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Electron-impact excitation of quadrupole-allowed transitions in positive ions
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An asymptotic analysis of the partial collision strength for quadrupole-allowed transitions, in the
limit of large angular momentum, is presented. It is shown that the infinite sum over partial col-
lision strengths, which gives the total collision strength, is asymptotic to a geometric series of ratio
k & /k &, where k and k & are the energies of the free electron before and after the collision.

I. INTRODUCTION

Accurate calculations of the total collision strength for
quadrupole-allowed transitions by electron impact, when
the quadrupole moment is large, require, even at low
electron energies, the inclusion of contributions from a
large number of partial waves. ' In this paper we
derive the asymptotic behavior of the partial collision
strength for large values of the total angular momentum.
This analysis shows that the infinite sum over the partial
collision strengths, is asymptotic to a geometric series of
ratio k & /k &, where k & and k & are the energies of the
colliding electron before and after the collision. The col-
lision problem has been formulated in atomic units, ex-
cept for energies where we have used rydbergs units.

II. THEORY

The total collision strength for the transition, induced
by electron impact, from an initial atomic state specified
by quantum numbers nl, to a final state n'l, ', in the cou-
pled angular momentum representation, is given by

Q(n'I,', nl, )= g g g (2L +1)~T(n'I,'k'I'L, nl, kIL)~
1=0 l' L

where k and I are, respectively, the wave number and the
orbital angular momentum of the incident electron, k'
and l' are those of the scattered electron, and L is the to-
tal orbital angular momentum of the system. T(y', y ) is
an element of the transmission matrix which is related to
the reactance matrix R by

make the sum over l slowly convergent. Therefore ap-
proximate methods should be used to estimate the sum
for high angular momenta. %e have split the infinite sum
in Eq. (1) into two parts,

Il(n'I,', nl, )=Q t+0( +, ,

where

lo

&t = & Xfltt,
l=o I'

and

Q — y y IIcBel
l =lo+ l l'

The sum from l =0 to I =10 may be evaluated in any
desired approximation, e.g. , close-coupling, Coulomb-
distorted wave, etc. Here, the sum from /=l0+1 to oo

will be estimated using the weak-coupling Bethe approxi-
mation to the transmission matrix (CBeI). By choosing a
high enough value of l0, the ratio 6l l /0& l" can be made
as near to unity as required. For quadrupole transitions
(A. =2) the partial collision strength in the CBeI approxi-
mation is given by

Il ~ et=16+ (2L+1)~(I'I,'L~P2~II, L ) ~2~%~ '~

L

where the angular factor

(I'I,'L~P~ ~II, L ) =f2(l, I, I,'I';L)

has been tabulated by Percival and Seaton, and

2iR
1 —iR (2)

Ft, (r)r 'F„,(r)dr P, (r)r P„„(r)d» .
0 0 n'l„

(strong-coupling case). If R (y'y ) « 1 for all y', y
(weak-coupling case, referred to as approximation I) the
T matrix can be written as

T= —2iR .

We refer to the strong-coupling case [Eq. (2)] as approxi-
mation II. For electric quadrupole transitions, the par-
tial wave contributions to the total collision strength,

(9)

Ft,.t(0) =0 (10)

FI,l is a regular Coulomb function, Pnl and P,l, are the
a n'l

radial wave functions of the initial and final states of the
atomic system, and A, satisfies the selection rules
(I —I'[ & A, &1+I' and (I, —I,') & A, &l, +I,'. The Cou-
lomb functions Fl, l are subject to the boundary conditions

Qt, t
= g (2L +1)~ T(n'I,'k'I'L, nl, klL)~

L
(4) and
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for r ~~, (11)

with

o, =argl [1+1 —i (z —1)/k],
where (z —1) is the ion charge.

(12)

FI,&(r) —k sin kr+ (2kr) — + o
&

—1/2 (z —1) l~
k 2

adjusted so that the correct experimental energy is ob-
tained as part of the solution of Eq. (13). It is assumed
that each electron moves independently in a potential
which is generated by the nuclear charge Zp and the
charge distribution of the other electrons. For an N-
electron ion with nuclear charge Zo, Nz atomic subshells,
and with q electrons in each subshell j, the potential of
an electron in subshell i is given in terms of Z (air) by
the equation

A. Bound wave functions

In this work the bound state wave functions are single
orbital wave functions with no explicit correlation or
configuration interaction terms. The radial orbitals P, (r)
for the target ion satisfy the equation

g (q, —5,, )yo(P„ lr) = —+
j=1

where a stands for the set of scaling parameters,

yo(Plr)= —J P (g)dg+ J P'(g) (16)

1;(l;+1)
dr r

Z;~(air)+ +2
r r

—
E, P (r)=0,

(13)

where

PSTO( )
1

+2n, )!

