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The scattering of electrons or positrons to discrete states of an atomic target is represented in
momentum space by coupled integral equations. By introducing a local central potential one may
set up a distorted-wave representation for the integral equations, which can be solved to arbitrary
numerical accuracy by quadratures. The perturbative solutions of these equations are the common-

ly used distorted-wave first- and second-order Born approximations. The full coupled on-shell solu-
tion is the distorted-wave unitarized Born approximation. These approximations are tested for
charged and uncharged targets. The formalism for inclusion of configuration interaction in the tar-
get is described, making a complete theory for electron-atom scattering in a truncated channel
space, which can be extended by optical potentials to a fully realistic situation.

I. INTRODUCTION

The momentum-space solution of the coupled equa-
tions of electron-atom scattering theory has some useful
features. Given a numerical method of solving a set of
coupled integral equations one needs only to calculate the
driving and kernel elements, which are all Born approxi-
mation amplitudes, usually off' shell. The set of coupled
equations is truncated to include only discrete target
states. The continuum is included in the form of an
ab initio optical potential, which involves low-order ap-
proximations to the continuum wave functions.

The momentum-space coupled-channels optical
method for electron scattering from hydrogenic targets
was discussed in detail by McCarthy and Stelbovics'
(hereafter referred to as I). Here the potential matrix ele-
ments were expressed in the plane-wave representation,
so that the driving terms of the integral equations were
plane-wave Born amplitudes. The use of the distorted-
wave representation for elastic scattering was discussed
by Mitroy, McCarthy, and Stelbovics.

In the present work the distorted-wave representation
is applied to coupled channels, the formalism for mul-
tielectron atoms is given explicitly, and the case of
charged targets is treated in the Coulomb-wave represen-
tation. A short-range distorting potential is not used for
charged targets because of numerical diSculties.

One useful feature of the momentum-space treatment
is that it enables the assessment of some of the common
approximations of scattering theory by applying them to
the distorted-wave solution of the integral equations in a
truncated channel space, considered as a model scattering

problem. The driving terms of the integral equations in
the distorted-wave representation are the amplitudes of
the distorted-wave Born approximation (DWBA). The
first iteration of the integral equations produces the
distorted-wave second-order Born approximation
(DWSB). Both these approximations are in common use
for electron-atom scattering. Their use here differs slight-
ly from that for a realistic scattering problem. First, the
intermediate states in DWSB are here restricted to the
model space, whereas for a realistic problem approxima-
tions are made for the entire space of target states.
Second, the integral equations cannot be closed with dis-
torting potentials chosen differently for different chan-
nels, as is often done. The distorting potential here is
only a means of accelerating numerical convergence and
it is chosen with computational simplicity in mind.

Another simplification is the distorted-wave unitarized
Born approximation (UDWB), in which the real parts of
the Green's functions in the integral equations are set
equal to zero, so that the solution involves a set of alge-
braic linear equations with on-shell DWBA amplitudes.
These approximations can all be compared to the com-
plete solution of the integral equations for the truncated
channel space. Their advantage is a saving of computer
time.

The method of solving the set of coupled integral equa-
tions used here is the same as that discussed in I. An im-
portant feature of the distorted-wave representation for
elastic scattering was that the number of quadrature
points necessary to solve the equations accurately was
much less than for the plane-wave representation, so that
there was much less reason in terms of computing time to
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make low-order approximations. This is investigated
here for coupled channels.

Section II discusses the coupled integral equations. In
Sec. III we discuss the computation of cross sections in
the distorted-wave representation. In Sec. IV we give the
formalism for the potential matrix elements in the case of
many-electron targets. Configuration interaction is in-
cluded in terms of the m-scheme density-matrix elements
obtained from a structure calculation. In Sec. V we use
the example of scattering from the 3s and 3p states of
sodium in the Hartree-Fock approximation to compare
the plane-wave and distorted-wave representations for
solving the coupled-channels problem at 54.42 and 200
eV. In Sec. VI the sodium example at 54.42 eV is used to
compare different approximations to the coupled-
channels solution. Section VII discusses scattering from
the 1s, 2s, and 2p states of He+ as an example of the
momentum-space solution for a charged target.

II. COUPLED INTEGRAL EQUATIONS

The coupled integral equations for a total energy E are
written for a truncated set of channels projected by the
operator P. The target states concerned are denoted by p
and p'

(E —HT)((p ) —0,
where HT is the target Hamiltonian. We include the
complementary channel space, projected by the operator

I

U=&p~ v~p &, (4)

i.e., the average of the first-order electron-target potential
V for the initial target state p. For the case of a charged
target, U must include the Coulomb potential due to the
residual charge Z. In this work for charged targets U is
chosen to be exactly the Coulomb potential

U(r)= —Zlr .

The coupled integral equations for the distorted-wave
T-matrix elements are written, suppressing the conserved
total orbital angular momentum and spin quantum num-
bers Jand S,

Q, by adding a complex nonlocal term to the first-order
electron-target potential V, giving the optical potential
V(Q)

The transition and potential matrices are represented
in terms of the eigenstates of the real, local, central po-
tential U. These eigenstates include continuum distorted
waves

~

k' +—'), with outgoing and ingoing spherical-wave
boundary conditions, respectively, and bound states ~A. ),
defined by

(E( ) E,-—rC ——U)~k(+-)&=O,

(E,—Z —U)~X) =O,

where K is the kinetic energy operator.
U is chosen to describe as much of the electron-target

scattering as possible. In this work

(k 'p'(T(pk' ') =(k' 'p'( V'~' —U(pk'+')+ g f d q(k 'p'( V'~' —U(p "q ')
p"E P X,&q' 'p" [T/pk'+ &

1

E'+' —~"—-'q'
p 2

+ g g &k'- p'~v ~' —U~p"x'),
,

&x'p" ~T~pk'+ &,
p" EP E cp E,g

(Ap'~T~pk' )) =(Ap' V'~' —U~pk+')+ g f d q(Ap'~ V(~ —U~p"q' '),
, (q p" ~T~pk'+ )

p" EP E'+' —E, —
—,'q'

+ g y &xp'~v((-') —U~p"x'&,
,

&xp"~T~pk(+)& .
p" EP

(6)

The equations (6) are solved in angular-momentum-projected form. We give the angular-momentum projection of
the T matrix, which applies similarly to V. All quantum numbers are displayed explicitly:

( k'( —
)p

~

T(Js)
~p

k(+ ) )

L M N LMNJ, K,S,Ns

(k'~(L'M')(L'M'1'm'~JK)( —,'N's'n'((SNs)TI(. I (k', k)(L Mlm~ KJ)( —)NsnjSNs)(LM~(k) . (7)

The notation used for the quantum numbers and momen-
ta is set out fully in Table I. Unprimed and primed quan-
tities represent the initial and final states, respectively.
The symbols in parentheses are Clebsch-Gor dan
coefficients and

(k~LM) = YIM(k) .

