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Transient and preparation colored-noise effects: The nonlinear relaxation-time approach
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We develop a singular perturbation approach to the problem of the calculation of a characteris-
tic time (the nonlinear relaxation time) for non-Markovian processes driven by Gaussian colored
noise with small correlation time. Transient and initial preparation eA'ects are discussed and ex-
plicit results for prototype situations are obtained. New eA'ects on the relaxation of unstable
states are predicted. The approach is compared with previous techniques.

The problem of the characteristic time scales of sto-
chastic dynamic systems has received great attention in
recent years. In many cases the stochastic process under
study is assumed to be driven by a white noise. This al-
lows us to use the well established and powerful theory of
Markovian processes. Nevertheless, non-Markovian pro-
cesses are receiving increased attention due to their appli-
cation to real systems, and also due to the challenging
theoretical difficulties.

Many recent theoretical efforts and simulations, both
analogical and numerical, have concentrated on the study
of the characteristic time of model systems defined by sto-
chastic differential equations of the form

x =f(x) +g(x) r) (t ),
where f(x) is the deterministic force, rt(t) is a Gaussian
colored noise [an Ornstein-Uhlenbeck process with zero
mean and correlation (rl(t) q(t')) =(D/r)exp(

~
t —t'

~ /
r)] and g(x) is a coupling function. The parameters D
and r are, respectively, the intensity and the correlation
time of the noise.

The mean first-passage time (MFPT) was one of the
first definitions of characteristic times. In the context of
colored noise it was studied by means of digital and ana-
logical simulations and theoretical approximations were
implemented to explain the observed data. ' Since then
an extraordinary and fruitful controversy took place with
important but not definitive theoretical contributions.
The controversy came from the different ways to address
the difficulties of the mathematical formulation of a non-
Markovian MFPT problem, such as the derivation and the
resolution of the equation obeyed by the MFPT and the
treatment of the appropriate boundary conditions.

However, some of these problems seem often to be re-
lated to subtleties of the concrete mathematical definitions
of the characteristic times, which have, presumably, little
physical relevance. One way to avoid these problems
could then be to look for other definitions of characteristic
time scales. A possible point of view addresses the calcu-
lation of the smallest nonvanishing eigenvalue of a Fok-
ker-Planck operator, whose inverse is interpreted as the
characteristic time scale. Although this approach is use-
ful for metastable states, it is not appropriate for other sit-
uations.

Another characteristic time definition is the so-called

linear relaxation time (LRT). ' This approach was fruit-
fully applied to colored-noise problems but it is restricted
to steady-state dynamics.

It is the purpose of this paper to present a new approach
which, in our opinion, circumvents some specific diffi-
culties of the MFPT and succeeds in clarifying the
diA'erent effects of colored noise in the transient evolution.
The idea is to define the analog of the LRT for the tran-
sient evolution of a general statistical average (@(t))
where @ is any function of the state variables, which re-
laxes from an initial value (tlat); to its steady-state value
(4I',&. A characteristic time of this process can then be
defined as

(2)

which is the so-called nonlinear relaxation time (NLRT)
of the quantity @. This definition has been proposed to be
a useful alternative to MFPT techniques' in the context
of Gaussian white noise. Nevertheless, the specific advan-
tages for colored noise problems are particularly relevant.
Essentially they are twofold. First, it avoids the
difhculties of the boundary conditions, and second it per-
mits a neat treatment of the different transient eff'ects, and
especially those associated with the preparation of distri-
buted initial conditions. The effects of the initial coupling
of the system variable and the noise, to which we will pay
special attention throughout this paper, are not usually
taken into account, despite their playing a crucia1 role in
the understanding of the transient evolution driven by
colored noise.