' n +1/2
J J n.

r 'exp
n

ZJ CXj r

n.

1,. +1/2

2(21&' + 1 )
I

(2j+1)E;, . (14)

Nonlinear scaling parameters in the function Z (a
l
r) are

where c, =I —E, is the observed binding energy of an
electron in subshell i. I is the ionization energy of the
valence electron and E, are the term energies of the tar-
get ion. The experimental energies quoted are weighted
means of terms belonging to the same configuration and
are given by

are Slater-type orbitals (STO's) which are used to com-
pute the average screening by electrons in subshell j, with

j —1

Z =Z, —g q,
—

—,'(q, —1),

n is the principal quantum number of subshell j, and o.
is an adjustable scaling parameter. Z,' (a r), which is
short range, has the following analytical form

s
Z,'~(air)=(N —1)—g (q —6,") 1—

j=1

exp( —
p ) "J ' (2n —m)

j m=0
(19)

with

p =2Z a r/n

k p=(z —1)r,
(z —1) '

we can rewrite Eq. (9) as
20

(22)

In Eq. (20), we have adopted a more compact notation
which does not show the i dependence of a and p . This
potential has the important property that the right-hand
side of Eq. (19) can be expressed as a power series in r
with an infinite radius of convergence. We have assumed
that the core is frozen during the collision and therefore
we only require orbitals for the outer valence electron.
All of the orbitals nl, have been calculated using the
same a set, for a given target ion, and therefore the same
Z' (r).

A& '=(z —1) 'I(Kl, K'1', l, lB (nl„n'l, ';A, ),
where

I(Kl, K l', X)=I V(Kllp)9(K'l'lp)p 'dp
p

and

B (nl, , n'1,';A ) = P„I (r)r P, , (r)dr .
p a n '1'

(23)

(24)

(25)

B. Introduction of reduced variables

Following the procedure of Burgess et al. " and
defining

&(«lp) = (z —1)'"Fp((r),

where

l —l'= —k, —k+2, . . . , k . (26)

In Eq. (8) the sum over the total angular momentum L
can be carried out, ' giving for the case ll —l'l =X=2

The conservation of angular momentum and parity in the
excitation process implies that the only integrals I occur-
ring in the total collision strength are those for which
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g (2L +1)I & I'I.'I. P, 1
II.L & I' g (2L+1) &I'I,'L P2~II, L )

~

3 I, )(I, ) —1)(21, + 1) (I ( + 1)(l ( +2)
2 (21, —1)(21, —3) (21) —1)

I, (I, —1)(21, + I ) I(l +1)(21+1)
5 2 (21, —1)(21,) —3) (21+3)(21—1)

and for the case l = l'

(27)
where l, & and l & are the greater of l, and l,' and of l and
I', respectively. II& +, [Eq. (7)] then reduces to

0

l, )(l, ) —1)(21,(+1) 3
, = —", (z —1) 8 (nl„n'I,';2)'o+' ' " " (21, ) —1)(21,) —3) 2

311—1

2 (21 —1) ' (21+3)(21—1) '
2 (21+3)

C. Limit of large orbital angular momentum

In the limit of large angular momentum (I »1) we
have'

Io(KI, K I'; A, ) = f j i(xp)j &.(Ir'p)p 'dp
0

By employing the further relation

1 /2

I (~l, lr'I';A. ) —exp —g —g'~ Io(irl, v'I';k),

where

(30) Ji(Kp) =
2KP

Jt + i r.'( ~p )

1
7

1
g p 7 (31)

between the spherical Bessel functions and ord inary
Bessel functions one obtains

and Io(lrl, fr'I', A. ) is the integral in Eq. (24) evaluated in
the Born approximation. The radial wave functions
V(i~l~p) are in this case related to the spherical Bessel
functions. The connection is given through the relation

oo

Io(~I, ~'I', X)=— J, +, ~,(~p)J, +, ~, (~ p)p 'dp .
2 0

(35)

V(~l p) =+IrpII(i') .