The index I in (7) is the L-channel index. It represents
the partial-wave orbital angular momentum L of the con-
tinuum electron and the set of target quantum numbers p.
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TABLE I. Notation for quantities used in the formalism. Initial and final states are denoted, respec-
tively, by unprimed and primed quantities. The third column in the matrix element table gives the
angular-momentum (AM) projection of the matrix element. DW stands for distorted wave.

Quantity
State vectors (angular-momentum projection)

Definition Label Orbital Spin

channel state

target state

projectile partial wave

L channel

single-particle state

orbital

~
kpJKSA's )

~plmsn )
i
kLMN )

ILp &

[il, m;n; )

ial. &

kp

p
k

JK
Im

LM

I, m,

1(m )

SNs
sn

1—n.
2

—,'(n )

Type

driving: continuum DW
driving: bound state of U
kernel: continuum DW
kernel: bound state of U
total T matrix
DW T matrix: continuum
DW T matrix: bound state
Scattering amplitude for U

Matrix elements
Three-dimensional

notation

&1
'( —

)p
~

V(Q) Uipl (+))
&gpi~ V(g) Uipl (+})
&1'-'p'~ V'~' —

U~p
"q'-')

& gp ~

V(g) gp q(
—I)

&1'p'I TIpl )
&1'& —

~p [T~pl (+))
& kp'I Tip@'+'&
&1'plUIpl &

AM projection

v('"(k', k)
V&Js)(S k)
v' )(k' q)
V (i'is)(~ q)

Ti(Js'(k', k)
Ti(Jis)~~ k)
t( Js)(k~~

For each channel p, I takes values corresponding to par-
tial waves I, that satisfy the conservation of orbital angu-
lar momentum

IJ ll(L & J+—l

and the conservation of parity. In the case of a target
that is not an orbital-angular-momentum singlet, Eqs. (6)
have either natural parity

ison with calculations that we use the S matrix to note
that

S=l —2ni(k'k)'i T .

The matrix element of T is expressed in terms of the
distorted-wave T-matrix element & k ' 'p'~ T~p lr'+ '

& of
Eq. (6) by a transformation due to Gell-Mann and Gold-
berger,

II(J)=II(L +I)
or unnatural parity

11(J+1)=II(L+l) .

(10) «'p'ITlpk& =&k'-'p ITlpl '+'&+&I Ital &~.. . (14)

where t is the T matrix for elastic scattering by the dis-
torting potential U. The partial-wave matrix elements of
T are expressed in the abbreviated notation of Eq. (7),

The use of the T-matrix element in calculating cross
sections is described in Sec. III.

III. CROSS SECTIONS IN THE
DISTORTED-WA VE REPRESENTATION

The differential cross section for electron scattering
from initial target state p to final target state p' in a state
of total spin S is

d~(s)~P'P
2 g

k' 2S+ 1

d Q k 2(2s + 1)(2l + 1)
where

g (4~) ' L (L 'M'I'm '
~
Jm )

J=O L, L'

X (L Olm
~
Jm ) T I t '( k ', k ) YL ~ ( k ' ), (16)

T ' '(k', k) = TI '(k', k)+ ty' '(k)$, (15)

In practice we choose k to be the angular quantization
axis and calculate the T-matrix element in the form

&kp ITlpk&

(12)
E = (2L + I )'i (17)

The notation for the quantum numbers and other quanti-
ties used in this section is described in Table I ~ The ini-
tial and final electron momenta are k and k', respectively
(atomic units are used throughout) and T is the T matrix
for the problem. For simplicity the spin index S is
suppressed in the notation for T. It is useful for compar- T' ~ '(k' k)= Vt(. '(k', k), J)Jo, I'~I . (18)

If the distorting potential U is zero (plane-wave represen-
tation) we may sum the J series to infinity by using the
fact that
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We normally take J0=80. For such J0 values the ex-
change matrix elements of the first-order potential V are
negligible. We add and subtract the first-order V-matrix
element and calculate the T-matrix element in the form

&k'p'l Tlpk &
=

&
k'p'I'r —Vlpk &+ &k'p'I Vlpk &,

where the partial-wave matrix elements of the first term
are zero for J)J0. This method of including all the
higher partial waves is very accurate except for elastic
scattering, where coupling to dipole channels results in
long-range polarization potentials. This is handled by an
analytic approximation to the elastic T-matrix element.
The subtraction technique (19) is not used for scattering
from charged targets. The only analytic forms for the
Coulomb-Born matrix element are very complicated and
have not been implemented. Other experimental quanti-
ties, such as total and total reaction cross sections and
angular-correlation parameters, are calculated conven-
tionally using T.

IV. POTENTIAL MATRIX ELEMENTS

The target atom is described by the nucleus, a closed-
shell inert core of electrons, and a number of active
(valence) electrons. Quantum numbers associated with
the target description are described fully by Table I. A
target state p is described in terms of orbitals n by a
configuration-interaction expansion obtained by di-
agonalizing the Hamiltonian in a truncated set of
configurations. Each configuration is a determinant of
single-particle states i, the unexcited configuration being
the Hartree-Fock determinant. The projection-in-
dependent part of the single-particle state i is the orbital
a. For the excited configurations used, only the active
electrons may be in single-particle states unoccupied in
the Hartree-Fock configuration.

