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Energy levels and the oscillator strengths of the Be atom determined
by a configuration-interaction calculation with a finite basis set from B splines
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The simple configuration-interaction calculational procedure for an alkaline-earth atom is extend-
ed to include the continuum contribution to the Hamiltonian matrix evaluated in a basis set con-
structed from a quasicomplete set of discrete one-particle orbitals expanded in terms of a set of B
splines. The procedure is successfully applied to the study of the energy eigenvalues, the excitation
energies, and the oscillator strengths for transitions between selected "S,"P, and "D states of the
beryllium atom. In addition to the simplicity of this calculational procedure and its eftectiveness in

generating atomic spectroscopy data for an extended spectral region in a single calculation with a
single basis set, our numerical results have shown that the quantitative reliability of this procedure
is comparable to or better than many other more elaborate theoretical approaches.

I. INTRODUCTION

The recent advancement of high-resolution intense
lasers in the uv region has opened up new experimental
possibilities for a more comprehensive study of atomic
transitions involving excited states of different symmetry
in a complex many-electron atom with a multistep multi-
photon process. ' In contrast to the use of a conventional
light source, when a high-power laser is used, even the
weak transitions between excited states could contribute
significantly in the excitation or the eventual ionization of
the atomic electrons. The optimum excitation or ioniza-
tion "path" in such a process could be chosen more judi-
ciously if a reliable theoretical estimation of transition
rates between various excited states were available. As
lasers of wavelengths in the range of a few hundred
nanometers become readily available, the alkaline-earth
atoms, with ionization energy ranging approximately
from 40000 to 75000 cm ', become particularly attrac-
tive for detailed spectroscopic studies. Typically, the
alkaline-earth atoms can be ionized or selectively excited
to doubly excited autoionization states following the ab-
sorption of a small number of photons in the wavelength
range of a few hundred nanometers. ' The spectra of the
alkaline-earth atoms below the ionization threshold are
relatively simple, although the energy values and oscilla-
tor strengths are often affected significantly by
configuration mixing from the doubly excited states. In
addition, the presence of a large number of doubly excit-
ed autoionization states above the ionization threshold
makes the alkaline-earth atom an ideal atomic system for
a systematic study of many-electron dynamics.

As a result of our recent attempt to carry out a
comprehensive study on the effect of the multielectron in-
teraction in a complex atom, we have reported in a series
of papers the quantitative calculations for Mg and its
isoelectronic sequence on the term values, the fine-
structure level splittings, the oscillator strengths for tran-

sitions between states below the first ionization threshold,
the position and width of the doubly excited autoioniza-
tion states above the ionization threshold, and the photo-
ionization dominated by those doubly excited states. The
basic theoretical approach employed in our study follows
a simple configuration-interaction (CI) calculational pro-
cedure outlined earlier. For the bound states below
the ionization threshold, we have chosen the basis set
constructed from the one-particle Hartree-Fock bound
orbits subject to a potential corresponding to the 'S
frozen core given explicitly in Ref. 3. For the doubly ex-
cited autoionization states above the ionization threshold,
the basis set is expanded to include the positive energy or-
bits subject to a screening potential corresponding to the
ionization channel following a modified Fano pro-
cedure. '

In spite of the quantitative success of these calcula-
tions, the use of incomplete bound basis set for the bound
states below the ionization threshold or for the bound
component of the autoionization states above the thresh-
old has inevitably left out the possible contribution from
the continuum component which in principle should also
be included as a part of the complete basis set constructed
from the one-particle orbits generated in the 'S frozen-
core Hartree-Fock Hamiltonian. It is the main purpose
of this paper to introduce the use of a quasicomplete finite
basis set constructed from B splines to replace the in-
complete basis set employed in our previous calculations.
This finite basis set is constructed from a set of discrete
orbits subject to the same frozen-core Hartree-Fock
(FCHF) potential. Each orbit represents a discretized
eigenfunction of the one-particle FCHF Hamiltonian in a
volume of chosen radius and is constructed as a linear
combination of B splines confined in this volume. This
quasicomplete basis set becomes a complete set in the limit
when the numbers of B splines included in the expansion
and the size of the chosen volume both approach infinity.

The effectiveness of the finite basis set constructed
from B splines has already been demonstrated in the re-
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cent relativistic many-body perturbation calculation.
Unlike the Slater-type orbits extensively employed in the
construction of finite basis set in many other calcula-
tions, ' the use of 8 splines does not require the pro-
cedure of selecting the parameters in the exponential
functions. In addition, the bell shape of the 8 splines
with similar amplitude tends to treat the entire physical
region in the chosen finite volume more uniformly than
the Slater-type orbits. Many of the basic properties of 8
splines are discussed in detail elsewhere ' '" and we will

limit our discussion to those related to the construction
of the nonrelativistic 8 spline basis set in Sec. II.

