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The problem of atomic dissolution by means of decay to the negative energy continuum is dis-
cussed. The derivation of the one-electron central-field Hamiltonian from quantum electrodynam-
ics is made as an example. It is found that the operators that project the Coulomb interaction into
positive and negative energy states of the Dirac noninteracting Hamiltonian cause the eigenstates of
the atomic Hamiltonian to break up into two sets. One set is expandable in the positive energy
noninteracting states, and this set propagates forward in time. The other set is expandable in terms
of the negative energy noninteracting states and propagates backward in time. There is, therefore,
no danger that transitions will occur from the forward propagating eigenstates into the negative
continuum with continued propagation in the forward direction, regardless of the magnitude of the

nuclear charge.

I. INTRODUCTION

The interaction of nonrelativistic atoms with elec-
tromagnetic fields has long been understood, and many
calculations have been made and compared successfully
with experiments. The introduction of relativistic equa-
tions, however, has created problems related to the ex-
istence of negative energy atomic states.

What prevents an atom from dropping into the nega-
tive energy states while radiating electromagnetic energy?
Dirac! proposed filling the negative energy states with
electrons so that the Pauli exclusion principle could
operate and keep the electrons out of these states. Feyn-
man? translated this proposal into his propagators by re-
quiring them to transmit only the positive energy eigen-
states forward in time while the negative energy states
propagate backward in time. These two equivalent re-
strictions on the theory refer to eigenstates of the nonin-
teracting Dirac Hamiltonian

Hp=—ia-V+my°, (1.1)
where underlines indicate matrices.

Dirac! constructed a Hamiltonian for the hydrogen
atom by adding a Coulomb potential to the above equa-
tion. Unfortunately, an expansion of the negative energy
eigenstates of his Hamiltonian in terms of the eigenstates
of Hj, involves positive energies. Thus transitions to the
negative energy states of the Coulomb Hamiltonian fol-
lowed by forward propagation become possible. This
opens the question of whether Dirac and Feynman’s rules
should apply to eigenstates of H;, or to the Hamiltonian
of the entire system including interactions. The latter
choice is actually ruled out if we use Dirac’s Coulomb
Hamiltonian and are to be consistent with quantum field
theory as currently presented in textbooks and as used to
compute the radiative corrections of the hydrogen atom.’
Is it possible, then, that Dirac chose the wrong Hamil-
tonian for the hydrogen atom?

A similar problem has arisen when actual calculations
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of multielectron eigenfunctions have been attempted.*
Although no difficulties of this nature occur when the
Hartree-Fock approximation is used, efforts to include
the correlation energy run into trouble. This is because
the Coulomb interactions mix the negative energy
Hartree-Fock eigenstates with the bound states. For ex-
ample, a bound state would mix strongly with the state
formed from it by moving one electron up into the posi-
tive energy continuum and a second electron into a nega-
tive energy continuum state in such a way that the energy
is unchanged from that of the original bound state. Since
these continuum states extend to infinity, the atom dis-
solves by electron emission.

This phenomenon of atomic disintegration has been
called by Sucher,* the “continuum dissolution” or the
“Brown-Ravenhall disease.” It is the result of a poor
choice for the interaction energy between electrons in
the Hamiltonian of the relativistic atom. The means of
avoiding it were first pointed out by Brown and
Ravenhall.’ They did not have this problem because
their Hamiltonian had the Coulomb interaction
sandwiched between projection operators into the posi-
tive energy states of H,. However, these operators are
not convenient for calculations, and this has led Sucher
and Mittleman* to consider alternative projection opera-
tors. As we shall see, these discussions arise from an un-
certainty as to how the atomic Hamiltonian is to be
chosen.