The potential matrix elements for all electrons include
the potential for one positive charge from the nucleus.
This eliminates the Rutherford singularity. The residual
asymptotic charge in the case of an ion target is included
in the distorting potential U.

The partial-wave expansions of the distorted-wave po-
tential matrix elements require three types of coordinate
representation of distorted waves, which differ only by
phase factors in the case of real potentials. For optical
potentials we treat the real and imaginary parts separate-
ly:

& r lk'+ ' ) = (2/~ )
'

( kr)

X g i e uz(k, r)&r LM)&LMlk),
L, M

& rlk' ') =(2/m. )' (kr)

X g i e uz(k, r)&rlLM)&LMlk),
L, M

&k 'lr) =(2/7r)' (kr)

X g i e uI (k, r)&klLM)&LMlr),
L, M

(20)

where or is the Coulomb phase shift, uL (k, r) is real, and
the external form of the partial wave is

e uI (k, r)=FI (kr)+(2i) '(e —1)

X [GI (kr)+iFL(kr)], (21)

with FL and Gl being the regular and irregular Coulomb
functions. For brevity the phase shifts will be omitted
from the following expressions for matrix elements.

The angular-momentum-projected solution of the in-
tegral equations (6) requires potential matrix elements
defined for channels p and partial-wave angular momenta
I.. The target states p are defined as linear combinations
of products of single-particle states i. We can calculate
radial potential matrix elements for orbitals o.. They
must be related to the channel matrix elements by
orbital-channel coefficients. These coefficients are sim-
plest for the direct matrix elements. We will consider
them first.

We express the potential matrix element in second-
quantized form, using annihilation operators ak and the
corresponding creation operators for electrons with
momentum k. The annihilation operator for a bound
electron in a single-particle state i is a, . Operating on the
ground state l0) the creation operator ak produces a dis-
torted wave with appropriate boundary conditions, which
is denoted henceforth for brevity by lk),

(22)

The channel matrix element is

& k'p'l Vlpk) =
& op'la&, Val, lp0)

—&Op lQg g a;a 0 0 Qk
I

X &q'il Vljq& IpO& . (23)

The summation sign represents a momentum integration
where appropriate.

A. Direct potential

Using the fermion commutation rules the direct-
channel matrix element reduces to

&k'p'lvDlpk&= g &p'l~ ~ilp &

x [&k'lV —Ulk)5;, + &k'ilUl jk&],
(24)

where the configuration-interaction structure is
represented by the m-scheme density-matrix elements
&p'la, a lp ) and the single-particle excitation matrix ele-
ment has been split into two terms. The first contains the
central potential V—U, where V includes the core direct
potential and the residual Coulomb potential —Z/r, and
U is the distorting potential. The second is the interac-
tion with valence electrons.

The simplification for the direct potential occurs be-
cause the direct excitation operator is spin independent
and spin-projection quantum numbers occur only in the
form
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(25)

Since we are using the orbital notation a for the
projection-independent part of the single-particle state i
we prefer to use a and p rather than i and j to denote the
single-particle quantum numbers.

The orbital angular-momentum part of the direct exci-
tation operator is a tensor operator T„, where A, is the
multipole index of the Coulomb potential v, and p is its
projection.

It is convenient to eliminate all projection quantum
numbers from the formalism, restoring them when the
three-dimensional T-matrix elements are computed by
(16). This is done by using the Wigner-Eckart theorem
for tensor operators in orbital and spin space (LS cou-
pling):

( I'm 's'n 'I T„ I
lmsn )

L l J
'(k' k)= g (

—1) +'+ ' '(L'IIC IIL )

X g [R t3(k', k)+52O W(k', k) ]

(32)

where the symbol in braces is a Wigner 6j symbol. The
radial matrix element W'(k', k) comes from all the direct
central potential contributions. They are the core poten-
tial V„„(r) and the residual Coulomb potential Zlr-.
The distorting potential U ( r) is subtracted.

2-L —L'
W(k', k)=, f dr uL (k', r)ut (k, r)

X[V, „(r)—Zlr —U(r)] (33)

and the valence radial matrix element is

( 1
)I' —m'

( 1)s' —n'—m' p m
L —L'

R t3(k', k)=, f dr, ut. (k', r& )ut (k, r, )

S 0 S
(I s IIT'IIIs) . (26)

OO V &X dr2u (r2)up(r2)
0 k+]

l k lp
IIC II~@&=( 1) I ~o 0 0 0 (27)

where we use the renormalized spherical harmonics

C„(k)= [4~/(2k+ 1)]'i (klkp) .

The target-state matrix element is

(28)

Here the symbols in parentheses are the Wigner 3j sym-
bols. T„ is a tensor with space and spin polarities A. and
o. and space and spin projections p and v, respectively.
For orbital angular momentum the reduced matrix ele-
ments are

(34)

For small A,&0 the radial matrix element (34) involves
long-range integrals proportional to r ' whose in-
tegrands are not zero in the tail region beyond the point
r0 at which the bound-state orbitals u and u& are negli-
gible. We write it in the form

L —L'
r()

R~&(k', k)=, f dr, V &(r, )ut (k', r, )

X uL(k, r
&
)+ y~t3tt. 'L(ro

(35)

& p
'

I T„ I p &
= & & p

'
I tt; ~, I p & & t

I
T„"

I j & . (29)
where the direct potential is

rl
V tt(r, )=r, +'' dr2r2u (r2)u&(r2)

0

The m-scheme density matrix is written, expanding the
notation for the single-particle state i to display the pro-
jection quantum numbers explicitly,

&p'Iu a, lp&=p. ...,f, ,(p' p)

+r, f dr2r2 ' +"u (r2)up(r2),
rl

the coefticient of the radial-tail integral is

y g=(1 —
52O) f dr2r2u ( 2)up(r2)

0

(36)

(37)

We apply the Wigner-Eckart theorem, defining the re-
duced density matrix p"&(p', p) by

l
1 —m

(
—1)

and the radial-tail integral is

tt t (ro)= f dr, r&
' +' uL. (k', r)ut (k, r&), k) 0 . (38)

m~, n~, m&, n&

—m p m&

X (
'

)Pum n, /3m&n& P ~P

The direct-potential matrix element is

l
p'.p(p' p) .