In Sec. III we will report the result of the first detail
numerical application of a simple configuration interac-
tion (CI) calculation with finite basis set constructed from
8 splines to the spectra of Be below the first ionization
threshold. Beryllium is perhaps the most extensively
studied alkaline-earth atom and many of the most ela-
borate theoretical approaches in atomic structure calcu-
lation have been applied to Be in the past two decades.
With an accuracy comparable to or better than most of
the existing theoretical approaches in the calculated term
values, excitation energies, and oscillator strengths, our
numerical results will firmly establish this simple CI pro-
cedure as an effective approach in generating reliable
quantitative spectroscopy data for an extended spectral
region in a single calculation.

The early close-coupling calculation by Norcross and
Seaton' on the term values of ' S to ' F series, which
agree closely with the observed experimental data, ' has
established the quantitative standard for any theoretical
calculation on the energy levels for Be atom. In fact, oth-
er than the present calculation, only in the most recent
multiconfiguration Hartree-Fock (MCHF) calculation by
Froese Fischer and her co-worker' and the earlier varia-
tional superposition-of-configuration (SOC) calculation
by Weiss, ' are the calculated term values comparable or
slightly higher in accuracy than that of the close-coupling
results. The quantitative accuracy of the theoretical
atomic structure calculation can also be measured by the
accuracy of the calculated excitation energy for transi-
tions between energy eigenstates. The calculated excita-
tion energies from most of the early CI calculations, in-
cluding works by Hibbert, ' Sims and Whitten, ' and
Weiss, ' are generally in close agreement with the ob-
served data. In addition, in a very sophisticated applica-
tion of a hierarchy of variational Bethe-Goldstone equa-
tions, Moser et al. ' have examined in detail the effect of
the electronic correlation and relaxation to the transi-
tions between a few highly correlated states in Be. The
requirement of elaborate optimum procedure consistently
applied to each of the states involved in the transition
and the lack of high speed modern computer in the mid
1970s have unfortunately limited the more extensive ap-
plication of these potentially effective approaches. Other
theoretical approaches, with emphasis given to the transi-
tion itself instead of the individual initial and final states,
include the multiconfiguration relativistic random-phase
approximation (MCRRPA), ' the first-order theory of os-
cillator strengths (FOTOS), the relativistic random-
phase approximation (RRPA), ' the nonrelativistic

random-phase approximation (RPA) or the equivalent
time-dependent Hartree-Fock (TDHF) approximation,
and the many-body perturbation calculation (MBPT).
Most of these calculations have achieved various degree
of quantitative success. One of the most interesting
features in some of these calculations is the gauge invari-
ance which assures the agreement of the calculated oscil-
lator strengths in length and velocity approxima-
tions. ' ' ' It is generally accepted that the agreement
between the calculated oscillator strengths in length and
velocity approximations alone should not be taken as a
measure of quantitative accuracy. And a more accept-
able criterion of quantitative accuracy would require the
convergence of the oscillator strengths as more contribut-
ing terms are included in the calculation of the transition
amplitude in addition to the convergence of the calculat-
ed excitation energy to the observed value. On the other
hand, it should also be emphasized that the agreement
between length and velocity results should not be disre-
garded as a critical test in establishing the quantitative
reliability of any viable theoretical approach.

In a simple CI calculation the eigenstates are usually
represented by a linear combination of a predetermined
basis set without the optimization procedure required for
each individual state as in a more elaborate CI calcula-
tion. The absence of the variational requirement for each
state and the use of a single basis set make it possible to
calculate the energy eigen values and the oscillator
strengths for an extended spectral region in a single cal-
culation. One of such approaches is the model potential
calculation by Laughlin and Victor and their co-
workers. The model potential calculation is similar to
our recent CI calculation except in the size of the basis
set and few minor computational details. As we have
pointed out earlier, the main difficulty in the CI calcula-
tion with predetermined basis set is the lack of continuum
contribution in the incomplete basis set. For small atom
such as Be, in spite of this theoretical difficulty, the gen-
eral agreement between all the calculated energy levels
and the oscillator strengths in the model potential calcu-
lation and the observed data is remarkably good and only
slightly worse than the most elaborate calculations. The
large-scale simple CI calculation based on the application
of the Hartree-Fock-relativistic (HFR) code developed by
Cowan has also been carried out for Be by Fawcett.
As reported by Fawcett, to optimize the fitting of the cal-
culated transition energies to the observed values for
most of the transitions included in the calculation, it is
necessary to reduce the direct and exchange Slater radial
Coulomb integrals by 90% and 85%, respectively. For
the strongly correlated 2p and 2snd 'D states, the optim-
ization has failed to reproduce the correct energies even
with the adjustment to the Slater integrals.

