RAPID COMMUNICATIONS

PHYSICAL REVIEW A

VOLUME 39, NUMBER 9

MAY 1, 1989

Spongelike domain structure in a two-dimensional model gel undergoing volume-phase transition

Ken Sekimoto, Nobuo Suematsu, and Kyozi Kawasaki
Department of Physics, Kyushu University, Higashi-ku, Fukuoka 812, Japan
(Received 19 January 1989)

We have studied the numerical model of a two-dimensional gel exhibiting the volumetric phase

separation between the swollen and shrunken phases.

We have found a peculiar percolating

(spongelike) structure of the shrunken phase domain. A qualitative explanation for the appear-
ance of such a structure is given and its relevance to the real gel system is discussed.

The spatial coexistence in bulk gels of the swollen and
shrunken phase domains upon volume-phase transition! ~3
is just beginning to be understood.*> A unique feature of
the gel system is that each of these domains is neither iso-
tropic nor homogeneous.>® Here we report a new ap-
proach to the volume-phase transition of gels by numeri-
cal modeling.

We have constructed the two-dimensional model of a
gel on the basis of the free-energy F similar to the Flory
model 7 having the following functional form:

F=fd2x[f(x.xz)+(v0/2)(x%+x%)], 0]

where d?x is the volume (area) element of the gel in its
reference state,® which is uniform and isotropic but is ar-
bitrary otherwise, and Af=[1;(x)]? and AZ=[r,(x)]?
with 4,1, > 0 are the two principal values of the 2% 2 ma-
trix M7(x)M (x). Here the 2x2 matrix M (x) describes
local deformation through dX(x) =M (x)dx with X(x)
the position of the material point which was at x in the
reference state. f(A|A;) is a function of the local swelling
ratio s =i\, and represents, in the original Flory model, !
the mixing free energy of polymer and solvent. The term
(vo/2) (A +213%) describes the elastic contribution. Here
vo (> 0) is the constant which corresponds to the quantity
proportional to the cross-linking density in the original
Flory model.! We note that according to the Rivlin’s
large deformation theory”'® we have

MAr=[det(MTM)]1"V2=det(M) , ()
AHAF=tr(M ™M) . (3)

These quantities are known® to generate all the other
quantities that are invariant under the symmetry transfor-
mation of isotropically and homogeneously fabricated ma-
terials in two dimension. In the isotropic states where
A=Ay =S '/2, the swelling pressure w, which is conjugate
to s, becomes w=w(s)=—df(s)/ds—vo. We now
choose w(s) =—(s—s5,)(s—s52)(s—s3) with 0<s,<s>
<53, which can describe the isotropically shrunken (or
swollen) state by taking s=s, (or s=s3) for a freely
suspended gel. To facilitate the computation we convert
the above continuum model into the discrete one by mak-
ing the following approximations: We regard the gel to
consist of the material-attached finite elements (elementa-
ry triangles) which in the reference state form a regular
triangular lattice with the lattice constant a. Next we as-
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sume that the deformation of the material within a given
element is uniform. Thus we can show that if the vertices
X, X', and X" of an elementary triangle encircle this ele-
ment counterclockwise in this order, the quantities in (2)
and (3) for this element are given as follows:

2

XY"-YX"+X"Y—-Y"X+XY' —YX"),
V3a?

)

AAy=

x%+x§-%(|x'-x"| 24 X" =X 2+ | X=X ).
a
()

Here we have denoted X'=(X",Y’), etc. Using (4) and
(5) we can perform the integration in (1) element by ele-
ment. We then obtain F as a function of the vertex posi-
tions {X,}, that is, F=F{X,}, where the suffix u desig-
nates each vertex and the parameters (s,52,53,vp) are
suppressed. We sought the local minima (the “metasta-
ble” states) of F{X,} with various parameter values and
various initial conditions by applying the dissipative
molecular dynamics® ~!! in which the vth vertex obeys the
following evolution equation:

X, _ _ oFix,}
CTh X,

where ¢ is the time.

Our model free energy (1) does not include the terms
depending on the strain gradient. The strain gradient
terms would give rise to the interfacial energy associated
with the interfaces between the two coexisting phases. To
distinguish F defined in (1) from this energy, we call F the
bulk energy. In the usual model exhibiting phase separa-
tion, such as those of the (incoherent) binary alloys, we
cannot discuss the optimal shape of domains without the
gradient terms of order parameter since the interfacial en-
ergy dominates the variation of the free energy in the
coexisting state. In contrast to this, the present system of
our interest has the feature that the bulk energy (1) dom-
inates in determining the morphology of the domain
structures in gels. This is essentially due to the fact that
the swelling ratio, which is the primary order parameter in
a naive sense, is the quantity of geometrical nature, and
couples to the shear deformation which strongly depends
on the morphology of the domain. We will discuss this
point in more detail below. Suppose here that we change