Brown and Reavenhall® and Bethe and Salpeter® de-
rived the wave equation for the hydrogen atom from
quantum electrodynamics many years ago. Bethe and
Salpeter used Feynman’s” techniques, and their work has
recently been generalized to multielectron atoms.” These
papers show that the Coulomb interaction terms in the
wave equation should be preceded by operators that pro-
ject into the positive or negative energy states of Hy in
Eq. (1.1). We now seek to clarify how these projection
operators prevent the dissolution of the atom into the
negative energy continuum and how they effect the atom-
ic eigenstates.
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The wave equations derived by Salpeter® and Broyles’
do not obviously arise from eigenequations for Hermitian
Hamiltonians. We shall see, however, that the eigenfunc-
tions themselves satisfy a condition that makes the Ham-
iltonian Hermitian.

We shall approach quantum electrodynamics as a
boundary-value problem to be solved for the wave func-
tions of electrons, nuclei, and photons.® Although such
wave functions have frequently been used in the past,>>®
the complete formulation of quantum electrodynamics in
terms of differential equations solved by such wave func-
tions is presented in Ref. 9. Of course, this formulation is
equivalent to others,!” but it has the advantage of using
wave functions at every stage.

In order to illustrate the manner in which an atomic
Hamiltonian arises in the treatment of a relativistic atom
by means of quantum electrodynamics, we shall present
the derivation for the electron in a central field, that is,
the hydrogen atom with an infinitely heavy nucleus as a

|

K(3,41,2)=K,(3,DK,(4,6)+i [ [ [ [K.(3,5K,(4,

6)(_;(5,6§7,8)I_<(7,8; 1,2)d4de4x6d4X7d4x8 N
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simple example. The projection operators that arise nat-
urally in the derivation will present the electron from fal-
ling into the negative energy states. Properties of the
eigenstates of the hydrogen Hamiltonian that result from
the work of Bethe and Salpeter will be studied. We will
then see how these properties generalize to the mul-
tielectron atom.

II. HYDROGEN ATOM WITH INFINITE
NUCLEAR MASS

Although, as noted above, a relativistic Hamiltonian
for the hydrogen atom was derived long ago by Salpeter,®
a simplified derivation for the hydrogen atom in the limit
of infinite nuclear mass will be presented here in order to
show how a Hamiltonian is introduced in a particularly
elementary case.

We begin with Eq. (9) in the paper by Salpeter and
Bethe,®

(2.1)

where K(3,4;1,2) is the propagator for an electron and nucleus (proton), K, and K, are the dressed electron and nu-

clear propagators whose mass shell limits are given by

Kx5)=i [(—m) le P EVa*p2m) ¢,

(2.2)

where X, y, and p are four vectors and where the appropriate experimental masses must be inserted for m. p is the sca-
lar product of p and 7. G represents the infinite series of irreducible terms involving photon exchanges between the

electron and the nucleus. The first term of this series is

G,(5,6,7,8)=—e?y,, 1" [ e Fk "2d*k56(5,7)5(6,8) /277,

where

f:xs'—X_G .

(2.3)

We take odd numbered points to belong to the electron and even numbered to the nucleus.
Salpeter® has noted that a gauge transformation can replace this last expression for G, with one involving a Coulomb
potential added to a transverse contribution. Making use of his Egs. (1) and (2) and a Fourier transform, we can show

that

G,(5,6;7,8)=e?y o¥n8(x9 —x)|xs—x¢| ~18(5,7)8(6,8)+ - - -,

where the center dots represent transverse terms. Since
the 6 functions cause this expression to vanish unless all
the times are equal, it can provide the interaction be-
tween the electron and nucleus in an atomic Hamiltoni-
an. The transverse terms and the higher-order terms, in
G, on the other hand, require two times to be specified.
Although the transverse terms in G, involve retardation,
they can be approximated by the Breit interaction that is
instantaneous. Since they are small, however, we shall in-
clude them with the higher-order components in the
series expansion for G which are small correction terms
that we shall not consider here.