The combined hyperspherical and eigenchannel R-
matrix technique and the subsequent combined mul-
tichannel quantum-defect theory (MQDT) and eigen-
channel R-matrix method offer an alternative general
approach in the study of the multielectron interaction in
alkaline-earth atoms. Recent application of this ap-
proach has demonstrated its capability of global inter-
pretation of the complex spectra. Its earlier application
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to Be with a smaller basis set, however, has failed to
achieve the quantitative accuracy comparable to other
calculations discussed earlier. In principle, its numerical
accuracy should improve significantly if an enlarged basis
set is included in the calculation. A more recent rotor-
vibrator (RV) approach suggested by Hunter and Berry
offers an alternative angular correlation treatment which
differs in its calculational procedure from the well-
established approach in the standard CI calculation. The
calculated oscillator strengths for selected transitions in
Be from the RV approach, though compared better than
the results from the single-configuration Hartree-Fock
approximation, are noticeably different from most of the
existing calculations. Detailed comparison for the calcu-
lated oscillator strengths, the excitation energies, and the
energy eigenvalues from various calculations and avail-
able experimental data will be presented in Sec. III ~

II. THEORETICAL PROCEDURE

The basic theoretical approach employed in the present
work is similar to the simple configuration interaction
(CI) calculational procedure outlined in our recent pa-
pers. The Hamiltonian matrix corresponding to a to-
tal spin S and total orbital angular momentum L is calcu-
lated with a basis set consisting of a number of
configuration wave functions 4„& „& representing the

j j
electronic configuration (n, l, , n l ) for the two valence
electrons. The configuration wave function 4 is given by
the sum of Slater determinant wave functions P over the
allowed magnetic quantum numbers in the LS coupling.
The Slater determinant wave function P is constructed
from the one-particle orbit wave function u„i (r) which

S

is usually the eigenfunction of an effective one-electron
Hamiltonian. The angular and the spin part of the one-
particle orbital wave function are given by the spherical
harmonics YI and spin function o. , respectively. The

S

energy eigenvalue and the state wave function N of an en-
ergy eigenstate are then determined by diagonalizing the
Hamiltonian matrix. All simple CI calculations for a
quasi-two-electron atom with two electrons outside a 'S
frozen core are carried out essentially with this same pro-
cedure. Following this simple CI procedure, the only
component in the basis set that is not completely fixed is
the radial part g„I of the one-particle orbital wave func-
tion. Therefore, the success of any simple CI calculation
depends primarily on the choice of the radial function g
and the size of the basis set included in the calculation of
the Hamiltonian matrix.

In most of our recent calculations, the radial function
g satisfies the eigenequation, i.e.,

h,""(r)y„,(r) =E„,y„,(r),
where h&

" is the one-particle frozen-core Hartree-Fock
(FCHF) Hamiltonian defined explicitly by Eq. (7) in Ref.
3. More specifically, the basis set consists of a number of
two-electron configuration series nil'. Each configuration
series consists of a series of configuration wave functions
0 corresponding to one electron in a fixed orbital nl and
the other electron with fixed orbital angular momentum

l' but variable energy eigenvalues. As we pointed out in
Sec. I, the configuration series included in all our previ-
ous calculation are incomplete in that only the bound
eigenfunctions y„1 of Eq. (1) corresponding to the
negative-energy eigenvalue E„ I are included in each
configuration series nil . To include the contribution
from the continuum corresponding to the positive-energy
eigenfunctions in the configuration series nil', we replace
the set of bound only solutions y„ I by an entire set of
discrete solutions y„of Eq. (1) constructed from B
splines.

To calculate this quasicomplete set of solutions g of
Eq. (1), we first rewrite the Eq. (1) into a simpler form

+ V (r)y(r) =Ey(r),1dy
d r

(2)

where the interaction V(r) is nonlocal in general. The
solution y is expanded in terms of a set of B splines ' of
order k and total number n defined between two end-
points r;„=0and r,„=R, i.e.,

n

y(r)= g c,B,(r) .
i =1

(3)

B„(r=R)=1 and B,(r =R)=0, i =1,2, . . . , n —1 .