(31)

The radial-tail integrals are evaluated in the uncharged
case using the external form of the partial waves u~(k, r).
This involves spherical Bessel and Neumann functions
for which the corresponding integrals can be evaluated
analytically over the range r0 to infinity. For the
charged case only the integration of the regular Coulomb
function from zero to infinity is sufficiently simple analyt-
ically. " The integration range zero to r0 is treated by
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the same quadrature as is used for (35). The difficulty of
evaluating the integral for the irregular Coulomb func-
tion precludes the use of a short-range distorting poten-
tial for charged targets.

B. Exchange potential

The exchange-channel matrix element is

&k'p'lv lpk&

= —(k'p IH —Elkp &

= k'p' E HT K—, V—
U

——x—U„kp), (39)
p,(~1)

where K0 is the projectile kinetic energy operator, HT is
the target Hamiltonian, v is the interaction of the projec-
tile (0) and active (1) electrons, and U„ is the interaction
of the projectile with an electron that acts as a spectator
in the transition p —+p'.

We first consider the valence exchange term v in (39).
We now have the complication of spin exchange. The re-
duced density-matrix appropriate to this case is a matrix
representation of a tensor operator formed by coupling a,
and a to orbital quantum numbers j,m and spin quan-
tum numbers o., v. The tensor operator is

[at XapP j
m~, n~, m&, n&

I&
—

m& 1/2 —
n&

(
—1) P P(t m Ip mp—jim, )( —1) P( —,'n —,

' —nplov)a „ap (40)

We now use the Wigner-Eckart theorem (26), defining the reduced density matrix p~ p(p', p) by

(p'l[a Xap]~, lp & =( —1)™ —n' v n
'(' ).I' j I, ,

s'
1 )s' —n'—m' m m

(41)

The angular-momentum-projected valence-exchange matrix element is

I

V' '(k' k)= ~ ( —1)'+ +" 'S 8 (
—1)" J jI'I S

A, ,J, c7 2 2

L' L j L' L jx « ~ », ~ yR'.p(k, k)&l. llc'llL&&L, llc'llip&p. p(p, p) . (42)

The exchange radial matrix element is

2l L —L'
00

R p(k', k)=, f dr, f drzuL (k', r, )uL(k, rz)
0

7 (Xu (r~)up(r, )
A, +1

(43)

In addition to valence exchange there are one-body
matrix elements due to further terms in (39). The first is
valence-overlap exchange, where the electrons p are
valence electrons. In the exchange matrix element for
independent-particle configurations 4', 4 we may operate
on the exchanged configuration (in which electron 0 is
bound) with the Hartree operator

Ep+v+ g U„' l4&=E~l(y& .

For the term of the determinant W containing the elec-
tron 0 in orbital cz, cz, is equal to the orbital energy c, to
a good approximation. We make this approximation in
(39). In order to obtain a symmetric matrix element we
add two halves with the electron 0 in 4 and 4', respec-
tively. The radial matrix element contribution to (43) is

where the parentheses indicate radial overlap integrals
and we have used Eq. (1) for the operation of HT.

In addition to the exchange terms (43) and (45) for the
active electrons there are exchange terms due to the
closed-shell core. Only half of the electrons in each shell
contribute for each incident spin projection X so the mul-

tiplicity for orbital o. is 2l +1. The core-exchange po-
tential is central. For the v term in (39) the core-
exchange term is the one-orbital reduction of (42),

L X l
VII '(k', k)= —(21 +1)g R (k', k),

(46)

~ L —L'
V',"'(k,k) =II

2l (E —E —E )

X(u luL )(uL lu )5ip . (47)

where the radial matrix element is given by (43). The
remaining terms in (39) contribute to the core-overlap ex-
change. This is the diagonal form of (45). The a contri-
bution is

2
~ L —L'

R p(k', k)=—,[E —
—,'(E~ +a~+a +op)]mk'k

X(u luL )(uL lu)p5 pi (45)

For economy of notation we have used the same name for
each of the different exchange contributions. Terms of
the same name are added.



5004 I. BRAY, I. E. McCARTHY, J. MITROY, AND K. RATNAVELU 39

V. COMPARISON OF PLANE- AND
DISTORTED-WA VE REPRESENTATIONS

The computational differences between plane- and
distorted-wave representations are minor. They concern
only the radial partial waves uL(k, r) in the direct and ex-
change radial matrix elements (34) and (43), (45), (46),
and (47). For plane waves the uL(k, r) are Riccati-Bessel
functions. For Coulomb waves they are the regular
Coulomb functions FL(k, r) W. hen the short-range dis-
torting potential U is included they are calculated by
solving the radial scattering equation for the potential U.
In these three cases the radial tail integrals (38) for small
multipoles can be calculated using analytic expressions
for the range zero to infinity. In addition the Coulomb-
and distorted-wave representations include radial matrix
elements in which ur (k, r) is replaced by a bound-state
wave function uz(r) which is either a bound Coulomb
function or an eigenfunction of the potential U.

Alternatively, the direct radial matrix element (34) can
be calculated as an angular-momentum projection of the
analytic Born matrix element in the plane-wave case. '

For large values of L the oscillations of the Legendre po-
lynomial make this a less accurate method than (34).

The example used for comparison of the plane- and
distorted-wave representations is the coupled 3s and 3p
channels for sodium in the Hartree-Fock approximation.
The distorting potential is the static potential of the 3s
ground state. This potential supports three bound states
(two s type and one p type), which are included in the
off-shell quadrature mesh. The bunching transformations
for the quadrature points are chosen according to the
usual criteria and are not specially optimized.

Table II is a study of the convergence with the number
of quadrature points of the T-matrix elements in the
distorted- and plane-wave representations for J=0, 1,2.
It also shows the unitarized Born approximation in each
case (UDWB and UBA), the first-order (DWBA and
FBA) and the second-order (DWSB and SBA) solutions.

The second-order solutions are shown for 24-point quad-
ratures.