With the definition (2) the NLRT is exactly solvable
for Gaussian white-noise problems. ' For Gaussian
colored noise, it will be solved only for small ~. However,
instead of starting from an effective Fokker-Planck equa-
tion based on a i-expansion, ' ' we will set up the problem
in its two-variable Markovian formulation. This is the
only way to preserve the eff'ects due to an initial coupling
of the system variable x and the noise variable g we want
to account for. In fact the standard effective Fokker-
Planck descriptions, despite containing transient effects in
its time-dependent effective diffusion function, always as-
sume a statistical independence of those variables at t =0,
that is, a factorization of the respective probability densi-
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ties. Nevertheless, from a physical point of view it would
be worth considering the case of coupled initial states such
as those occurring in a system that is prepared as the
steady state of another model (in general defined by f,g),
since then it is well known that the two variables are al-
ways coupled. A typical case to have in mind would be
the study of the transient relaxation of a given system
after an instantaneous change of a control parameter.

Therefore, we will address the augmented two-variable
Markovian formulation of Eq. (1) defined by

x =f(x) + ( I/E) g (x)p,

p = —(I/e-') p+ (JD/e)&(t),
(3)

Commuting the average and the time integral in the
definition (2) one can show that the NLRT associated
with a function of the system variable &(x) is given by

with (g(t)g(t')) =28(t —t'). The noise variable p is
scaled in such a way that (p (t)p (t ') ) =D exp(

~
t —t '!/e )

so that the relation between Eqs. (1) and (3) is given by
p =eg and e = r. The Fokker-Planck operator associated
to Eq. (3) is

L(x,p) = — f(x)+, p —— g(x)p+a i a i D
Bx BP E Bx E Bp

(4)

Here we shall consider the case in which the initial cou-
pling is of the form of the steady state of any arbitrary
preparation model of the type (1) with f(x), g(x), D, and

We have performed the algebra in this case, up to or-
der e =r (the order e does not contribute). After some
manipulations using the explicit form of the colored-noise
steady-state probability distribution [the solution of the
homogeneous part of Eq. (6) to the same order], the final
result can be arranged in a compact form as

T =T,(r)+ r(I —T, )+O(r'), (9)

L(x) - — f(x)+ D g(x) H(x),

where H(x) defines any possible diffusion function whose
first-order form agrees with

H(x) =g(x) [I+rg(x) [f(x)/g(x)1'it+0(r') . (10b)

(1oa)

If we denote the stationary solution of Eq. (10) by P, (x)
and the corresponding to the preparation model by P, (x),
the exact solution' of the NLRT corresponding to Eq.
(10a) reads

where we have separated the solution in two types of con-
tributions. The first term includes the contributions which
coincide with the expansion to order i of the solution of
the problem in a quasi-Markovian approximation, that is,
that given by the effective Fokker-Planck operator

fT~= „dp„dx@(x)R(x,p),
St

(5) 1 b F(x)I(x)
(~),—((p), ~ Dg (x)H (x)P,(x)

where the quantity R(x,p) obeys the equation

L(x,p)R(x, p) =P„(x,p) P;(x,p) . — (6)

P;(x,p) =Po(x)P«(p)+eP4(x, p)+e'P'2(x, p)+
(7c)

into Eq. (5) with Eq. (4). Now collecting the different or-
ders in e one gets a set of equations which can be solved
recurrently to any order. The procedure is quite cumber-
some and parallels step by step that described in Ref. 12
for the calculation of the steady-state probability density
of the same problem (1). The main differences come from
the nonhomogeneous term of Eq. (6) and from the supple-
mentary condition

„' dxRk(x, p) =0, k =0, 1,2, . . . .

If we knew P«(x, p) and we could obtain an explicit ex-
pression for R(x,p) from Eq. (6) we would have reduced
the problem to quadrature inserting it into Eq. (5). In our
case, despite Eq. (6) not being exactly solvable, standard
approximate techniques can be applied. In particular a
singular perturbation approach for small correlation time
2' = E of the noise is suitable for our purposes. The
method inserts the ansatz

R(x,p) =Ro(x,p)+t. R)(x,p)+e'R2(x, p)+
(7a)

P«(x, p) =Po(x)P (ps)t+eP~(x, p)+e P2(x, p)+
(7b)

where

F(x) =
J [@(x')—(+&,1P,(x')dx',

f X

I(x) =„[P,(x') P, (x')—]dx'.
&a

(i2)

1 ' Fo(x) f(x) f(x) Po(x)
&cb&o —(e)o "~ Dg(x) g(x) g(x) Po(x)

(i4)

The averages are taken with the corresponding steady-
state probability densities and (a, b) is the domain of
definition of the process x(t) of Eq. (1).