The boundary conditions y(0)=y(R)=0 therefore re-
quire that

c =c =0.
1 n (5)

Substitution of Eqs. (3) and (5) into Eq. (2) leads to a
(n —2) X(n —2) symmetric generalized eigenvalue equa-
tion

HC =E.AC,

where H and A are (n —2) X(n —2) symmetric matrices
given by

,' (B, Id /dr IB &+ (—B—;
l VlB, &,

i and j =2 to n —1;
A; =(B, B &, i and j=2 to n —1 .

The eigenfunction g corresponding to the energy eigen-
value c. is given by

n —1

y = g c;B,(r),
l =2

where the set of n —2 coefficients c,- forms the eigenvec-
tor

Cv=(C2, C3, . . . , C„ 1) (10)

The n and k are omitted from the functions B, for simpli-
city. Similar to the relativistic calculation by Johnson
et al. , an exponential knot sequence is used in the
present calculation. At the endpoints r =0 and r =R, all
B splines are equal to zero except B, and B„,i.e.,

B,(r =0)=1 and B,(r =0)=0, i =2, 3, . . . , n;
(4)
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(12)

and

—(r lr )

r
(13)

V, =(ao+a&r+a&r )e ' +(bo+b&r+b2r )e

(14)

The dipole-polarization interaction V and the dielec-
tronic interaction Vd are represented by the same expres-
sions employed in our recent calculations. The short-
range interaction V„ in a form similar to the one em-
ployed in the model potential calculation by Victor and
Laughlin, is added to facilitate the numerical fitting to

corresponding to c.„. As expected, the calculated c. of the
first few lowest negative-energy solutions with their
eigenfunctions completely confined in R agree with the
numerical solutions of Eq. (1) to 10 Ry. The set of
n —2 radial eigenfunctions y of h&

" constructed from B
splines are then used to form the configuration wave
functions for each configuration series.

The B splines in the present calculation are confined in
a fixed radius R. The value of R is chosen so that it is
sufficiently large to cover the estimated physical size of
the excited states of our interest. For example, in the
present calculation, we have selected R =150ao to ensure
the rehability of our calculation for the first four to five
excited states in each SL series. The accuracy of our nu-
merical calculation is tested by changing the values of R,
n, and k which characterize the B splines set. The first
seven figures (i.e., up to 10 Ry) of the energy eigenval-
ues of the excited states remain unchanged in our calcula-
tion when we vary the value of R from 130ao to 160ao.
In addition, we have also varied the value of n from 27 to
42 and the value of k from 7 to 9 and, again, the first
seven figures of the calculated energy eigenvalues remain
unchanged. After selecting R =150ao, n =27, and k =7
in the present calculation, we then examine the variation
of the energy eigenvalues as we increase the size of the
basis set. The energy eigenvalue converges rapidly to
10 Ry when the number of contributing configuration
series in the basis set increases from one to about five. To
achieve a convergence up to 10 Ry or better, it will re-
quire typically 15 to even higher numbers of
configuration series.

In addition to the introduction of a finite quasicomplete
set of one-particle radial eigenfunctions in the construc-
tion of the basis set, a minor modification is included in
the present calculation to take into account effectively the
interaction between the inner-shell and outer-shell elec-
trons. Similar to our earlier works, the interaction be-
tween the inner and outer electrons are approximated by
adding to the nonrelativistic Hamiltonian two effective
interactions V and Vd where

N
V = g V, (r, )

—V (r, ),

the correct limits of the singly excited nl series of Be II.
In the present calculation the parameters ro, P;, a, , and
b, are fitted so that the energy correction

for the first ten singly excited states of Be?I are within
1 —2% (i.e., 10 Ry or less) of the difference between the
calculated e„& and the experimental limit. Similar to oth-
er earlier calculations, ' we have used the value
a=0.051 23 a.u. for the Be III core static polarizability. '

By separating the inner-shell interactions from the one-
particle effective potential in the generation of the radial
eigenfunctions g, the effect of inner-shell interactions can
be estimated quantitatively by comparing the numerical
results following the diagonalization of the Hamiltonian
matrix with and without the contributions from V and
Vd.

The theoretical procedure for the oscillator strength
calculation has been outlined in our recent publication.
We have also examined the convergence pattern of the
calculated oscillator strengths reported in Sec. III follow-
ing the similar procedure described earlier. With the ra-
dial one-particle eigenfunctions confined in a finite
volume, our calculation has shown that the length results
have consistently exhibited a more smooth convergence
pattern (with a fiuctuation of less than 0.1%) than the ve-
locity results (with a fiuctuation of less than 1%) as we in-
crease the number of configuration series in our basis set.