At both 200 and 54.42 eV the 24-point and 16-point
calculations for distorted waves agree to better than 1%.
This is true also for 12 points at 200 eV and it is not
much worse at 54.42 eV. At 200 eV there is not much to
choose between UDWB and DWSB results, both agree-
ing with the coupled-channel (CC) results to better than
5% for the larger T-matrix elements. The DWBA result
is not much worse than this. Departures from CC results
are a little larger for 54.42 eV and the UDWB result is
better than the DWSB result. In general the table shows
that 12-point quadratures are quite satisfactory for the
distorted-wave representation.

For the plane-wave representation the T-matrix ele-
ments seem to be converging to the limit of the
distorted-wave representation as the number of quadra-
ture points increases, but in many cases even the 24-point
plane-wave T-matrix elements are not as close to the
distorted-wave limit as the 12-point distorted-wave
values. Neither the first- nor second-order solutions are
good enough even as a rough first approximation. The
same is true for the UBA.

Another interesting feature of the table is that it
demonstrates the on-shell convergence of the perturba-
tion solutions of the distorted-wave representation. In
fact, the iteration of the whole solution of the coupled in-
tegral equations does not converge in any of the cases
shown, but this is due to some of the off-shell matrix ele-
ments. The iterative solution usually converges for J & 3.
For these low values of J plane-wave perturbation theory
is not convergent in any sense.

A feature of the table is that the unitarized distorted-
wave Born approximation, which couples on-shell ampli-
tudes exactly but ignores off-shell amplitudes completely,
is a better approximation in this case than the distorted-
wave second-order Born approximation, which treats
both on- and off-shell amplitudes up to second order.

TABLE II. T-matrix elements (magnitude and phase) for electron scattering in the 3s, 3p model of sodium. Upper entries in each
case are for the distorted-wave representation, lower entries for the plane-wave representation.

Eo
(eV) J Channel 24 points 16 points 12 points UBA FBA SBA

200 3s
singlet

3p
singlet

3s
triplet

3p
triplet

3s
singlet
3p

singlet

0.0535, —2.368
0.0540, —2.369
0.0156,—0.226
0.0147,—0.196
0.0530, —2.385
0.0542, —2.366
0.0145,—0.234
0.0146,—0, 194

0.0653,—0.974
0.0649, —0.972

0.0093,2.917
0.0096,2.93 1

0.0537, —2.364
0.0543, —2.356
0.0157,—0.223
0.0156,—0.217
0.0532, —2.381
0.0553,—2.353
0.0147,—0.23 1

0.0142,—0.165

0.0652, —0.973
0.0636, —0.950

0.0094,2.920
0.0098,2.961

0.0536, —2.366
0.0589,—2.318
0.0156,—0.229
0.0131,—0.205
0.0531,—2.383
0.0655, —2.230
0.0146,—0.240
0.0030, —0.093

0.0652, —0.972
0.0678, —1.051

0.0093,2.915
0.0112,2.878

0.0521,—2.399
0.0473, —2.535
0.0146,—0.245

0.0015,1.185
0.0524, —2.396
0.0474, —2.533
0.0142,—0.233

0.0015,1.179

0.0656, —0.975
0.0452, —2.565

0.0087,2.913
0.0015,1.233

0.0550, —2.461
0.0576,77

0.0154,—0.520
0.0021,0
0.0554, —2.457
0.0578,7T

0.0150,—0.520
0.0022,0

0.0688,—0.936
0.0540,77

0.0091,2. 625
0.0023,0

0.0540, —2.376
0.0720, —2.551
0.0161,—0.242

0.0036,0.905
0.0544, —2.373
0.0729, —2.557
0.0157,—0.231

0.0040,0.851

0.0648, —0.962
0.0802, —2.687

0.0099,2.905
0.0039,0.972
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TABLE II. (Contin ued).