In the limit of infinite nuclear mass, contributions to
Eq. (2.1) involving the backward propagation of the nu-
cleus become negligible. This establishes the time order-

(2.4)

ing of the nuclear points so that x9 <x? <x9. We also

take the initial times to be equal and the final times to be
equal so that x9=x9, x$=x9, and x9<x%<x9. Since
we will include only the instantaneous Coulomb part of
G, contributions are nonvanishing only when the two
lines involved in the photon propagator are the same,
that is, when x(5)=x2. In this case, Eq. (2.1) will not in-
clude terms in the perturbation expansion with the elec-
tron traveling backward in time.

In the limit of a very heavy nucleus, the effect of the
electron on it becomes negligible so that it propagates as
though there were no interactions. Furthermore, the ini-
tial nuclear wave function at x9, ¥,(1) can be chosen to
be sharply confined to the origin. Because of the large
mass, this wave function will spread a negligible amount
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while it propagates to x 2 and becomes ¥,(4). To remove
the nuclear coordinates, we multlply Eq. (2.1) by
¢* (4)d3x, from the left and Yn 1/1,, 2)d*x, from the right
and integrate over x, and x,. (A dagger indicates the
complex conjugate transpose) 4 6) will then propa-
gate 1//,, 4) backwards from xJ to x 2.

The expression on the left of Eq. (2.1) will then have

the form
]

KGD=KC0+i[ [ [ [ [K.(3,50](6)G(567,8)K(7,81,2),(2)d,d*xsd*xsd*x,d*xg .
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KG,D=[ [¢]4K3,41,2)

Xy94,(2)d3x,d3x, . (2.5)

This is the propagator that transports the initial wave
function of the electron from time x9 to x9 in the pres-
ence of a point nucleus fixed at the origin. If we use this
expression to identify K ¢, we have in place of Eq. (2.1)

(2.6)

The expression in Eq. (2.4) now replaces G and introduces the 7/ corresponding to the one in Eq. (2.5) so that we can

identify a K°. Integration over x, and xg then gives

KG,0)=K,3,D+ie* [ [ [K.(3,59](6)y0708(x}

—xQ)xs— x4 'K (5,6;1,2)¢,(2

)d3x,d*x sd*x¢ . (2.7

We note now that we can identify a K¢ on the right-hand side with the aid of Eq. (2.5), integrate over x{ to remove the

delta function, and obtain

K<(3,1)

The x5—x4 could be replaced by x; because the wave
function for the nucleus is confined to the origin. The re-
strictions on the times result from, as we have noted, an
infinite nuclear mass and the instantaneous Coulomb in-
teractions. This is the equation satisfied by the propaga-
tor for an electron moving in a Coulomb field.

We now seek to write this propagator in terms of the
wave functions that diagonalize it, that is, a complete set
of functions that are propagated so that their only time
dependence is a phase factor whose phase changes linear-
ly with time. A large amount of computational experi-
ence can be drawn upon if a Hamiltonian is found whose
eigenfunctions form such a set. This, then, is the cri-
terion that determines the atomic Hamiltonian. The
eigenfunctions of this Hamiltonian provide the most
economical way to write down the propagator which de-
scribes the atom between emissions of photons.

The equation for the wave function propagated by K¢
can be obtained by multiplying the last equation from the
right by 7/0:/1 )d>x, and integrating over x,. The result
is (dropping the subscript e’s)

Y3)=9/(3)+ie? [ K(3,5)7°xs| ~'9(5)d*xs ,

x<xy, 9

where ¥/ is the wave function that would result if no
Coulomb interaction were present.

If now we apply the operator (i3;—m), the K(3,5) will
be replaced by i8(3,5). If we take the limit of infinite
mass for the nucleus after the integration over X5 is per-

formed, the result is
(iB8—m)y=—yx|""y.

This is the equation studied by Dirac for the hydrogen
atom. However, the solutions usually found for it are not
solutions of the previous equation.