III. RESULTS AND DISCUSSIONS

Table I compares the calculated quantum defects for
the 2snp 'P series converging to the BeII2s limit to the
measured values. The calculated quantum defects from
the present calculation with B-spline basis set compares
very well with the experimental data' at an accuracy
comparable to or better than the most accurate result
from MCHF calculation by Saha and Froese Fischer, '

the close-coupling calculation by Norcross and Seaton, '

and the SOC calculation by Weiss. ' The contribution
from the continuum component to the quantum defects is
significant and can be measured by the difference between
the B-spline (B-spline FCHF) result and that calculated
with the incomplete bound basis set (bound FCHF). The
quantum defects from the model potential calculation by
Laughlin and Victor should increase to the bound
FCHF values if their basis set is enlarged. The CI result
by Hibbert' and the R-matrix result by O'Mahony and
greene should also improve if the basis set is expanded
in the calculation. Other simple CI calculations by Ser-
rao, using an angular-momentum-dependent scaling
Thomas-Fermi-Dirac model potential, and by Markewicz
et al. , using a combined I-dependent core polarization
potential and the frozen-core HF potential fitted to the
1owest-energy eigenstate for each excitation series, have
yielded quantum-defect values noticeably less accurate
than those from other calculations.

The quantum defects, for the strongly correlated 2p
and 2snd 'D series converging to the BeII2s limits are
listed in Table II. Again, the accuracy of the calculation
can be determined by measuring the calculated quantum
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TABLE I. Quantum defects for 2snp 'P series converging to Be II2s limits. The present (B-spline
FCHF) result represents the CI calculations with set of the B-spline basis set subject to the 'S frozen-
core Hartree-Fock potential. The present (bound FCHF) result represents the CI calculations with

basis set including only the bound orbits subject to the 'S frozen-core Hartree-Fock potential.

Theory

Present (B-spline FCHF)
Present (bound FCHF)
Saha and Froese Fischer"
Norcross and Seaton"
Weiss"
Hibbert
Laughlin and Victor'
O'Mahony and Greene'
Serrao~
Markiewicz et al. "

Obser vecV

2s 2p

0.1569
0.1262
0.1582
0.1506
0.1504
0.1481
0.1182
0.085
0.0265
0.1661'
0.1661

2$ 3p

0.2888
0.2533

0.2834
0.2715

0.2413
0.235
0.1889
0.1713
0.2958

Zs4p

0.3274
0.2949

0.3226
0.3104

0.2804
0.319
0.2588
0.1753
0.3324

2s 5p

0.3451
0.3145

0.3405

0.2877

0.2936
0.1776
0.3487

2s 6p

0.3554
0.3260

0.3505

0.2874

0.1797
0.3574

"Reference 14.
Reference 12.

'Reference 15.
Reference 16.

"Reference 25.
'Reference 28.
Reference 32.

"Reference 33.
'The quantum defect equals the observed value as the observed ionization energy for the 2s2p 'P state is

used to adjust the potential employed in this calculation.
'Reference 13.

defects against the experimental observed values. The
relative accuracy of various theoretical approaches
remain at the same level as what we have found for the
2snp 'P series. We should note here that a detailed exam-
ination of the eigenvectors from our calculation has
confirmed the wave-function composition reported by
Froese Fischer in her MCHF calculation. ' In particular,

the 2p contribution to the lowest-energy state in the 'D
series has a value close to 60% which is almost identical
to the MCHF result. The quantum defects for the 2s 'S
ground state and a selection of other excited states are
listed in Table III. As expected, the overall agreement
between the calculated quantum defects and the observed
values are improved for those states which are not as

TABLE II. Quantum defects for 2p and 2snd 'D series converging to Be II 2s limits. The present
(B-spline FCHF) result represents the CI calculations with set of B-spline basis set subject to the 'S
frozen-core Hartree-Fock potential. The present (bound FCHF) result represents the CI calculations
with the basis set including only the bound orbits subject to the 'S frozen-core Hartree-Fock potential ~

Theory

Present (B-spline FCHF)
Present (bound FCHF)
Saha and Froese Fischer"
Norcross and Seaton
Hibbert'
O'Mahony and Watanabe"
Markiewicz et al. "

Serrao"
Observed~

2p

—0.4544
—0.4846
—0.4516
—0.4594
—0.4708
—0.475

—0.4480

2s 3d

—0.1998
—0.2322
—0.2013
—0.2095

—0.231
—0.0105

0.3401
—0.1928

2s4d

—0.1431
—0.1711
—0.1466
—0.1526

—0.173
—0.0122

0.4499
—0.1369

'Reference 14.
Reference 12.