The integral I0 thus takes the form'

(32) This integral is of the Weber-Schafheitlin type and has a
discontinuity in the expressions for I0 at K=K'. From
Watson' we have

7T K
Io(~l, a.'I', 2) =-

K

' t'+1/2
I +l'

Kt
2

r(1+3z2)r —'+ '
2 2

I + I' l' —I 1

2
'

2 2'F ——' I'+ 3/2 0 & K' & K7 2 7 (36)

and

Io(KI, K'I'; 2) =—77 K

K

1+1/2
l +I'K'r—

2

I' —I
I (I +3/2)I —+

2 2

F I +l' I —l' 1
l +3/2

2 2
0&K&K (37)

where 2F, is the usual Csauss hypergeometric function. The radius of convergence of the series expansion of the func-
tion 2F& is the unit circle K& /K =1 and the series is absolutely convergent in the open interval of convergence. K& is
the smaller of K and K', and K& is the greater of K and K'. The analytic continuation of 2F] can be expressed by'

z
~F, ( , acb;z) =(1—z) zF, c —a, b;c;

z —1
(38)

and inserting Eq. (38) into Eqs. (36) and (37) one obtains
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K&
I„(Irl,v'I +. 2;2)=—

8

il + 1/2+p 2 2K) K(
2K)

r(l +1)
I (1+3/2+p)I (5/2 —p)

2
K (

X2F, —+p, ——+p; +—+p)3 3

2 2 2 K( K)
(39)

where

p
0 if K(K'

if K.& K',

K&
Io(~l, ir'I —2;2)=—

8

l +1/2 —p —1/2+ pK) K(
2K)

r(l —1)
1 (l +3/2 —p)I (1/2+p)

where

2K (5 1 3
X2F1 ——p, — p, t+ p,

2 2 2 K& K)
(40)

0 If K(K
C

2 if K)K'

and

K&
I„(irl, ir'l;2) =—

8

1+1/2

K 0

1/2
K) K& r(l) 3 1 3F —,——;l+—;

I (l +3/2)I (3/2) 2 2
'

2
'

2
K (

(41)

The behavior of,F, (a, b;c;z) for fixed a, b, z and large c~

is described by'
Using the previous asymptotic expansion and the limit
property of the I function'

F(a, b;c; I (c) '" I (a +n)I (b +n)
I (a)I (b) „1(c +n)n!

+ 0( —m —1)

, I (n+s)
lim n'

n - I (n+r)

it is possible to show that

(43)

k =40

TABLE I. Partial collision strength 0& in the CDWII approximation for the 5s-4d transition in Sr+.
Incident electron energy k'- (Ryj. The excitatio'. z energy is 0.13427 Ry. Numbers in brackets denote
powers of ten.

l k' =0.45627 l l k, =22.443

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

7.162[—2]
4.901[—2]
3.38[—2]
2.342[—2]
1.629[—2]
1.135[—2]
7.928[—3]
5.544[—3]
3.881[—3]
2.720[—3]
1.907[—3]
1.349[—3]
9.473 [—4]
6.653[—4]
4.675[—4]
3.286[—4]
2.310[—4]
1.625[—4]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

aSll calculated in the CBeI approximation.

3.757[—2]
3.310[—2]
2.906[—2]
2.607[—2]
2.330[—2]
2.091 [—2]
1.884[—2]
1.703[—2]
1.446[—2]'
1.321[—2]'
1.210[—2]'
1.111[—2]'
1.022[—2]'
9.430[—3]'
8.717[—3]'
8.075[—3]'
7.496[—3]'
6.981[—3]'

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

3.436[—2]
3.198[—2]
2.982[—2]
2.783[—2]
2.602[—2]
2.431[—2]
2.279[—2]
2.137[—2]
2.008[—2]
1.890[—2]
1.781[—2]
1.678[—2]
1.531[—2]
1.454[—2]'
1.374[—2]'
1.286[—2]'
1.233[—2]'
1.185[—2]'
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1+ 1/2
( 1)1/2

Io(K&1,K)1+2;2)= 3(21+ I K)
L

2 2 3/2
K) K&

Xv)

2 2 '3
&)

,'lI—(K&1,K)1+2;2)= ~
e

K0
' 21+1

X]c) (1 large), (48)

2K(1», , (44)
K) K&

'll (—K) l, K&1;2)=
2 2K) K&

2K)
e

(
Io(K) 1, K 1+2;2)= (21+ I) K)

1+5/2 K(
Xv)

K)

21+ 1

1
(1 large),

I2
(49)

and

X K')

2 2
K0 K(

2K)

—1/2

(45)

X
1

(21+3)(21+5)
2K (

1», (46)
K') K&

2

—,'lI (K) 1, K&1+2;2)=
256

21+5

Xv)
K0

e

1
(1 large) .