To see this, we substitute X in Eq. (2.2) into (2.9) and
carry out the integrations. We note first that Eq. (2.2)

(2.10)

=K, (3,1)+ie? [ K,(3,5)7%xs] T'K(5,1)d*xs,
e e e 5

x9<x?<x9. (2.8)

[

multiplied from the right by y° is equivalent to

K(x,5)y°=i [(p—Hp) '8(x—y)e? =" ldp /27 .
(2.11)

Substituting this into Eq. (2.9) and integrating over x;
leaves

v3)=v/3)—e2[ [(p—Hp) e

—ip(x()*xo) —
3 5 Ix3! 1

P(3)=
X (x9,x3)dxdp /27, x9<x9 .
(2.12)

As we have noted, we are restricting the wave func-
tions to the form

s 0
iExy

_llg(x(s),x3)=é(x3)e (2.13)
Substituting this into Eq. (2.12) then gives
Y(3)=9¢/(3)+e x5 'Y(3) (2.14)
where
J=—{ [(p—Hp) 'e®” Fdydp /2w, y<0. (215

Integrating first over p and then over y with a negative
imaginary component of m in Hj, produces

J=(H,—E) 'A, , (2.16)

where A, is the projection operator into positive energy
eigenstates of H;. Substituting this into Eq. (2.14) then
results in

YE)=¢/(X)+e?A (Hp—E) Vx| 7 lpx) . (2.17)

We note that the equation derived by Salpeter® for hydro-
gen also has a A_ operator that has been eliminated be-
cause the infinitely heavy nucleus and the instantaneous
Coulomb interactions have removed backward propaga-
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tion of electron wave functions.

As we have noted, the Feynman propagators transmit
only components of the wave function consisting of posi-
tive energy eigenfunctions of H, forward from the initial
surface of the space-time volume in which we are to
determine the wave function. These positive energy
eigenstates contribute to y in the last equation. The A,
in the last term prevents any contribution of negative en-
ergy states of Hj, to ¢ on the left. Thus the positive ener-
gy states propagated from the initial time surface will be
part of a solution to Eq. (2.17) with no negative energy
state component. We can, therefore, replace ¢¥(X) by
ALY for these solutions in that equation. This com-
ponent propagates forward in time.

This can be shown more formally by iterating Eq.
(2.17) to obtain

V=AW +eXH,—E) A lx| ALY
+e*(Hp—E) AL x| TIALH,—E) x| Ty,

(2.18)
where we have replaced _qf by AJer. We can now make
use of the fact that a projection operator is equal to its
square and rearrange this equation to obtain

=AW/ +eXHy—E) AL Ix| A,
X[A W +e(Hy—E) 'ALlxTY] . (2.19)

The bracketed quantity is immediately recognizable from
Eq. (2.17) so that

YX)=y/(x)+e’A (Hp—E) x| T'A (X)), (2.20)

where ¢/ involves only the positive energy states. It is
clear that a A, factors to the left on the right-hand side
so that this is really the equation for A, 9.

On the other hand, the solutions transmitted backward
in time from the final surface by the Feynman propaga-
tors can consist only of negative energy noninteracting
states. They receive no contribution from the last term in
Eq. (2.17) so that, for them, we can ignore the Coulomb
interaction. We can show this more formally by operat-
ing on Eq. (2.17) from the left by A_. Since the Coulomb
term is annihilated, no harm is done if we insert a A, in
front of the ¥(X) in that term and leave it in the last term
of Eq. (2.20). Thus, Eq. (2.20) holds for both components
of . We can then multiply by (H — E) and transpose to
obtain

HYy=EYy, (2.21)
where
H.=H,—e?A Ix| A, . (2.22)

This Hamiltonian has two sets of eigenstates. One is
composed of states that can be expanded in terms of the
positive energy eigenstates of H;, alone and are propagat-
ed forward in time by K. The other involves only the
negative energy eigenstates, and they are unaffected by
the Coulomb interaction because of the A ’s. They are
clearly propagated by K¢ and must move backward in
time. The atom cannot dissolve by radiative transitions
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from the bound states in the first set to the negative ener-
gy states in the second set since K ¢ does not transmit the
latter set forward in time. Thus an atom with this Hamil-
tonian is stable and does not suffer from the problem of
continuum dissolution.