'Reference 16.
Reference 28.

"Reference 33.
'Reference 32.
~Reference 13.
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TABLE III. Quantum defects for selected "S, 'P, and 'D states.

State

2s' 'S
2s3s 'S
2s4s 'S
2s5s 'S

2s3s 'S
254s S
2s5s 'S

2s2p 'P
2s3p 'P
2s4p P

2s3d 'D
2s4d 'D
2s5d 'D

Expt. '

0.7920
0.6873
0.6787
0.6765

0.8210
0.7955
0.7870

0.5640
0.4042
0.3815

0.1101
0.1098
0.1099

Present

0.7912
0.6869
0.6788
0.6763

0.8211
0.7961
0.7879

0.5632
0.4036
0.3810

0.1098
0.1092
0.1098

Ref. 12

0.7878
0.6812
0.6714
0.6685

0.8193
0.7943
0.7860

0.5625
0.3990
0.3755

0.1067
0.1077
0.1081

Ref. 15

0.7891
0.6827
0.6626
0.6546

0.5597
0.3946
0.3678

Ref. 16

0.7898

0.8168

0.5596
0.3936

0.1011

Ref. 25

0.7855
0.6753
0.6634
0.6556

0.8137
0.7826
0.7668

0.5502
0.3777
0.3476

Ref. 33

0.7920"
0.6512
0.6355
0.6306

0.8210
0.7875
0.7772

0.5640
0.4139
0.3892

0.1101b
0.1028
0.1006

'Reference 13.
"The quantum defect equals the observed value as the observed ionization energy of this state is used to
adjust the potential employed in the calculation.

strongly correlated as the 'P and 'D series.
The 2s 'S —2s 2p 'P transition in Be is perhaps the

most extensively studied transition in alkaline-earth
atoms. We have listed the calculated oscillator strengths
together with the available excitation energy from a large
number of calculations in Table IV. Except from the cal-
culations by Hunter and Berry and by O'Mahony and
Greene, the calculated oscillator strengths all agree fair-
ly well with each other and with the experimental mea-
sured value. The agreement between most of the calcu-
lated excitation energies and the observed value ranges
from less than 0.1% to about 3.5% except in the CI cal-
culation by Serrao and the early TDHF calculation by
Stewart.

Perhaps the most detailed study among all theoretical
calculations for the 2s 'S —2s2p 'P transition is the varia-
tional Bethe-Goldstone study by Moser et al. ' In par-
ticular, by examining the variational results including
contribution from the electronic relaxation and correla-
tion at each level of the Bethe-Goldstone hierarchy,
Moser et al. ' have concluded that the contribution from
the inner-shell effect on the velocity calculation is partic-
ularly important in bringing together the length and ve-
locity results. The inner-shell effect in the present calcu-
lation is approximated by the localized dipole-
polarization potential and the dielectronic interaction
discussed in Sec. II. To estimate the contribution of
inner-shell effect to the oscillator strengths, we have car-
ried out calculations which exclude these two interac-
tions. The calculated oscillator strengths and the excita-
tion energy with and without the inner-shell interactions
V and Vd are listed in Table IV for comparison. Our
calculation has shown that the oscillator strengths are re-
duced by less than 1% when the inner-shell interactions
V and Vd are included and the disagreement between
the length and velocity results is reduced slightly from

4.4% to 4.2%. On the other hand, if one subtracts the
inner-shell contributions tabulated by Moser et al. '

from their reported length and velocity oscillator
strengths, one gets f&

= 1.41 and f, = I.46 which are in
agreement with our estimation as well as the values re-
ported by Weiss. ' A similar conclusion has also been
made by Hibbert' to reduce the calculated oscillator
strengths in length and velocity approximations and in
bringing fi and f, together.

The oscillator strengths for the 2s 2p 'P —2p and
2snd 'D transitions are also strongly affected by the
strong mixing between the 2p and 2snd configurations.
This group of transitions have been examined in a de-
tailed MCHF calculation by Saha and Froese Fischer. '

In Table V we have only listed the calculated oscillator
strengths from few of the existing calculations. Results
from other earlier calculations have been reviewed re-
cently by Saha and Froese Fischer' and earlier by
Nicolaides and Beck. For the 2s2p 'P to 2snd 'D tran-
sitions, the results from the present calculation using B-
spline basis set are in close agreement with the results
from the MCHF calculation, and the length and velocity
results from the present calculation agree to less than
3%. Our calculated oscillator strength also exhibits the
convergence pattern similar to that found in our earlier
calculation for Mg as the number of configuration series
included in the calculation increases. The calculated
average oscillator strengths by Markiewicz et al. differ
substantially from all other calculated values.