E
(eV) 24 points 16 points 12 points UBA FBA SBA

3p +
singlet

3$
triplet
3p

triplet
3p +

triplet

0.0116,—3.060
0.0123,—3.056
0.0652, —0.970
0.0645, —0.959

0.0091,2.934
0.0094,2.950

0.0116,—3.038
0.0118,—3.038

0.0116,—3.062
0.0125,—3.023
0.0651,—0.968
0.0635,—0.947

0.0091,2.928
0.0100,2.973

0.0114,—3.052
0.0122,—3.017

0.0116,—3.070
0.0127,—3.119
0.0651,—0.967
0.0670, —1.025

0.0090,2.922
0.0108,2.912

0.0114,—3.060
0.0123,—3.087

0.0115,—3.069
0.0006,1.184

0.0655,—0.970
0.0455, —2.560

0.0084,2.920
0.0018,1.240

0.0113,—3.060
0.0007,1.180

0.0121,—3.350
0.0009,0
0.0687, —0.932
0.0545, 7T

0.0088,2.625
0.0028,0
0.0119,—3.350
0.0010,0

0.0122,—3.057
0.0021,2.540

0.0647, —0.957
0.0809,—2.682

0.0095,2.913
0.0043, 1.223

0.0121,—3.048
0.0020,2.466

3$
singlet
3p

singlet
3p+

singlet
3$

triplet
3p

triplet
3p +

triplet

0.0700, —2.110
0.0705, —2.097

0.0080,0.158
0.0081,0.213
0.0051,1.611
0.0052, 1.631

0.0702, —2.106
0.0707, —2.093

0.0079,0.166
0.0079,0.220
0.0050, 1.617
0.0052, 1.637

0.0700,—2.109
0.0711,—2.083

0.0081,0.160
0.0079,0.267
O.OOS1, 1.613
0.0055,1.649

0.0702, —2.104
0.0713,—2.079

0.0079,0.167
0.0076,0.274
0.0051,1.619
0.0055, 1.655

0.0700, —2.109
0.0716,—2.068

0.0081,0.158
0.0084,0.262
0.0050,1.608
0.0055,1.681

0.0703,—2.104
0.0718,—2.064

0.0079,0.166
0.0082,0.284
0.0050, 1.615
0.0055, 1.685

0.0700,—2.114
0.0520, —2.463

0.0072,0.162
0.0022, 1.308
0.0048, 1.604
0.0002,0.509

0.0702, —2.110
0.0522, —2.460

0.0071,0.169
0.0021,1.301
0.0048, 1.610
0.002,0.596

0.0722, —2. 134
0.0669,~
0.0076, —0.203
0.0035,0
0.0050, 1.337
0.0001,0
0.0724, —2. 131
0.0672,7T

0.0075, —O. 203
0.0033,0
0.0049, 1.337
0.0001,0

0.0704, —2.105
0.0973,—2.552

0.0086,0.135
0.0073,0.833
0.0054, 1.594

0.0039,—0.026
0.0707, —2.101
0.0979,—2.550

0.0084,0.141
0.0070,0.813
0.0053,1.598

0.0039,—0.011

54.42 0 3s
singlet

3p
singlet

3s
triplet

3p
triplet

0.1449,—1.337
0.1453,—1.334

0.0383,1.354
0.0375,1.347

0.1450,—1.323
0.1460,—1.315

0.0371,1.376
0.0344, 1.422

0.1449,—1.340
0.1481,—1.317

0.0385,1.348
0.0300,1.630

0.1458,—1.325
0.1442, —1.315

0.0356,1.424
0.0379,1.402

0.1451,—1.341
0.1424, —1.323

0.0381,1.334
0.0416,1.339

0.1460,—1.329
0.1433,—1.310

0.0356,1.403
0.0392,1.420

0.1503,—1.457
0.0644, —2.715

0.0347, 1.284
0.0099,0.280

0.1512,—1.425
0.0528, —2.791

0.0310,1.357
0.0100,0.216

0.1664,—1.442
0.0706,m

0.0389,0.798
0.0110,0
0.1681,—1.413
0.0561,7T

0.0350,0.798
0.0107,0

0.1554,—1.310
0.0814,—2.736

0.0475, 1.241
0.0358,0.094

0.1567,—1.281
0.0748, —2.864

0.0440, 1.294
0.0271,0.091

54 42 1 3s
singlet
3p

singlet
3p+

singlet
3s

triplet
3p

triplet
3p +

triplet

0.0472, —0.645
0.0469, —0.657
0.0275, —1.704
0.0262, —1.711
0.0397,—2.703
0.0414,—2.783
0.0471,—0.552
0.0443, —0.599
0.0247, —1.516
0.0251,—1.660
0.0336,—2.395
0.0377,—2.712

0.0473, —0.647
0.0473, —0.664
0.0277, —1.703
0.0264, —1.719
0.0397,—2.708
0.0418,—2.783
0.0471,—0.554
0.0446, —0.611
0.0250, —1.526
0.0253,—1.661
0.0337,—2.413
0.0385,—2.717

0.0455, —0.624
0.0471,—0.656
0.0284, —1.663
0.0264, —1.703
0.0373,—2.829
0.0413,—2.778
0.0427, —0.589
0.0444, —0.605
0.0262, —1.650
0.0252, —1.644
0.0361,—2.731
0.0321,—2.713

0.0598,—0.631
0.0222, —0.170
0.0281,—1.829

0.0099,0.314
0.0358,—2.829

0.0031,0.131
0.0568, —0.575
0.0191,—0.210
0.0251,—1.771

0.0162,0.361
0.0331,—2.763

0.0033,0.091

0.0709,—0.252
0.0222,0
0.0336,—2.329
0.0112,0
0.0409,3.056
0.0030,0
0.0690,—0. 191
0.0185,0
0.0299,—2.329
0.0188,0
0.0377,3.056
0.0030,0

0.0387,—0.369
0.0500,—0.079
0.0358,—1.769

0.0041,1.367
0.0453, —2.813

0.0329,3.137
0.0369,—0.281
0.0499,—0.088
0.0321,—1.710

0.0078, 1.470
0.0424, —2.754
0.0303,—3.133

3s
singlet
3p

singlet
3p +

singlet
3s

triplet
3p

triplet
3p +

triplet

0.1062,—2.297
0.1066,—2.293

0.0361,0.557
0.0363,0.578
0.088, 1.065

0.0089,1.077
0.1092,—2.285
0.1098,—2.280

0.0338,0.598
0.0339,0.617
0.0091,1.127
0.0091,1.139

0.1062,—2.296
0.1068,—2.287

0.0363,0.557
0.0368,0.599
0.0088, 1.061
0.0091,1.087

0.1093,—2.284
0.1099,—2.275

0.0340,0.598
0.0344,0.636
0.0090,1.124
0.0093,1.147

0.1066,—2.287
0.1069,—2.284

0.0372,0.565
0.0373,0.611
0.0088, 1.064
0.0090,1.077

0.1097,—2.275
0.1101,—2.271

0.0349,0.607
0.0348,0.649
0.0092,1.128
0.0092, 1.138

0.1027,—2.356
0.0779,2.599
0.0310,0.479
0.0181,0.549
0.0086, 1.116

0.0030,—1.1579
0.1061,—2.341
0.0809,—2.583

0.0285,0.520
0.0167,0.559
0.0086, 1.157

0.0020, —1.404

0.1113,—2.412
0.0910,7j.

0.0358,—0.068
0.0215,0
0.0090,0.922
0.0030,m
0.1145,—2.397
0.0954,m

0.0331,—0.068
0.0199,0
0.0089,0.922
0.0018,m.

0.1128,—2.288
0.1249,—2.686

0.0444,0.450
0.0441,0.304
0.0085, 1.150

0.0075, —0.769
0.1158,—2.278
0.1302,—2.666

0.0409,0.479
0.0413,0.308
0.0089,1.177

0.0069,—0.571
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the UDWB is a very good approximation. It is
significant that the much-easier UDWB is considerably
better than the DWSB.

The UDWB should be considered seriously for realistic
problems. This conclusion is reinforced by a further cal-
culation at 54.4 eV involving 3s, 3p, 4s, and 3d channels,
where it is again superior to the DWSB. For problems
for which the continuum is important it has yet to be
tested in the optical-potential formulation. The UDWB
improves considerably on the DWBA for the elastic
channel because it includes the effect of absorption of Aux

into inelastic channels.