III. MULTIELECTRON ATOM

The equation for the multielectron atom corresponding
to that for hydrogen derived by Salpeter® has been
presented in Ref. 7. This equation was derived from Eqgs.
(6.7) and (6.9) of that reference. They can be combined to
give (omitting the Breit interaction)

(X0 x,...x, )ny(XO,xl...x,,)

—AL—(— 1A [SHp ~E |

XVip(X°x,...x,), (3.1
where
A =TTkAx= (3.2)
and
V:2i<kzizj|xf_xj|71 (3.3)

and where there are n spin-; fermions with charges Z;
times the electron charge. The summations and products
with subscripts k are over the indices k from 1 to n. The
symbol ¥, ; represents summation over all pairs of
values of i and j where i and j range from 1 to n. Z; is
— 1 for electrons and a positive integer for a nucleus. We
define A, to project into the positive or negative energy
states of H, for the kth fermion.

The first term on the right-hand side of Eq. (3.1) is gen-
erated from positive energy eigenstates of H, that are
transmitted forward from the initial time surface and the
negative energy eigenstates that are transmitted back-
wards from the final surface by the Feynman propaga-
tors. These states propagate to the in-between surface at
X° to form /. Contributions consisting entirely of posi-
tive eigenstates of H,, or entirely of negative eigenstates
are added from the second term of Eq. (3.1) to form ¢.
This is because of the projection operator
[A,—(—1)"A_]. Since the last term in Eq. (3.1) con-
tributes only to those states, a set of solutions can be
found by similarly restricting gf so that

v=(A,+A Y. (3.4)

Since the projection operator in the last equation can
be inserted in front of v, it can also be inserted after the
potential energy term in the Hamiltonian. Thus the
Hamiltonian for an atom can be written in the form

H,=3 Hp +a[A,—(—1VA_V(A,+A_). (3.5

A more formal proof of this may be made in steps analo-
gous to Egs. (2.18)-(2.20).

The terms in Eq. (3.5) that involve A+|x,-—xj|7lA,
and A_|x;—x;|7'A, vanish. This is because each of
them will contain one of the factors, ®  w~ or@m w™,

where the eigenfunctions of H;, have the form
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(3.6)

l[li +, —i(£Et—p-x)
b

and =* indicates the sign of the energy. As a result
H, =Y Hp+taA VA, —(—1)"aA_VA_ . (3.7

This form of the Hamiltonian is obviously Hermitian.

As we have already noted, only wave functions that
satisfy Eq. (3.4) are affected by the interaction. The ei-
genvalue equation for the Hamiltonian in Eq. (3.7) can be
separated so that the two components A,y and A_v¢
satisfy the two independent energy eigenvalue equations

m( A=, Hp (A )+ AL VA L(ALY)
=E (A ¢) (3.8
and
H,(A_)=3 Hp(A_Y)

—(—D"A_VA_(A_$)=E_(Ag)) . (3.9

Thus there are two sets of energy eigenstates, one ex-
pandable in positive energy eigenstates of Hj,, the other
expandable in negative energy states. Since the eigen-
states of the Coulomb Hamiltonian propagate in the same
direction as their H; components would be individually
propagated, we conjecture that the first set will be
transmitted forward in time and the other backwards in
time. Thus an atom in one of the first set of eigenstates
will not be able to transfer into one of the other sets by
radiation and then continue forward in time.