For the weak transition from 2s2p 'P to 2p 'D, the
calculated oscillator strengths deviate by orders of mag-
nitude from calculation to calculation. As we increase
the number of configuration series, we could not establish
the smooth convergence pattern which is the conver-
gence criterion applied to all other transitions in the
present calculation. However, our step-by-step calcula-
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TABLE IV. The oscillator strengths (f; for length approximation, f„ for velocity approximation,
and f for average of ft and f„or oscillator strength from calculations in that f, equals f, theoretically)
and excitation energy AE (in Ry. ) for the 2s' '5 —2s2p 'I' transition for Be I.

Theory

Present (8-spline FCHF)

Present (outer correlation only)

Present (bound FCHF)

Moser, Nesbet, and Gupta'

%'eiss

Hibbert'

Burke, Hibbert, and Robb

Sims and Whitten'

Vector and Laughlin"

Markiewicz et al.

Serrao'

Fawcett'

Nlcolaides and Beck"

Johnson and Huang'

Stewart

Lin and Johnson"

Amusia et al. '
O'Mahony and Greene

Hunter and Berryq

Observed"

l

1.3869

1.3986

1.4253

1.3862

1.410

1.381

1.4237

1.344+0.095

1.372

1.3494

1.36

1.378

1.15

f.
1.4496

1.4590

1.3996

1.3776

1.455

1.435

1.3862

1.46

1.13

1.4697

1.356

1.42

1.38

1.36

1.34+0.05

0.3903

0.3913

0.3943

0.3888

0.3897

0.3912

0.4016

0.3882

0.3956

0.3879"

0.4285

0 3879"

0.402

0.3528

0.3879

'Reference 18.
Reference 15.

'Reference 16.
Reference 34.

'Reference 17.
'Reference 25.
gReference 33.
"AE should equal the observed value as the experi-
mental excitation energy of this transition is used to
adjust the potential employed in the calculation.

'Reference 32.
'Reference 27.
"Reference 20.
'Reference 19.

Reference 23.
"Reference 21.
Reference 22.

~Reference 28.
qReference 30.
"Reference 35.

tion did establish the trend that our length result de-
creases continuously as we increase the number of
configuration series and we could consider the listed
length value in Table V the upper bound in the present
calculation. Our calculated oscillator strengths are much
smaller than the MCHF values but are consistent in or-
der of magnitude with the results from the earlier CI cal-
culations by Hibbert' and the variational Bethe-
Goldstone calculation by Moser et al. ' The more recent
RV result is one to two orders of magnitude larger than
all other calculations. We have estimated the numerical
accuracy in our oscillator strengths calculation approxi-
mately at 10 and to improve our numerical accuracy
would require the use of a substantially smaller radial
grid size for our numerical wave function.

The oscillator strengths and the excitation energies for
other selected transitions are listed in Tables VI and VII.
Again, our calculated oscillator strengths are in good
agreement with the more elaborate CI calculations by
Weiss' and Hibbert. ' The agreement between our
length and velocity results are in general at a level of
about 3% or less for all transitions except for some weak
transitions with oscillator strengths less than 0.01. Our
calculated excitation energies are consistently in better
agreement with the experimental values than other calcu-
lations listed in Table VI and VII.

The accurate determination of the oscillator strengths
is extremely difficult and very few oscillator strengths
measurements have been carried out in recent years.
Most of the available observed values are derived from
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TABLE V. Comparison of the calculated oscillator strengths f for the Be2s2p 'P 2p-and 2snd 'D
transitions. Other earlier theoretical oscillator strengths are reviewed recently in Ref. 14.

Final state

2P' 'D fI
f.

2s3d 'D fi
f.

avg

2s4d 'D fI
f.

avg

2s5d 'D fi
f.

avg

2s6d D fI
f.

avg

'Reference 14.
Reference 20.

'Reference 30.
Reference 18.

'Reference 33.

Present

0.000 48
0.000 02

0.4087
0.4184

0.1754
0.1804

0.0836
0.0860

0.0461
0.0474

MCHF'

0.0016
0.0010

0.404
0.425

0.1808
0.1898

0.0793
0.0819

0.0445
0.0454

FOTOSb

0.0086
0.0016

0.64
0.41

0.19
0.16

0.08
0.07

0.05
0.05

RV'

0.064

Others

0.0003
-0

0 497'

0.121'

0.05'

0.026'

TABLE VI. Oscillator strengths f and excitation energy hE for selected 'P 'S transitio—ns in Be.