)4

(50)

1+ 1/2
(~l)'i

Io(K) l, K&1;2)=

2 2 1/2
iC) K&

X]c)
K)

2
K (l»

K) K&
(47)

Thus, for a quadrupole transition, the partial collision
strengths are proportional to

From Eqs. (48)—(50) we can see that the partial collision
strength Qi I "(K,K) =Qi+p i(K), K& ) is large compared
with fI, i "(K,K ) and Bi+2 t(K, K ) for 1 »K /
(K) K& ). Therefore the main contribution to the sum
over 1, in Eq. (29), arises from the partial collision
strength Qi 'z'i(K&, K) ). Consequently the infinite sum

in A1 +, , which is slowly convergent for large incident
0

energies (K& /K) —I), is asymptotic to a geometric series
of ratio ~& /~0. This greatly simplifies the completion of
the summation over partial collision strengths and leads
to the following result:

TABLE II. Partial collision strength B1 in the CDWII approximation for the 3s-3d and 4s-3d transitions in Mg+. Incident elec-

tron energy k' (Ry). AE is the excitation energy (Ry). Numbers in brackets denote powers of ten.

22
23
24
25
26
27
28
29
30
31
32

33
34
35
36

3s-3d
AE =0.65147
k, —2. 57948

5.548[—3]
4.077[—3]
2.999[—3]
2.209[—3]
1.628[—3]
1.202[—3]
8.876[—4]
6.560[—4]
4.852[—4]
3.591[—4]
2.660[—4]

1.971[—4]
1.461[—4]
1.083[—4]
8.037[—5]

4s-3d
AE =0.01663
k = 1.944 64

1.110[—1]
9.719[—2]
8.558[—2]
7.573[—2]
6.773[—2]
6.013[—2]
5.393[—2]
4.855[—2]
4.386[—2]
3.975[—2]
3.615[—2]

3.298[—2]
3.016[—2]
2.766[—2]
2.543 [—2]

42
43
44
45
46
47
48
49
50
51
52

53
54
55
56

3$-3d
AE =0.65147
k, =5.77948

2.775[—3]
2.435[—3]
2.139[—3]
1.879[—3]
1.652[—3]
1.452[—3]
1.278[—3]
1.124[—3]
9.897[—4]
8.714[—4]
7.676[—4]
6.763[—4]
5.961 [—4]
5.255[—4]
4.633[—4]

4s-3d
AE =0.01663
k =5.14464

4.099[—2]
3.820] —2]
3.566[—2]
3.334[—2]
3.122[—2]
2.928[—2]
2.749[—2]
2.585[—2]
2.434[—2]
2.294[—2]
2.164[—2]

2.044[—2]
1.933[—2]
1.830[—2]
1.734[—2]

3s-3d
AE =0.65147
k =9.767 70

9.688[—3]
8.877[—3]
8.140[—3]
7.470[—3]
6.861[—3]
6.306[—3]
5.799[—3]
5.336[—3]
4.913[—3]
4.526[—3]
4.172[—3]
3.847[—3]
3.549[—3]
3.276[—3]

4s-3d
AE =0.01663
k =9.132 86

7.210[—2]
6.725[—2]
6.282[—2]
5.876[—2]
5.505[—2]
5.163[—2]
4.850[—2]
4.561[—2]
4.295[—2]
4.048[—2]
3.820[—2]

3.609[—2]
3.413[—2]
3.232[—2]
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TABLE III. QI /QI &
for the 5$-4d transition in Sr+. a =. k & /k &, b =k & /(k &

—k & ). k & (Ry) is
the energy of the colliding electron before excitation, k, (Ry) is the energy of the colliding electron
after excitation. The excitation energy is 0.13427 Ry.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

a =0.706
b-3

k =0.456 27

0.676
0.684
0.690
0.693
0.696
0.697
0.699
0.699
0.700
0.701
0.701
0.707
0.702
0.702
0.703
0.703
0.703
0.703

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

a =0.966
b -29

k =40
0.876
0.881
0.885
0.890
0.894
0.897
0.901
0.904
0 911'
0.914'
0.916'
0.918'
0.920'
0.923'
0.924'
0.926'
0.928'
0.931'

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

a =0.994
b -167

k2 =22.443

0.930
0.931
0.932
0.933
0.935
0.934
0.937
0.938
0.940
0.941
0.942
0.942
0.943
0.950'
0.945'
0.936'
0 959'
0.961'

'Ratio QI /QI &
calculated using the CBeI approximation.