The second term of the right-hand side (rhs) of Eq. (9)
includes what we could call the purely non-Markovian
contributions, not included in any quasi-Markovian ap-
proximation. In that sense, Eq. (9) can be interpreted as
supplying the purely non-Markovian corrections to any
quasi-Markovian approximation [exact up to the order
one considers in Eq. (IOb)], instead of giving the first-
order corrections to the white-noise case.

The non-Markovian contributions of the second term of
the rhs of Eq. (9) can also be separated in two parts. First
there is a systematic positive amount of z completely gen-
eral for any model, any initial condition, and any relaxing
function &b(x). This is a typical non-Markovian effect
analogous to that found in Ref. 8 for the LRT, which ac-
counts for the expected slowing down of the dynamics
driven by colored noise. Finally we have the coefficient
T~, which depends on the preparation of the system and
reads
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where the zero subscript indicates Gaussian white noise.
This coefficient contains additional transient information,
particularly about the initial coupling of the variables x
and p since it contains the dependence on f and g. This
term, which could not have been obtained from any stan-
dard one-variable eff'ective Fokker-Planck description,
provides the distinction between the coupled and the
decoupled initial conditions. In fact, for a decoupled ini-
tial condition T~ would read

-b F,(x)P;(x)
(b)o —(+)o "' Dg'(x)PO(x)

(is)

[the term of To(~) would be the same identifying P, (x)
with P; (x)]. The most remarkable particular case of Eq.
(15) would be P;(x) 8(x —xo). This describes the phys-
ical situation in which the system is "switched-on" instan-
taneously at t 0 being located at xo, without any previ-
ous influence of the noise. If xo is a deterministically sta-
tionary point [f(xo) =0] T~ will vanish.

Coming back to the coupled case, an explicit evaluation
of Eq. (14) can be performed with great generality for ar-
bitrary f, g, D, and f, with the only restriction of g g and
yields the simple result

T] =1. (i6)

T (1+ —', as+ . )exp
x a

aJz 4D

This is a quite general result which applies to most of the
interesting situations. First of all, it is remarkable that
the sign is positive, so that this term, according to the
definition of T~ in Eq. (9), gives a decrease of the relaxa-
tion time. This goes in the opposite direction than usually
expected for a colored-noise effect. Furthermore Eq. (16)
implies that only the term To(r) survives in Eq. (9), that
is, the problem has been reduced to the eff'ective steady-
state Fokker-Planck description (10) (with a time-inde-
pendent diff'usion function).

The most remarkable point is that the dynamics of the
system for almost any steady-state-like preparation has
been reduced, having included all kinds of transient effects
(to first order in r), to an effective Gaussian white-noise
dynamics, where the r dependence enters only parametri-
cally into the equations, so that the usual machinery of
Markovian processes is applicable.

We can now check the relative importance of the
different colored-noise eff'ects and, in particular, the prac-
tical relevance of the initial coupling in different prototype
situations. For instance, in the study of barrier-crossing
problems, the term To(r) will always be dominant, since
the corrections to the diff'usion will be magnified by the
exponentially large time scale, typically given by the Ar-
rhenius law. The additive corrections of order ~ can be
neglected so that any eA'ective Fokker-Planck approach
like Eq. (10) is justified for these types of activation pro-
cesses. In fact the NLRT characterization of a bistable
model like f(x) ax —x, g(x) 1 with @(x) x" (n
odd) and, for instance, with a &peaked condition at the