Transition

2s2p 'P —2s3s 'S
Present
Weiss'
Victor and Laughlin
Hunter and Berry'
Fawcett
Markiewicz et al. '
Experiment

2s2p 'P —2s4s 'S
Present
Weiss'
Victor and Laughlin"
Fawcett
Markiewicz et al. '
Experiment'

2s2p 'P —2s5s 'S
Present
Weiss'
Victor and Laughlin
Fawcett
Markiewicz et al. '
Experiment

2s3p 'P —2s4s 'S
Present
Weiss'
Victor and Laughlin
Markiewicz et al. '
Experiment'

'Reference 15.
Reference 25.

'Reference 30.

0.1203
0.127
0.1485
0.0640

0.0095
0.0091
0.0099

0.0034
0.0035
0.0041

0.2121
0.2230
0.2560

0.1249
0.121

0.0106
0.0103

0.0037
0.0039

0.2177
0.2070

Reference 27.
'Reference 33.
'Reference 13.

favg

0.141
0.14

0.02
0.0107

0.009
0.003

0.267

AE(Ry)

0.1072
0.1061
0.0974

0.1103
0.1161
0.1104

0.2034
0.2025
0.1926
0.2077
0.2090
0.2067

0.2406
0.2393
0.2294
0.2445
0.2450
0.2438

0.0453
0.0445
0.0416
0.0366
0.0461
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TABLE VII. Oscillator strengths f and excitation energy b.F. for selected transitions involving S,
P, and 'D states in Be.

Transition

2s2p P —2s3s 'S
Present
Hibbert'
Laughlin et al.
Markiewicz et al. "

Experiment
Experiment'
Experiment

2s3s S—2s3p P
Present
Hibbert'
Laughlin et aI.
Markiewicz et al. '
Experiment'

2s2p 'P —2s3d 'D
Present
Hibbert'
Laughlin et al.
Markiewicz et al. '
Experiment
Experiment'
Experiment

2s3p P —2s3d D
Present
Hibbert'
Laughlin et al.
Markiewicz et al. '
Experiment'

'Reference 16.
Reference 25.

'Reference 33.
"Reference 36.
'Reference 37.
'Reference 13~

0.0820
0.0807
0.091

1.128
1.198
1.138

0.2938
0.263
0.301

0.5015
0.528
0.524

0.0845
0.0836

1.141
1.100

0.2930
0.256

0.5007
0.605

favg

0.0787
0.089+0.003
0.075+0.003

1.159

0.287
0.29+0.01
0.32+0.01

0.570

AE (Ry)

0.2737
0.2722
0.2666

0.2743

0.0623
0.0624
0.0638
0.0611
0.0622

0.3647
0.3620

0.3652

0.0286
0.0278

0.0298
0.0287

the lifetime measurements using the beam-foil tech-
nique. As pointed out by Saha and Froese Fischer, '

the uncertainty of the measured oscillator strengths could
increase when the effect due to other decay channels are
not included in converting the lifetime data into the oscil-
lator strengths. The results of the present calculation are
generally in good agreement with all the available ob-
served oscillator strengths.

The quantitative data presented in this paper have
demonstrated the ability of the present theoretical pro-
cedure to generate the most accurate energy values and
to meet the consistency tests on the oscillator strengths
including the agreement between the length and velocity
results and the convergence pattern following the cri-
terion we have applied recently. Unlike most of the
more elaborate theoretical procedures, the present ap-
proach does not require the application of the optimiza-
tion procedure to the individual states involved in the

transition. At an accuracy comparable to or better than
many of the most accurate theoretical calculations, the
use of a single basis set with the same orbital wave func-
tions constructed from B splines has also allowed us to
carry out a complete calculation involving a large nurn-
ber of states in a single calculation. In addition, the use
of the quasicomplete finite basis set has successfully ac-
counted for the continuum contribution which was not
included in our previous calculation using the incomplete
bound basis set. A more extensive tabulation of the cal-
culated term values, the excitation energies, and the oscil-
lator strengths involving states of higher n values will be
published elsewhere. The extension of the present ap-
proach to the theoretical procedure which we have ern-

ployed successfully in our recent study on the doubly ex-
cited autoionization states and the photoionization dom-
inated by these autoionization states is currently in pro-
gress.
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