2
K&

f1I +1 f1I —1 I +1(lr& +) )/(1 ~) 00 0 ' 0 K K

(51)

and k & and k & are the energies of the free electron be-
fore and after the collision. For the particular case of an
s-d transition we approximate QI + & by

0

where 0& +&-Q(n'l,', nl, ; L =lo+1)/(1 —a) . (53)

2
K&

2
K&

k &

k
(52)

The geometric series method might become impracti-
cal at energies for which a &/(K) K()-50, since contri-

a =0.997
b -309
4$-3d

hE =0.01663
k =5 14464

a =0.887
b-8
3$-3d

6E =0.651 47
k =5 77948

TABLE IV. QI /QI &
for the 3$-3d and 4$-3d transitions in Mg+. a =k & /k &, b =k & /(k &

—k & ). k & (Ry) is the energy of the
colliding electron before excitation, k, (Ry) is the energy of the colliding electron after excitation. hE is the excitation energy (Ry).

a =0.747 a =0.991 a =0.993 a =0.998
b-3 b -116. b -14 b -549
3$-3d 4$-3d 3$-3d 4$-3d

bE =0.65147 hE =0.01663 bE =0.65147 bE =0.01663
l k =2.57948 k =1.94464 I k & =9.76770 k & =9.13286

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

0.734--
0.735
0.736
0.737
0.737
0.738
0.738
0.739
0.740
0.740
0.741
0.741
0.741
0.741
0.742

0.871
0.876
0.881
0.885
0.889
0.893
0.897
0.900
0.903
0.906
0.909
0.912
0.914
0.917
0.916

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

0.877
0.877
0.878
0.878
0.879
0.879
0.880
0.879
0.881
0.880
0.881
0.881
0.881
0.882
0.882

0.931
0.932
0.934
0.935
0.936
0.938
0.939
0.940
0.942
0.942
0.943
0.945
0.946
0.947
0.948

0.916
0.916
0.917
0.918
0.918
0.919
0.920
0.920
0.921
0.921
0.922
0.922
0.923
0.923

0.932
0.933
0.934
0.935
0.937
0.938
0.938
0.940
0.942
0.942
0.944
0.945
0.946
0.947
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butions from high partial waves (lo ))50) should be in-

cluded in the summation to obtain convergence of the
partial-wave expansion. In such a case the analytic for-
mula, derived in a previous paper, to estimate the con-
tribution to the total collision strength from large values
of angular momentum should be more appropriate.

III. RESULTS

The asymptotic behavior of the collision strengths for
large angular momenta were checked using the data
given in Tables I and II. Table I contains partial collision
strengths for the excitation of the 5s-4d transition in Sr+
taken from a previous publication. Similarly, Table II
contains data for the excitation of the 3s-3d and 4s-3d
transitions in Mg+. Both sets of data were calculated in
the strong-coupling Coulomb distorted wave approxima-
tion. We have tabulated in Tables III and IV the ratio
IIt/II, , as a function of the colliding electron angular
momentum I, where IIt = gt IIt t, for diff'erent incident
electron energies. For large l, 0& &

"-0&&" and the ra-

tio Ilt/IIt, should tend to a constant a =k
& /k &,

where k & and k & are the energies of the free electron be-
fore and after the collision. Table III shows results for
the excitation of the 5s-4d transition in Sr, and the exci-
tation of the 3s-3d and 4s-3d transitions in Mg is shown
in Table IV. Also shown are the quantities a =k

& /k &

and b =k
& /(k &

—k & ). Tables III and IV illustrate the
fact that for large values of the electron impact energy,
and/or for transitions in which the atomic states are en-
ergetically close, e.g. , the transition 4s-3d in Mg+, the
sum over the partial collision strengths [Eq. (29)] is slow-
ly convergent, requiring contributions from a large num-
ber of partial waves.
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