’ (6)
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the morphology of the domain whose linear dimension is
~ 1. Then the change in the deformation energy is of the
order of I (d is the spatial dimensionality) since the free-
energy density in (1) contains no characteristic length
scale. On the other hand, the corresponding change in
the interfacial energy would be of the order of /~!. This
implies that if we consider the domain structure of phase
coexistence whose characteristic length scale is sufficiently
large (typically larger than the interface thickness), then
the morphology, not the length scale, of the domain struc-
ture is predominated by the bulk deformation energy. We
can show® that the integrand on the right-hand side of (1)
is invariant under the similarity transformation X(x)
— 06X (0 ~'x) with 6> 0. This implies that the bulk ener-
gy (1) does not give rise to the driving force for the
growth of characteristic length /. We consider the case
where [ is very large, and we assume that the growth of / is
very slow as compared with the equilibration of the mor-
phology of domains. In such a case the “metastable”
domain structure, which we will show below (or, more
precisely, those which would be found in the three dimen-
sional version of our model), can be compared with the
transient or true metastable structure of domains of actu-
al gels, and the relaxation Eq. (6) will describe the dy-
namics of fast process with possibly some modification due
to the effect of volume fraction and flow of the solvent. A
dynamical equation of this sort was proposed by Tanaka
and Fillmore. 2

Below we describe the results of our numerical compu-
tation for the system of 50x50x2 elements subjected to
the periodic boundary condition in both horizontal (X)
and vertical (Y) directions. Figure 1(a) shows the initial
(1 =0) random configuration. This configuration has been
constructed in two steps: First, we randomly displaced all

FIG. 1. (a) Randomly distorted initial state. (b) Relaxed
state from the initial state.

the vertices from their positions in the regular triangular
lattice using the computer generated uniform random
numbers. Second, we smoothed the displacements by the
process in which the displacement of every vertex is re-
placed by the average of displacements of the vertex itself
and its six neighboring vertices. We have repeated this
process ten times, and have thus introduced the charac-
teristic length / which is of the order of ten times the lat-
tice constant a. The size of the system of Figs. 1(a) and
1(b) has been chosen to coincide with that in the reference
state (A, =A,=1). Figure 1(b) shows the metastable
phase-coexisting state which was obtained by relaxing the
initial state of Fig. 1(a) with the parameters s;, 53, 53,
vo=0.49, 1.0, 1.69, 0.34, respectively. Figure 2 shows
another metastable state derived from that shown in Fig.
1(b) by the adiabatic application of external strain, which
we simulated by the repetition of the small affine transfor-
mation (X,Y)— ((4/5)"'°Xx,(5/4)'/'°Y), followed by
the relaxation procedure until the system dimension is
changed into 80% and 125% of the starting system in the
horizontal (X) and vertical (Y) directions, respectively.
Figures 1 and 2 show that the shrunken phase forms a sin-
gle percolating domain having a spongelike structure and
that the strain inside that domain is varied locally and is
highly anisotropic. Under the external strain (Fig. 2) the
structural change occurs both through the deformations
inside each domain and through the transformation of
some elements from swollen phase into shrunken phase
and vice versa. We have also performed computations
with other choices of s, 53, 53, vo and have checked that
the percolation of shrunken-phase domain is not depen-
dent on the volume fraction of that phase being large.

We propose a qualitative explanation for the appear-
ance of the percolating shrunken-phase domain: First, we
note that an isolated shrunken region, if it ever existed,
stretches materials around it in the radial directions.®
And if there were two such shrunken regions near each
other, there will be a highly anisotropic stretching zone
along the line connecting the centers of these regions.
Conversely if there are a certain number of swollen re-
gions separated from each other, the remaining region
among them is more or less stretched in the directions
perpendicular to the lines connecting the centers of the
neighboring swollen regions. In any way it seems very

FIG. 2. Relaxed state after adiabatic compression of the state
shown in Fig. 1(b).
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likely that the stretched zone forms a spatially connected
structure involving all the shrunken regions. Next we note
that in the neighborhood of a stretched zone, the strain,
and therefore, the volume fraction, is constrained to
change along the directions perpendicular to the boun-
daries of this zone. Therefore, we expect that the inter-
face will be formed along the stretching direction(s) of the
stretched zone, and the shrunken-phase domain percolates
through the system. Srolovitz, Hassold, and Gayda'3
have done the Monte Carlo simulation that is relevant to
our work. They have studied an Ising-spin system with
elastic couplings. In their system they did not discuss the
topology of domain structure.

Our findings of spongelike domain structure in a model
gel system evokes many experimental and theoretical in-
terests: Recent observation by optical micrograph* seems
to exhibit the three-dimensional spongelike domain struc-
ture. The macroscopic storage and loss moduli and the
macroscopic permeability of phase separated gels at high

frequencies would reflect the existence and topology of
percolating shrunken-phase domain. Moreover, the
domain-structure dynamics may give rise to the low-
frequency dispersion in the shear as well as bulk viscosi-
ties.'* Finally the coarsening process of domains and the
accompanying morphology change can be also studied.
The predominance of the deformation energy over the
interfacial energy in determining the morphology of the
coexisting domain structure will not be the feature unique
to polymer gels. The systems undergoing martensitic
transformation '” in solids might be the other examples.
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