. minimum —a '~ (T~ 0), in the limit of small intensity D
of the noise, leads to

The neglected contribution +r of Eq. (9) corresponds to
the neglect of the transient terms in the eA'ective Fokker-
Planck equation. The same correction of 2 ar has also
been encountered for MFPT. ' However, it is to be no-
ticed that a contribution like the r' obtained in Ref. 4
does not appear. In that case it arose from the correct
treatment of the boundary conditions in the colored-noise
MFPT problem for the same activation process and can
be seen as a consequence of the mathematical definition of
the MFPT. The prefactor is the same as that of the
MFPT with end point at the bottom of the other well,
which is also the inverse of the first nonvanishing eigenval-
ue in the same limit.

On the other hand, the discussion about transient and
preparation effects will be relevant for instance in the
study of the decay of unstable states, which are very sensi-
tive to initial conditions and whose relaxation time scale is
much shorter. All studies up to now are based explicitly
or implicitly on the hypothesis of statistical independence
of the system variable and the noise in the initial state.
For instance, Suzuki's scaling theory has been generalized
recently to colored noise' with that assumption. In that
form this theory cannot be applied to the typical switching
experiments like those of Ref. 14. In fact, the relaxation
of a "quenched" Ginzburg-Landau model defined by f(x)

ax —x, g(x) 1 for t & 0 the system being prepared at
t 0 as the steady state of f(x) —aox —x, g(x) 1

(a,ao& 0) under the same noise source, is a prototype
case of an initial coupling of the class we are dealing with.
In these conditions, the relaxation time of the second mo-
ment [+(x) x ] turns to be appreciably smaller than
that corresponding to the decoupled case [T~ a/(a+ao)
+O(D) (1]. To our knowledge, such a destabilizing
eff'ect of colored noise has never been reported before.
Nevertheless, it has a clear intuitive explanation taking
into account that in such an initial state the values of x
are correlated with values of the noise of the same sign,
that is, the noise force tends mostly to reinforce the deter-
ministic one, whereas in the decoupled case both forces
are independent at the initial stages. Despite being calcu-
lated for the NLRT, this effect is claimed to be general
and should also be found for other characteristic time
definitions, like MFPT, since it is related to a physical
mechanism of the preparation procedure.

Following with the quenched unstable state, the
remaining colored-noise eff'ects which still coexist on the
decay time with respect to the same problem with Gauss-
ian white noise (r 0) are still twofold. On one hand the
width of the initial distribution will be smaller [to first or-
der in ~, (xo (r)) =D(1 —aor)/ao]. This will tend to slow
down the decay. On the other hand, according to Eq.
(10b) the effective diff'usion will be greater at the initial
stages [in the linear approximation and to first order in
r, D,tr= D(1+ar)] and this will tend to accelerate the de-
cay. A possible way to estimate the result of those com-
peting eA'ects, given that an exact analytic integration of
Eq. (11) in our case is not possible, is to use the argu-
ments of the scaling theory to the underlying eA'ective
Gaussian white-noise problem (for a discussion of the
NLRT characterization of the decay of an unstable state
with white noise see Ref. 10). This yields in the limit of
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small noise

—(l/2a)ln[(xo (r))+D,rr(r)/a]+const,
T To r

, T(.=0)+O("),

where T(r =0) is the Gaussian white-noise solution of the
same problem. ' It turns out that the two competing
eAects are exactly canceled to order ~ so that the net
correction with respect to the Gaussian white-noise case is
of order r . Therefore, the decay time is always smaller
than the corresponding to the decoupled case of Ref. 13,
which has always a positive first-order correction. These

results call for new numerical and analogical experiments.
Finally, as a general conclusion, we advocate that the

NLRT approach can be taken into account as a useful
tool in the problem of the characteristic time scales of re-
laxation processes. In the current atmosphere of contro-
versy surrounding mean first-passage time calculations,
the NLRT approach not only could avoid some of those
di%cult issues, but could also provide a novel insight into
the transient evolution of colored-noise driven systems.
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