IV. SUMMARY

The Feynman restriction that only positive energy
noninteracting states can propagate forward in time
while the negative energy states propagate backward
leads to Hamiltonians for atoms with Coulomb interac-
tion terms sandwiched between projection operators.
These projection operators (into positive and negative en-
ergy states of the Hamiltonian for a noninteracting sys-
tem) assure that the atomic eigenstates can be divided
into two sets, one set being expandable in terms of posi-
tive energy eigenstates of the Hamiltonian for a nonin-
teracting system, the other in terms of negative energy
eigenstates of the same Hamiltonian. The first set con-
tains the bound states for an atom, and they are pro-
pagated forward in time. They cannot decay (by any
means, Coulomb or transverse interactions) into the
second set of states and propagate forward because the
second set can only propagate backward in time. This is
true even if some of the state of the first set becomes de-
generate with some of those in the second set as a result
of a very strong charge on the atomic nucleus. An atom
in the lowest state of the forward-propagating states can-
not decay by any process into the states of the other set
and continue propagating forward in time. Thus a disso-
lution of the atom from its ground state in this manner
cannot take place. It is the direction of propagation in
time that separates these two sets of states, not a
difference in sign of energy eigenvalues.

Since the bound states contain only positive energy
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plane-wave states while the other set (that extends to neg-
ative infinity in energy) involves only negative energy
plane-wave states, a proper calculation of bound-state
eigenfunctions will not mix the two so that true bound
states of the Hamiltonian for the atom will exist.

The early derivations of quantum electrodynamics'!!
allowed the Coulomb fields to remain unquantized. This
was formalized for computing the properties of bound
states by Furry.!? In the case of atoms, the field of an
infinitely heavy nucleus is generally taken'* to be
Coulomb. The electrons are then treated by quantum
field theory in this external classical field. This is, howev-
er, not consistent with Eq. (2.22) where the projection
operators sandwich the Coulomb potential. As we have
seen, Eq. (2.22) was derived from the Feynman formalism
which quantizes all components of the electromagnetic
field.

The use of the Coulomb field in the Furry picture
would introduce problems as we have noted since an ex-
pansion of a negative energy eigenstate involves positive
energy eigenstates of the noninteracting Hamiltonian.
This would allow components of these negative energy
states to be propagated forward in time by the Feynman
propagators. This is avoided in the Furry picture by us-
ing Coulomb propagators for the electrons that transmit
positive energy states of the Coulomb Hamiltonian for-
ward in time and the negative energy states of this Ham-
iltonian backward in time. The question arises as to
whether the Furry picture with the Coulomb interaction
produces the same description of an atom as do the equa-
tions derived from the Feynman formalism. If the
answer is no, which set of equations is correct?

Let us compare the two methods for the case of an
electron moving in the field of an infinitely heavy point
nucleus. In this case, the Furry picture introduces a
different electron propagator than that proposed by
Feynman. It is clear, however, that the wave function
describing the universe in our neighborhood cannot be
derived using just any set of Green’s functions that are
consistent with the differential equations in Ref. 9. As
Feynman? has pointed out, the Green’s function propaga-
ting both positive and negative energy states forward in
time would satisfy the differential equations. It would,
however, allow electrons to drop into the negative energy
states and propagate forward in time. Since this is not
observed to happen, any Green’s function propagating
negative energy states forward in time is inconsistent
with the boundary conditions that determine the physical
wave function. Thus the Green’s function chosen by
Feynman seems to be the only one that will produce the
wave function that we observe. This suggests that we are
not free to choose between the Feynman propagator and
that of the Coulomb Furry picture.

An example from classical electromagnetic theory may
help to make this fact more evident. If a radio transmit-
ter is turned on and then off, an electromagnetic pulse
will be emitted. The motion of this pulse can best be cal-
culated with the aid of the retarded Green’s function.
None of the pulse will move backward in time. Of course
the advanced or half-advanced and half-retarded Green’s
functions will produce solutions of Maxwell’s equations,
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but they do not represent the wave emitted from a source
such as a radio transmitter. Wheeler and Feynman'*
have shown how the direction of propagation of a radio
wave in time is related to the rest of the universe. This
direction seems to be determined in a manner similar to
the direction of increasing entropy.

