 u+), producing a Rydberg-excited He.
This has not previously been expected. The Rydberg lev-
el crosses the (lg+ ) (1 —), giving a second possibility for
ending up in the charge exchange channel. Thus the
charge exchange channel could exhibit Rosenthal oscilla-
tion s.

IV. RELATION TO OTHER WORK

The concept of a diabatic Harniltonian defined in terms
of topological projection operators just presented has
drawn substantia11y from earlier works. Morse and
Stueckelberg" implicitly suggest that the correlation dia-
gram for a diatomic molecule can be understood in terms
of a simplified independent particle model Hamiltonian,
which is separable in prolate spheroidal coordinates. A
discussion of the correlation diagram by these authors
was in reality a discussion of diabatic states before that
name was coined. Barat and Lichten' elaborated on this
work, focusing on the nodal structure as the essential
feature determining the character of the state. They
define diabatic states in terms of the number of nodes on
a line joining the two nuclei. In the present work, this
concept was generalized to the topological structure of
nodal surfaces' to extend the theory to molecules with
more than two nuclei. O'Malley's suggestion ' to define

the diabatic Hamiltonian in terms of projection operators
was grafted onto the thus extended formulation of
Morse and Stueckelberg and Barat and Lichten by means
of topologically defined projection operators, which are
able to select out a given nodal structure as the molecular
geometry is continuously varied.

One diff'erence between the present work and that of
Barat and Lichten is that the pseudosymmetry projection
operators do not necessarily leave the number of nodes
invariant; they only keep invariant the odd or even quali-
ty of the intersections of the nodal surfaces with a line
joining the He nucleus with the H-H center. This is most
clearly seen in the fourth orbital of the (HeHz) system.
The number of intersections of the nodal surfaces with
this center-to-center line segment is either 2 or 0. As Fig.
5 illustrates, there is no discontinuity when two nodal
surfaces touch and then coalesce into a single nodal sur-
face, much the same as happens with soap bubbles. The
number of intersections between the heavy black line
joining the two centers changes from 0 to 2, both even. It
is, however, impossible to change in a continuous way
from an even number of intersections (which requires the
sign of 1(t to be the same on both centers) to an odd num-
ber of intersections (which requires the sign of lb to be op-
posite).
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