VII. ELECTRON SCATTERING
FROM CHARGED TARGETS

In this section we show preliminary results demon-
strating that the momentum-space method for solving the
CC equations can be applied to electron-ion collisions.
We have applied the method to a three-state (ls 2s 2@) cal-
culation of electron scattering from He+ at incident ener-
gies of 54.42, 108.85, and 217.69 eV. The results will be
compared with previous CC calculations in coordinate
space by Burke, McVicar, and Smith' (hereafter referred
to as BMS).

One feature of the method that is peculiar to ion tar-
gets is the presence of an infinite number of bound states
in the spectral decomposition of the Green's function.
The inclusion of these bound states is quite important for
a correct description of electron-ion scattering. They
give rise to an infinite series of Feshbach resonances asso-
ciated with the temporary binding of the incident elec-
tron to an excited level of the target at incident energies
smaller than the excitation energies of the target level.
The present calculations are performed at incident ener-

gies above the 2s and 2p excitation threshold, and al-
though this is outside the resonance region, the inclusion
of a number of bound states was necessary to obtain con-
verged results. The largest number of bound states were
required at 54.42 eV, where nine s-wave, eight p-wave,
seven d-wave, six f-wave, and five g-wave bound states
were needed to obtain converged results. The number of
bound states needed for converged results decreased with
increasing incident energies. At 108.85 eV, five s-wave,
four p-wave, three d-wave, two f-wave, and one g-wave
bound states were sufficient, whereas at 217.69 eV only
three s-wave, two p-wave, and one d-wave states were
needed.

In Table III we study the convergence of the T-matrix
elements with the number of quadrature points at
EO=108.85 eV. The same format as in Table II is used
except there are no plane-wave or distorted-wave calcula-
tions. Only the Coulomb-wave representation is used.
The unitarized Coulomb-Born approximation (UCBA),
the first-order Coulomb-Born (CB), and the second-order
Coulomb-Born (SCB) approximations are shown.

The agreement between the calculations using 16 and
24 off-shell continuum points is quite good for all values
presented in Table III. The agreement between perturba-
tion theory (UCBA, CB, and SCB) and the full solution is
not good for the lowest partial waves, J =0 and 1. How-
ever, at J =2, the UCBA (and to a lesser extent the SCB)
T matrix is starting to become a reasonable approxima-
tion to the full solution.

The partial cross sections for the 1s-2s and 1s-2p transi-
tions are presented in Tables IV and V, respectively. Cal-
culations using 16 and 24 off-shell continuum points are
tabulated and compared to prior coordinate-space calcu-
lations of BMS. The present calculation agrees well with
the BMS values at ED=108.85 eV and Eo=217~ 69 eV
for all J. At 54.42 eV, the present values are in quite
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T-matrix elements (magnitude and phase) for electron scattering in the 1s, 2s, and 2p model of He+. Eo = 108.85 eV.

Channel 24 points 16 points UCBA CB SCB

1s singlet
2s singlet
2p singlet
1s singlet
2s triplet
2p triplet

0.031 92, —2.400
0.012 55, 1.791
0.013 58,0.814

0.055 25, —2.246
0.004 20,2. 120
0.005 80, 1.095

0.031 95,—2.399
0.012 59,1.779
0.013 55,0.803

0.055 22, —2.246
0.004 24,2.104
0.005 84, 1.087

0.035 04, —2.425
0.007 53,1.543
0.007 89,0.618

0.043 92, —2.356
0.006 82, 1.590
0.003 15,0.894

0.037 79,—2.767
0.011 11,0.413

0.009 14,—0.075
0.048 33,—2.767

0.01031,0.413
0.004 13,—0.075

0.026 75, —2.210
0.022 17,1 ~ 148
0.017 95,0.357

0.060 97,—2.404
0.014 44,2.069
0.008 89,0.499

1s singlet
2s singlet
2p —singlet

2p + singlet
1s singlet
2s triplet
2p —triplet
2p+ triplet

0.003 28, —3.034
0.01098,0.199
0.006 37,0.693

0.003 47, —0.324
0.021 93,3.046
0.005 52,0.460
0.000 70,0.251

0.002 99,—0.028

0.003 24, —3.031
0.011 00,0.201
0.006 37,0.705

0.003 38,—0.340
0.021 91,3.046
0.005 50,0.458
0.000 74,0.389

0.002 97,—Q.039

0.002 25, —2.950
0.009 76,0.122
0.006 89,0.712

0.001 77, —0.952
0.020 35,3.029
0.004 24,0.320
0.002 79,0.905

0.001 89,—0.270

0.002 59,—3.346
0.01091,—0.347

0.008 92,0.073
0.000 93,—0.567

0.020 84,2.837
0.004 87, —0.347

0.003 68,0.073
0.001 82, —0.567

0.003 62, —3.031
0.012 00, 1.024
0.01009,0.838

0.003 28, —0.956
0.022 25,3.024
0.006 20,0.243
0.003 99,2.076

0.002 94, —0.418

ls singlet
2s singlet

2p —singlet
2p + singlet
ls triplet
2s triplet
2p —triplet
2p + triplet

0.001 40, —2.286
0.002 95,—0.400
0.013 61,—0.068
0.001 69,—2.942

0.006 88,2.589
0.004 42, —0.306

0.004 42,0.051
0.001 11,—1.042

0.001 41,—2.274
0.003 01,—0.388
0.013 63,—0.068
0.001 70, —2.954

0.006 86,2.590
0.004 42, —0.302

0.004 46,0.054
0.001 09,—1.058

0.001 38,—1.993
0.003 82, —0.402
0.013 15,—0.124
0.001 31,—2.695

0.006 24,2.576
0.003 88, —0.336

0.003 79,0.002
0.000 69,—1.426

0.000 25,2.487
0.004 22, —0.742
0.014 55, —0.522
0.000 89,—0.890

0.006 35,2.487
0.004 20, —0.742
0.004 29, —0.522
0.000 34, —0.890

0.001 69,—2.514
0.002 96, —0.184
0.015 62, —0.111
0.002 13,—3.226

0.006 95,2.575
0.004 78, —0.355
0.005 36,—0.052
0.000 93,—1.440

good agreement for J )2. For the low partial waves,
there seem to be some problems in getting the present
method to agree with BMS within a few percent. We be-
lieve that this is due to not having enough points in the
momentum grid for solving the integral equations.