If the choice of propagators is set by the nature of the
wave function of the universe, then which of the two,
Feynman’s or the Coulomb Furry picture propagator, is
the proper one? There are some obvious problems with
the Furry picture. For one, it assumes a fixed center. Al-
though the nucleus of an atom is much heavier than the
electrons, it is by no means fixed. The Feynman propaga-
tors do not have this problem since they are related only
to the kinetic energy rather than the entire Hamiltonian.
The Furry picture introduces propagators that depend
upon the charge of the nucleus while the Feynman propa-
gators are independent of this charge. The Furry picture
selects one constituent of an atom (the nucleus) to have a
special position at the center of the classical potential.
Although its mass and charge may be greater than the
electrons, these differences do not seem to be sufficient to
produce such a unique position for one of the elements of
the theory. For these reasons, the Feynman propagator
seems to be more likely to be the correct one.

The difference between the results of the calculations of
the hydrogen energy levels using the Bethe-Salpeter equa-
tion and using the Coulomb Furry picture have, in fact,
been considered by Salpeter® when he compared the Breit
equation with the Bethe-Salpeter equation. He found
that the higher-order term involving two Coulomb pho-
tons appearing in the kernel G in our Eq. (2.1) makes a
correction of -0.037 Mc/s in the 2S5 level of hydrogen. In
the limit of infinite proton mass, this diagram just cancels
the difference in the eigenvalues of the Bethe-Salpeter
Hamiltonian [see our Eq. (2.22)] and the Breit Hamiltoni-
an [our Eq. (2.22) without the projection operators].
Thus, if we could omit the corrections due to this dia-
gram when we use the Coulomb Furry picture, we would
have agreement in the two eigenvalues (although not the
eigenfunctions) to this order. However, the Coulomb
Furry picture requires us to include this diagram (al-
though Coulomb propagators must be used). This throws
the calculation of the energy eigenvalue off by a measur-
able amount when the Coulomb Furry picture is used.
Since the Bethe-Salpeter result is in agreement with ex-
periment, we conclude that the use of the Furry picture
with the Coulomb external potential is inconsistent with
experiment.

We have considered the Hamiltonians that arise from
the summation of the ladder diagrams with Coulomb
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rungs. It is possible to include, in the Hamiltonian for an
atom, contributions that arise from portions of the
higher-order irreducible diagrams in the kernel G of the
Bethe-Salpeter equation. The Breit interaction”!’ is a
contribution from the transverse components of the
ladder rungs. The lowest-order vacuum polarization dia-
gram contributes the Uehling!'® potential. These addi-
tional terms are added directly to the Coulomb potentials
in Egs. (2.22) and (3.7) and are sandwiched in between the
same projection operators. We see this in Eq. (6.11) of
Ref. 7 for the Breit interaction. Since the above con-
siderations about the eigenfunctions of an atomic Hamil-
tonian depend only upon the presence of the projection
operators sandwiching the potential, they will still apply
after these additional potentials are added.

The Hamiltonians considered in Secs. II and III do not
include diagrams involving positrons. Thus the only
point that can be made here about positron production is
that it cannot result from the static field of a charged par-
ticle no matter how large the charge. Increasing the
charge may cause the two sets of states to become degen-
erate, but it will not change the character that one set
propagates forward in time while the other propagates
backward. Even this statement is limited to the eigen-
states of the Hamiltonian and does not include all of the
effects of the higher order diagrams in G.

In summary, let us conclude the following: (1) The
Hamiltonian’s derived by summing Feynman diagrams in
the manner of Bethe, Salpeter, and Broyles producing po-
tentials sandwiched between projection operators is to be
preferred over the Furry picture with an external
Coulomb potential. (2) The Hamiltonian eigenstates
separate into sets, one expandable in positive energy
Dirac plane-wave states alone propagating forward in
time, the other expandable in negative plane-wave states
and propagating backward in time. (3) Statement (2)
holds regardless of the charge on the atomic nucleus. (4)
Bound eigenstates of the above atomic Hamiltonians are
members of the forward propagating set. Since their ex-
pansions involve none of negative energy plane-wave
states, they are not required to have a component extend-
ing to infinity.
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