In conclusion, it has been demonstrated that the

Coulomb-wave representation can be used to solve the
CC equations for electron-ion collisions. It is expected
that the method will be most useful at high impact ener-
gies where currently used methods (R matrix and linear
algebraic)' ' become increasingly time consuming.

TABLE IV. Inelastic partial-wave cross sections 1s-2s for the scattering of He+ in units of ~ao. s and t denote singlet and triplet,
respectively.

16 points 24 points BMS 16 points 24 points BMS 16 points 24 points BMS

0.005 51
0.000 46

Eo=54.42 eV
0.005 34
0.000 46

0.005 65
0.000 28

Eo=108.85 eV
0.001 24 0.001 23
0.000 42 0.000 41

0.001 19
0.000 36

ED=217.69 eV
0.000 33 0.000 33
0.000 26 0.000 25

0.000 32
0.000 23

0.004 74
0.005 09

0.004 76
0.004 88

0.004 57
0.004 89

0.002 84
0.002 12

0.002 82
0.002 14

0.002 74
0.002 08

0.000 91
0.000 96

0.000 90
0.000 94

0.000 89
0.000 92

0.002 54
0.002 97

0.002 62
0.002 86

0.002 79
0.002 78

0.000 35
0.002 29

0.000 34
0.002 29

0.000 31
0.002 21

0.000 53
0.001 16

0.000 53
0.001 14

0.000 51
0.001 11

0.001 05
0.000 03

0.001 05
0.000 04

0.001 11
0.000 05

0.000 06
0.000 72

0.000 06
0.000 70

0.000 05
0.000 64

0.000 21
0.000 78

0.000 21
0.000 77

0.000 20
0.000 74

0.000 14
0.000 20

0.000 14
0.000 20

0.000 15
0.000 22

0.000 10
0.000 18

0.000 10
0.000 17

0.000 10
0.000 15

0.000 07
0.000 39

0.000 07
0.000 38

0.000 06
0.000 35

0.000 02
0.000 06

0.000 02
0.000 06

0.000 02
0.000 06

0.000 08
0.000 11

0.000 08
0.000 11

0.000 08
0.000 10

0.000 03
0.000 17

0.000 03
0.000 16

0.000 03
0.000 15
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TABLE V. Inelastic partial-wave cross sections 1s-2p for the scattering of He+ in units of ~ao. s and t denote singlet and triplet,
respectively.

16 points 24 points BMS 16 points 24 points BMS 16 points 24 points BMS

0.004 90
0.000 51

Eo=54.42 eV
0.004 98
0.000 52

0.005 15
0.000 48

Eo=108.85 eV
0.001 43 0.001 44
0.000 80 0.000 79

0.001 46
0.000 78

Eo =217.69 eV
0.000 23 0.000 24
0.000 33 0.000 34

0.000 24
0.000 33

0.008 06
0.002 42

0.037 00
0.002 42

0.01044
0.013 00

0.002 46
0.006 66

0.000 62
0.001 91

0.008 25
0.002 20

0.037 91
0.002 77

0.01066
0.013 70

0.002 50
0.006 89

0.000 63
0.001 95

0.009 76
0.002 58

0.038 15
0.002 83

0.010 63
0.013 46

0.002 49
0.006 83

0.000 63
0.001 94

0.001 22
0.000 66

0.007 37
0.002 46

0.008 05
0.007 87

0.005 70
0.009 90

0.003 61
0.008 44

0.001 23
0.000 66

0.007 33
0.002 43

0.008 02
0.007 81

0.005 70
0.009 90

0.003 61
0.008 44

0.001 29
0.000 68

0.007 29
0.002 44

0.007 97
0.007 78

0.005 67
0.009 85

0.003 59
0.008 40

0.000 15
0.000 22

0.001 00
0.000 87

0.001 84
0.002 41

0.002 20
0.003 90

0.002 18
0.004 67

0.000 16
0.000 23

0.001 02
0.000 89

0.001 85
0.002 43

0.002 21
0.003 90

0.002 18
0.004 67

0.000 17
0.000 23

0.001 02
0.000 90

0.001 85
0.002 43

0.002 21
0.003 90

0.002 18
0.004 68

VIII. CONCLUSIONS

This paper constitutes a sequel to I, which gave the de-
tails of the plane-wave representation of the coupled
Lippmann-Schwinger equations for a finite discrete set of
channels with a one-electron target. Here the method
has been extended to the distorted-wave representation
for a many-electron target described by configuration in-
teraction. A detailed partial-wave treatment of the opti-
cal potential for excitation of the complementary set of
channels in the distorted-wave Born approximation' will
follow.

The distorted-wave representation is very useful in pro-
viding rapid convergence of the numerical solution of the
coupled equations. Treating the truncated channel space
as a model problem enables us to assess the validity of
some common approximation methods for electron-atom
scattering. For the case of 3s and 3p channels of sodium
none of the first-order Born, second-order Born or unitar-
ized Born approximations are adequate. However, the
corresponding distorted-wave approximations are a vast
improvement. The distorted-wave Born approximation is

reasonable for the dipole excitation but not for elastic
scattering. The distorted-wave second-order Born ap-
proximation is quite good for both and the much easier
unitarized distorted-wave Born approximation is excel-
lent.

For a charged target the representation must at least
involve asymptotic Coulomb waves. Distorted waves
with Coulomb boundary conditions are numerically
difficult in long-range dipole integrals but the representa-
tion in terms of pure Coulomb waves is tractable. The
Coulomb second-order Born and unitarized Coulomb
Born approximations are quite close in usefulness to the
corresponding distorted-wave approximations, indicating
that the Coulomb potential already provides enough dis-
tortion to accelerate the on-shell convergence of the
Lippmann-Schwinger equations.
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